Merge tag 'pci-v4.6-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci
[cascardo/linux.git] / arch / arm64 / kernel / cpufeature.c
1 /*
2  * Contains CPU feature definitions
3  *
4  * Copyright (C) 2015 ARM Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18
19 #define pr_fmt(fmt) "CPU features: " fmt
20
21 #include <linux/bsearch.h>
22 #include <linux/sort.h>
23 #include <linux/types.h>
24 #include <asm/cpu.h>
25 #include <asm/cpufeature.h>
26 #include <asm/cpu_ops.h>
27 #include <asm/processor.h>
28 #include <asm/sysreg.h>
29 #include <asm/virt.h>
30
31 unsigned long elf_hwcap __read_mostly;
32 EXPORT_SYMBOL_GPL(elf_hwcap);
33
34 #ifdef CONFIG_COMPAT
35 #define COMPAT_ELF_HWCAP_DEFAULT        \
36                                 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
37                                  COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
38                                  COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
39                                  COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
40                                  COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
41                                  COMPAT_HWCAP_LPAE)
42 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
43 unsigned int compat_elf_hwcap2 __read_mostly;
44 #endif
45
46 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
47
48 #define __ARM64_FTR_BITS(SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
49         {                                               \
50                 .sign = SIGNED,                         \
51                 .strict = STRICT,                       \
52                 .type = TYPE,                           \
53                 .shift = SHIFT,                         \
54                 .width = WIDTH,                         \
55                 .safe_val = SAFE_VAL,                   \
56         }
57
58 /* Define a feature with signed values */
59 #define ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
60         __ARM64_FTR_BITS(FTR_SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
61
62 /* Define a feature with unsigned value */
63 #define U_ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
64         __ARM64_FTR_BITS(FTR_UNSIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
65
66 #define ARM64_FTR_END                                   \
67         {                                               \
68                 .width = 0,                             \
69         }
70
71 static struct arm64_ftr_bits ftr_id_aa64isar0[] = {
72         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
73         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
74         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),
75         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
76         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
77         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
78         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
79         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
80         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* RAZ */
81         ARM64_FTR_END,
82 };
83
84 static struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
85         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
86         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),
87         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
88         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
89         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
90         /* Linux doesn't care about the EL3 */
91         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
92         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
93         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
94         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
95         ARM64_FTR_END,
96 };
97
98 static struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
99         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
100         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
101         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
102         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
103         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
104         /* Linux shouldn't care about secure memory */
105         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
106         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
107         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
108         /*
109          * Differing PARange is fine as long as all peripherals and memory are mapped
110          * within the minimum PARange of all CPUs
111          */
112         U_ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
113         ARM64_FTR_END,
114 };
115
116 static struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
117         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
118         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
119         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
120         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
121         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
122         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
123         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
124         ARM64_FTR_END,
125 };
126
127 static struct arm64_ftr_bits ftr_ctr[] = {
128         U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 31, 1, 1),      /* RAO */
129         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 3, 0),
130         U_ARM64_FTR_BITS(FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0),        /* CWG */
131         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0), /* ERG */
132         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1), /* DminLine */
133         /*
134          * Linux can handle differing I-cache policies. Userspace JITs will
135          * make use of *minLine
136          */
137         U_ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, 14, 2, 0),   /* L1Ip */
138         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 10, 0),        /* RAZ */
139         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),  /* IminLine */
140         ARM64_FTR_END,
141 };
142
143 static struct arm64_ftr_bits ftr_id_mmfr0[] = {
144         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),        /* InnerShr */
145         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),        /* FCSