arm64: make mrs_s prefixing implicit in read_cpuid
[cascardo/linux.git] / arch / arm64 / kernel / cpufeature.c
1 /*
2  * Contains CPU feature definitions
3  *
4  * Copyright (C) 2015 ARM Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18
19 #define pr_fmt(fmt) "CPU features: " fmt
20
21 #include <linux/bsearch.h>
22 #include <linux/sort.h>
23 #include <linux/types.h>
24 #include <asm/cpu.h>
25 #include <asm/cpufeature.h>
26 #include <asm/cpu_ops.h>
27 #include <asm/mmu_context.h>
28 #include <asm/processor.h>
29 #include <asm/sysreg.h>
30
31 unsigned long elf_hwcap __read_mostly;
32 EXPORT_SYMBOL_GPL(elf_hwcap);
33
34 #ifdef CONFIG_COMPAT
35 #define COMPAT_ELF_HWCAP_DEFAULT        \
36                                 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
37                                  COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
38                                  COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
39                                  COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
40                                  COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
41                                  COMPAT_HWCAP_LPAE)
42 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
43 unsigned int compat_elf_hwcap2 __read_mostly;
44 #endif
45
46 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
47
48 #define __ARM64_FTR_BITS(SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
49         {                                               \
50                 .sign = SIGNED,                         \
51                 .strict = STRICT,                       \
52                 .type = TYPE,                           \
53                 .shift = SHIFT,                         \
54                 .width = WIDTH,                         \
55                 .safe_val = SAFE_VAL,                   \
56         }
57
58 /* Define a feature with unsigned values */
59 #define ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
60         __ARM64_FTR_BITS(FTR_UNSIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
61
62 /* Define a feature with a signed value */
63 #define S_ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
64         __ARM64_FTR_BITS(FTR_SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
65
66 #define ARM64_FTR_END                                   \
67         {                                               \
68                 .width = 0,                             \
69         }
70
71 /* meta feature for alternatives */
72 static bool __maybe_unused
73 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry);
74
75 static struct arm64_ftr_bits ftr_id_aa64isar0[] = {
76         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
77         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
78         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),
79         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
80         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
81         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
82         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
83         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
84         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* RAZ */
85         ARM64_FTR_END,
86 };
87
88 static struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
89         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
90         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),
91         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
92         S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
93         S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
94         /* Linux doesn't care about the EL3 */
95         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
96         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
97         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
98         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
99         ARM64_FTR_END,
100 };
101
102 static struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
103         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
104         S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
105         S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
106         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
107         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
108         /* Linux shouldn't care about secure memory */
109         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
110         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
111         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
112         /*
113          * Differing PARange is fine as long as all peripherals and memory are mapped
114          * within the minimum PARange of all CPUs
115          */
116         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
117         ARM64_FTR_END,
118 };
119
120 static struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
121         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
122         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
123         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
124         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
125         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
126         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
127         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
128         ARM64_FTR_END,
129 };
130
131 static struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
132         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
133         ARM64_FTR_END,
134 };
135
136 static struct arm64_ftr_bits ftr_ctr[] = {
137         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 31, 1, 1),        /* RAO */
138         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 3, 0),
139         ARM64_FTR_BITS(FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0),  /* CWG */
140         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),   /* ERG */
141         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1),   /* DminLine */
142         /*
143          * Linux can handle differing I-cache policies. Userspace JITs will
144          * make use of *minLine
145          */
146         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, 14, 2, 0),     /* L1Ip */
147         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 10, 0),        /* RAZ */
148         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),    /* IminLine */
149         ARM64_FTR_END,
150 };
151
152 static struct arm64_ftr_bits ftr_id_mmfr0[] = {
153         S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0xf),    /* InnerShr */
154         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),        /* FCSE */
155         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),        /* AuxReg */
156         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 4, 0),        /* TCM */
157         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),        /* ShareLvl */
158         S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0xf),     /* OuterShr */
159         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* PMSA */
160         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* VMSA */
161         ARM64_FTR_END,
162 };
163
164 static struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
165         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
166         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
167         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
168         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
169         S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
170         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
171         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
172         ARM64_FTR_END,
173 };
174
175 static struct arm64_ftr_bits ftr_mvfr2[] = {
176         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),        /* RAZ */
177         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* FPMisc */
178         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* SIMDMisc */
179         ARM64_FTR_END,
180 };
181
182 static struct arm64_ftr_bits ftr_dczid[] = {
183         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 5, 27, 0),        /* RAZ */
184         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 1, 1),         /* DZP */
185         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),    /* BS */
186         ARM64_FTR_END,
187 };
188
189
190 static struct arm64_ftr_bits ftr_id_isar5[] = {
191         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
192         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 20, 4, 0),        /* RAZ */
193         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
194         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
195         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
196         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
197         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
198         ARM64_FTR_END,
199 };
200
201 static struct arm64_ftr_bits ftr_id_mmfr4[] = {
202         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),        /* RAZ */
203         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* ac2 */
204         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* RAZ */
205         ARM64_FTR_END,
206 };
207
208 static struct arm64_ftr_bits ftr_id_pfr0[] = {
209         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 16, 0),       /* RAZ */
210         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),        /* State3 */
211         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0),         /* State2 */
212         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* State1 */
213         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* State0 */
214         ARM64_FTR_END,
215 };
216
217 static struct arm64_ftr_bits ftr_id_dfr0[] = {
218         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
219         S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),       /* PerfMon */
220         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
221         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
222         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
223         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
224         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
225         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
226         ARM64_FTR_END,
227 };
228
229 /*
230  * Common ftr bits for a 32bit register with all hidden, strict
231  * attributes, with 4bit feature fields and a default safe value of
232  * 0. Covers the following 32bit registers:
233  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
234  */
235 static struct arm64_ftr_bits ftr_generic_32bits[] = {
236         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
237         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
238         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
239         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
240         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
241         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
242         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
243         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
244         ARM64_FTR_END,
245 };
246
247 static struct arm64_ftr_bits ftr_generic[] = {
248         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
249         ARM64_FTR_END,
250 };
251
252 static struct arm64_ftr_bits ftr_generic32[] = {
253         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 32, 0),
254         ARM64_FTR_END,
255 };
256
257 static struct arm64_ftr_bits ftr_aa64raz[] = {
258         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
259         ARM64_FTR_END,
260 };
261
262 #define ARM64_FTR_REG(id, table)                \
263         {                                       \
264                 .sys_id = id,                   \
265                 .name = #id,                    \
266                 .ftr_bits = &((table)[0]),      \
267         }
268
269 static struct arm64_ftr_reg arm64_ftr_regs[] = {
270
271         /* Op1 = 0, CRn = 0, CRm = 1 */
272         ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
273         ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
274         ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
275         ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
276         ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
277         ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
278         ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
279
280         /* Op1 = 0, CRn = 0, CRm = 2 */
281         ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
282         ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
283         ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
284         ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
285         ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
286         ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
287         ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
288
289         /* Op1 = 0, CRn = 0, CRm = 3 */
290         ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
291         ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
292         ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
293
294         /* Op1 = 0, CRn = 0, CRm = 4 */
295         ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
296         ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_aa64raz),
297
298         /* Op1 = 0, CRn = 0, CRm = 5 */
299         ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
300         ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_generic),
301
302         /* Op1 = 0, CRn = 0, CRm = 6 */
303         ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
304         ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_aa64raz),
305
306         /* Op1 = 0, CRn = 0, CRm = 7 */
307         ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
308         ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
309         ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
310
311         /* Op1 = 3, CRn = 0, CRm = 0 */
312         ARM64_FTR_REG(SYS_CTR_EL0, ftr_ctr),
313         ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
314
315         /* Op1 = 3, CRn = 14, CRm = 0 */
316         ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_generic32),
317 };
318
319 static int search_cmp_ftr_reg(const void *id, const void *regp)
320 {
321         return (int)(unsigned long)id - (int)((const struct arm64_ftr_reg *)regp)->sys_id;
322 }
323
324 /*
325  * get_arm64_ftr_reg - Lookup a feature register entry using its
326  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
327  * ascending order of sys_id , we use binary search to find a matching
328  * entry.
329  *
330  * returns - Upon success,  matching ftr_reg entry for id.
331  *         - NULL on failure. It is upto the caller to decide
332  *           the impact of a failure.
333  */
334 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
335 {
336         return bsearch((const void *)(unsigned long)sys_id,
337                         arm64_ftr_regs,
338                         ARRAY_SIZE(arm64_ftr_regs),
339                         sizeof(arm64_ftr_regs[0]),
340                         search_cmp_ftr_reg);
341 }
342
343 static u64 arm64_ftr_set_value(struct arm64_ftr_bits *ftrp, s64 reg, s64 ftr_val)
344 {
345         u64 mask = arm64_ftr_mask(ftrp);
346
347         reg &= ~mask;
348         reg |= (ftr_val << ftrp->shift) & mask;
349         return reg;
350 }
351
352 static s64 arm64_ftr_safe_value(struct arm64_ftr_bits *ftrp, s64 new, s64 cur)
353 {
354         s64 ret = 0;
355
356         switch (ftrp->type) {
357         case FTR_EXACT:
358                 ret = ftrp->safe_val;
359                 break;
360         case FTR_LOWER_SAFE:
361                 ret = new < cur ? new : cur;
362                 break;
363         case FTR_HIGHER_SAFE:
364                 ret = new > cur ? new : cur;
365                 break;
366         default:
367                 BUG();
368         }
369
370         return ret;
371 }
372
373 static int __init sort_cmp_ftr_regs(const void *a, const void *b)
374 {
375         return ((const struct arm64_ftr_reg *)a)->sys_id -
376                  ((const struct arm64_ftr_reg *)b)->sys_id;
377 }
378
379 static void __init swap_ftr_regs(void *a, void *b, int size)
380 {
381         struct arm64_ftr_reg tmp = *(struct arm64_ftr_reg *)a;
382         *(struct arm64_ftr_reg *)a = *(struct arm64_ftr_reg *)b;
383         *(struct arm64_ftr_reg *)b = tmp;
384 }
385
386 static void __init sort_ftr_regs(void)
387 {
388         /* Keep the array sorted so that we can do the binary search */
389         sort(arm64_ftr_regs,
390                 ARRAY_SIZE(arm64_ftr_regs),
391                 sizeof(arm64_ftr_regs[0]),
392                 sort_cmp_ftr_regs,
393                 swap_ftr_regs);
394 }
395
396 /*
397  * Initialise the CPU feature register from Boot CPU values.
398  * Also initiliases the strict_mask for the register.
399  */
400 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
401 {
402         u64 val = 0;
403         u64 strict_mask = ~0x0ULL;
404         struct arm64_ftr_bits *ftrp;
405         struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
406
407         BUG_ON(!reg);
408
409         for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
410                 s64 ftr_new = arm64_ftr_value(ftrp, new);
411
412                 val = arm64_ftr_set_value(ftrp, val, ftr_new);
413                 if (!ftrp->strict)
414                         strict_mask &= ~arm64_ftr_mask(ftrp);
415         }
416         reg->sys_val = val;
417         reg->strict_mask = strict_mask;
418 }
419
420 void __init init_cpu_features(struct cpuinfo_arm64 *info)
421 {
422         /* Before we start using the tables, make sure it is sorted */
423         sort_ftr_regs();
424
425         init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
426         init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
427         init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
428         init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
429         init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
430         init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
431         init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
432         init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
433         init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
434         init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
435         init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
436         init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
437         init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
438         init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
439         init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
440         init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
441         init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
442         init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
443         init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
444         init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
445         init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
446         init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
447         init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
448         init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
449         init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
450         init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
451         init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
452         init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
453 }
454
455 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
456 {
457         struct arm64_ftr_bits *ftrp;
458
459         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
460                 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
461                 s64 ftr_new = arm64_ftr_value(ftrp, new);
462
463                 if (ftr_cur == ftr_new)
464                         continue;
465                 /* Find a safe value */
466                 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
467                 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
468         }
469
470 }
471
472 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
473 {
474         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
475
476         BUG_ON(!regp);
477         update_cpu_ftr_reg(regp, val);
478         if ((boot & regp->strict_mask) == (val & regp->strict_mask))
479                 return 0;
480         pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
481                         regp->name, boot, cpu, val);
482         return 1;
483 }
484
485 /*
486  * Update system wide CPU feature registers with the values from a
487  * non-boot CPU. Also performs SANITY checks to make sure that there
488  * aren't any insane variations from that of the boot CPU.
489  */
490 void update_cpu_features(int cpu,
491                          struct cpuinfo_arm64 *info,
492                          struct cpuinfo_arm64 *boot)
493 {
494         int taint = 0;
495
496         /*
497          * The kernel can handle differing I-cache policies, but otherwise
498          * caches should look identical. Userspace JITs will make use of
499          * *minLine.
500          */
501         taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
502                                       info->reg_ctr, boot->reg_ctr);
503
504         /*
505          * Userspace may perform DC ZVA instructions. Mismatched block sizes
506          * could result in too much or too little memory being zeroed if a
507          * process is preempted and migrated between CPUs.
508          */
509         taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
510                                       info->reg_dczid, boot->reg_dczid);
511
512         /* If different, timekeeping will be broken (especially with KVM) */
513         taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
514                                       info->reg_cntfrq, boot->reg_cntfrq);
515
516         /*
517          * The kernel uses self-hosted debug features and expects CPUs to
518          * support identical debug features. We presently need CTX_CMPs, WRPs,
519          * and BRPs to be identical.
520          * ID_AA64DFR1 is currently RES0.
521          */
522         taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
523                                       info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
524         taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
525                                       info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
526         /*
527          * Even in big.LITTLE, processors should be identical instruction-set
528          * wise.
529          */
530         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
531                                       info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
532         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
533                                       info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
534
535         /*
536          * Differing PARange support is fine as long as all peripherals and
537          * memory are mapped within the minimum PARange of all CPUs.
538          * Linux should not care about secure memory.
539          */
540         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
541                                       info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
542         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
543                                       info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
544         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
545                                       info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
546
547         /*
548          * EL3 is not our concern.
549          * ID_AA64PFR1 is currently RES0.
550          */
551         taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
552                                       info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
553         taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
554                                       info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
555
556         /*
557          * If we have AArch32, we care about 32-bit features for compat. These
558          * registers should be RES0 otherwise.
559          */
560         taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
561                                         info->reg_id_dfr0, boot->reg_id_dfr0);
562         taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
563                                         info->reg_id_isar0, boot->reg_id_isar0);
564         taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
565                                         info->reg_id_isar1, boot->reg_id_isar1);
566         taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
567                                         info->reg_id_isar2, boot->reg_id_isar2);
568         taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
569                                         info->reg_id_isar3, boot->reg_id_isar3);
570         taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
571                                         info->reg_id_isar4, boot->reg_id_isar4);
572         taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
573                                         info->reg_id_isar5, boot->reg_id_isar5);
574
575         /*
576          * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
577          * ACTLR formats could differ across CPUs and therefore would have to
578          * be trapped for virtualization anyway.
579          */
580         taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
581                                         info->reg_id_mmfr0, boot->reg_id_mmfr0);
582         taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
583                                         info->reg_id_mmfr1, boot->reg_id_mmfr1);
584         taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
585                                         info->reg_id_mmfr2, boot->reg_id_mmfr2);
586         taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
587                                         info->reg_id_mmfr3, boot->reg_id_mmfr3);
588         taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
589                                         info->reg_id_pfr0, boot->reg_id_pfr0);
590         taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
591                                         info->reg_id_pfr1, boot->reg_id_pfr1);
592         taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
593                                         info->reg_mvfr0, boot->reg_mvfr0);
594         taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
595                                         info->reg_mvfr1, boot->reg_mvfr1);
596         taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
597                                         info->reg_mvfr2, boot->reg_mvfr2);
598
599         /*
600          * Mismatched CPU features are a recipe for disaster. Don't even
601          * pretend to support them.
602          */
603         WARN_TAINT_ONCE(taint, TAINT_CPU_OUT_OF_SPEC,
604                         "Unsupported CPU feature variation.\n");
605 }
606
607 u64 read_system_reg(u32 id)
608 {
609         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
610
611         /* We shouldn't get a request for an unsupported register */
612         BUG_ON(!regp);
613         return regp->sys_val;
614 }
615
616 #include <linux/irqchip/arm-gic-v3.h>
617
618 static bool
619 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
620 {
621         int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
622
623         return val >= entry->min_field_value;
624 }
625
626 static bool
627 has_cpuid_feature(const struct arm64_cpu_capabilities *entry)
628 {
629         u64 val;
630
631         val = read_system_reg(entry->sys_reg);
632         return feature_matches(val, entry);
633 }
634
635 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry)
636 {
637         bool has_sre;
638
639         if (!has_cpuid_feature(entry))
640                 return false;
641
642         has_sre = gic_enable_sre();
643         if (!has_sre)
644                 pr_warn_once("%s present but disabled by higher exception level\n",
645                              entry->desc);
646
647         return has_sre;
648 }
649
650 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry)
651 {
652         u32 midr = read_cpuid_id();
653         u32 rv_min, rv_max;
654
655         /* Cavium ThunderX pass 1.x and 2.x */
656         rv_min = 0;
657         rv_max = (1 << MIDR_VARIANT_SHIFT) | MIDR_REVISION_MASK;
658
659         return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX, rv_min, rv_max);
660 }
661
662 static const struct arm64_cpu_capabilities arm64_features[] = {
663         {
664                 .desc = "GIC system register CPU interface",
665                 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
666                 .matches = has_useable_gicv3_cpuif,
667                 .sys_reg = SYS_ID_AA64PFR0_EL1,
668                 .field_pos = ID_AA64PFR0_GIC_SHIFT,
669                 .sign = FTR_UNSIGNED,
670                 .min_field_value = 1,
671         },
672 #ifdef CONFIG_ARM64_PAN
673         {
674                 .desc = "Privileged Access Never",
675                 .capability = ARM64_HAS_PAN,
676                 .matches = has_cpuid_feature,
677                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
678                 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
679                 .sign = FTR_UNSIGNED,
680                 .min_field_value = 1,
681                 .enable = cpu_enable_pan,
682         },
683 #endif /* CONFIG_ARM64_PAN */
684 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
685         {
686                 .desc = "LSE atomic instructions",
687                 .capability = ARM64_HAS_LSE_ATOMICS,
688                 .matches = has_cpuid_feature,
689                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
690                 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
691                 .sign = FTR_UNSIGNED,
692                 .min_field_value = 2,
693         },
694 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
695         {
696                 .desc = "Software prefetching using PRFM",
697                 .capability = ARM64_HAS_NO_HW_PREFETCH,
698                 .matches = has_no_hw_prefetch,
699         },
700 #ifdef CONFIG_ARM64_UAO
701         {
702                 .desc = "User Access Override",
703                 .capability = ARM64_HAS_UAO,
704                 .matches = has_cpuid_feature,
705                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
706                 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
707                 .min_field_value = 1,
708                 .enable = cpu_enable_uao,
709         },
710 #endif /* CONFIG_ARM64_UAO */
711 #ifdef CONFIG_ARM64_PAN
712         {
713                 .capability = ARM64_ALT_PAN_NOT_UAO,
714                 .matches = cpufeature_pan_not_uao,
715         },
716 #endif /* CONFIG_ARM64_PAN */
717         {},
718 };
719
720 #define HWCAP_CAP(reg, field, s, min_value, type, cap)  \
721         {                                                       \
722                 .desc = #cap,                                   \
723                 .matches = has_cpuid_feature,                   \
724                 .sys_reg = reg,                                 \
725                 .field_pos = field,                             \
726                 .sign = s,                                      \
727                 .min_field_value = min_value,                   \
728                 .hwcap_type = type,                             \
729                 .hwcap = cap,                                   \
730         }
731
732 static const struct arm64_cpu_capabilities arm64_hwcaps[] = {
733         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
734         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
735         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
736         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
737         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
738         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
739         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
740         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
741         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
742         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
743 #ifdef CONFIG_COMPAT
744         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
745         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
746         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
747         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
748         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
749 #endif
750         {},
751 };
752
753 static void __init cap_set_hwcap(const struct arm64_cpu_capabilities *cap)
754 {
755         switch (cap->hwcap_type) {
756         case CAP_HWCAP:
757                 elf_hwcap |= cap->hwcap;
758                 break;
759 #ifdef CONFIG_COMPAT
760         case CAP_COMPAT_HWCAP:
761                 compat_elf_hwcap |= (u32)cap->hwcap;
762                 break;
763         case CAP_COMPAT_HWCAP2:
764                 compat_elf_hwcap2 |= (u32)cap->hwcap;
765                 break;
766 #endif
767         default:
768                 WARN_ON(1);
769                 break;
770         }
771 }
772
773 /* Check if we have a particular HWCAP enabled */
774 static bool __maybe_unused cpus_have_hwcap(const struct arm64_cpu_capabilities *cap)
775 {
776         bool rc;
777
778         switch (cap->hwcap_type) {
779         case CAP_HWCAP:
780                 rc = (elf_hwcap & cap->hwcap) != 0;
781                 break;
782 #ifdef CONFIG_COMPAT
783         case CAP_COMPAT_HWCAP:
784                 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
785                 break;
786         case CAP_COMPAT_HWCAP2:
787                 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
788                 break;
789 #endif
790         default:
791                 WARN_ON(1);
792                 rc = false;
793         }
794
795         return rc;
796 }
797
798 static void __init setup_cpu_hwcaps(void)
799 {
800         int i;
801         const struct arm64_cpu_capabilities *hwcaps = arm64_hwcaps;
802
803         for (i = 0; hwcaps[i].matches; i++)
804                 if (hwcaps[i].matches(&hwcaps[i]))
805                         cap_set_hwcap(&hwcaps[i]);
806 }
807
808 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
809                             const char *info)
810 {
811         int i;
812
813         for (i = 0; caps[i].matches; i++) {
814                 if (!caps[i].matches(&caps[i]))
815                         continue;
816
817                 if (!cpus_have_cap(caps[i].capability) && caps[i].desc)
818                         pr_info("%s %s\n", info, caps[i].desc);
819                 cpus_set_cap(caps[i].capability);
820         }
821 }
822
823 /*
824  * Run through the enabled capabilities and enable() it on all active
825  * CPUs
826  */
827 static void __init
828 enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
829 {
830         int i;
831
832         for (i = 0; caps[i].matches; i++)
833                 if (caps[i].enable && cpus_have_cap(caps[i].capability))
834                         on_each_cpu(caps[i].enable, NULL, true);
835 }
836
837 /*
838  * Flag to indicate if we have computed the system wide
839  * capabilities based on the boot time active CPUs. This
840  * will be used to determine if a new booting CPU should
841  * go through the verification process to make sure that it
842  * supports the system capabilities, without using a hotplug
843  * notifier.
844  */
845 static bool sys_caps_initialised;
846
847 static inline void set_sys_caps_initialised(void)
848 {
849         sys_caps_initialised = true;
850 }
851
852 /*
853  * __raw_read_system_reg() - Used by a STARTING cpu before cpuinfo is populated.
854  */
855 static u64 __raw_read_system_reg(u32 sys_id)
856 {
857         switch (sys_id) {
858         case SYS_ID_PFR0_EL1:           return read_cpuid(ID_PFR0_EL1);
859         case SYS_ID_PFR1_EL1:           return read_cpuid(ID_PFR1_EL1);
860         case SYS_ID_DFR0_EL1:           return read_cpuid(ID_DFR0_EL1);
861         case SYS_ID_MMFR0_EL1:          return read_cpuid(ID_MMFR0_EL1);
862         case SYS_ID_MMFR1_EL1:          return read_cpuid(ID_MMFR1_EL1);
863         case SYS_ID_MMFR2_EL1:          return read_cpuid(ID_MMFR2_EL1);
864         case SYS_ID_MMFR3_EL1:          return read_cpuid(ID_MMFR3_EL1);
865         case SYS_ID_ISAR0_EL1:          return read_cpuid(ID_ISAR0_EL1);
866         case SYS_ID_ISAR1_EL1:          return read_cpuid(ID_ISAR1_EL1);
867         case SYS_ID_ISAR2_EL1:          return read_cpuid(ID_ISAR2_EL1);
868         case SYS_ID_ISAR3_EL1:          return read_cpuid(ID_ISAR3_EL1);
869         case SYS_ID_ISAR4_EL1:          return read_cpuid(ID_ISAR4_EL1);
870         case SYS_ID_ISAR5_EL1:          return read_cpuid(ID_ISAR4_EL1);
871         case SYS_MVFR0_EL1:             return read_cpuid(MVFR0_EL1);
872         case SYS_MVFR1_EL1:             return read_cpuid(MVFR1_EL1);
873         case SYS_MVFR2_EL1:             return read_cpuid(MVFR2_EL1);
874
875         case SYS_ID_AA64PFR0_EL1:       return read_cpuid(ID_AA64PFR0_EL1);
876         case SYS_ID_AA64PFR1_EL1:       return read_cpuid(ID_AA64PFR0_EL1);
877         case SYS_ID_AA64DFR0_EL1:       return read_cpuid(ID_AA64DFR0_EL1);
878         case SYS_ID_AA64DFR1_EL1:       return read_cpuid(ID_AA64DFR0_EL1);
879         case SYS_ID_AA64MMFR0_EL1:      return read_cpuid(ID_AA64MMFR0_EL1);
880         case SYS_ID_AA64MMFR1_EL1:      return read_cpuid(ID_AA64MMFR1_EL1);
881         case SYS_ID_AA64MMFR2_EL1:      return read_cpuid(ID_AA64MMFR2_EL1);
882         case SYS_ID_AA64ISAR0_EL1:      return read_cpuid(ID_AA64ISAR0_EL1);
883         case SYS_ID_AA64ISAR1_EL1:      return read_cpuid(ID_AA64ISAR1_EL1);
884
885         case SYS_CNTFRQ_EL0:            return read_cpuid(CNTFRQ_EL0);
886         case SYS_CTR_EL0:               return read_cpuid(CTR_EL0);
887         case SYS_DCZID_EL0:             return read_cpuid(DCZID_EL0);
888         default:
889                 BUG();
890                 return 0;
891         }
892 }
893
894 /*
895  * Check for CPU features that are used in early boot
896  * based on the Boot CPU value.
897  */
898 static void check_early_cpu_features(void)
899 {
900         verify_cpu_asid_bits();
901 }
902
903 /*
904  * Run through the enabled system capabilities and enable() it on this CPU.
905  * The capabilities were decided based on the available CPUs at the boot time.
906  * Any new CPU should match the system wide status of the capability. If the
907  * new CPU doesn't have a capability which the system now has enabled, we
908  * cannot do anything to fix it up and could cause unexpected failures. So
909  * we park the CPU.
910  */
911 void verify_local_cpu_capabilities(void)
912 {
913         int i;
914         const struct arm64_cpu_capabilities *caps;
915
916         check_early_cpu_features();
917
918         /*
919          * If we haven't computed the system capabilities, there is nothing
920          * to verify.
921          */
922         if (!sys_caps_initialised)
923                 return;
924
925         caps = arm64_features;
926         for (i = 0; caps[i].matches; i++) {
927                 if (!cpus_have_cap(caps[i].capability) || !caps[i].sys_reg)
928                         continue;
929                 /*
930                  * If the new CPU misses an advertised feature, we cannot proceed
931                  * further, park the cpu.
932                  */
933                 if (!feature_matches(__raw_read_system_reg(caps[i].sys_reg), &caps[i])) {
934                         pr_crit("CPU%d: missing feature: %s\n",
935                                         smp_processor_id(), caps[i].desc);
936                         cpu_die_early();
937                 }
938                 if (caps[i].enable)
939                         caps[i].enable(NULL);
940         }
941
942         for (i = 0, caps = arm64_hwcaps; caps[i].matches; i++) {
943                 if (!cpus_have_hwcap(&caps[i]))
944                         continue;
945                 if (!feature_matches(__raw_read_system_reg(caps[i].sys_reg), &caps[i])) {
946                         pr_crit("CPU%d: missing HWCAP: %s\n",
947                                         smp_processor_id(), caps[i].desc);
948                         cpu_die_early();
949                 }
950         }
951 }
952
953 static void __init setup_feature_capabilities(void)
954 {
955         update_cpu_capabilities(arm64_features, "detected feature:");
956         enable_cpu_capabilities(arm64_features);
957 }
958
959 void __init setup_cpu_features(void)
960 {
961         u32 cwg;
962         int cls;
963
964         /* Set the CPU feature capabilies */
965         setup_feature_capabilities();
966         setup_cpu_hwcaps();
967
968         /* Advertise that we have computed the system capabilities */
969         set_sys_caps_initialised();
970
971         /*
972          * Check for sane CTR_EL0.CWG value.
973          */
974         cwg = cache_type_cwg();
975         cls = cache_line_size();
976         if (!cwg)
977                 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
978                         cls);
979         if (L1_CACHE_BYTES < cls)
980                 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
981                         L1_CACHE_BYTES, cls);
982 }
983
984 static bool __maybe_unused
985 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry)
986 {
987         return (cpus_have_cap(ARM64_HAS_PAN) && !cpus_have_cap(ARM64_HAS_UAO));
988 }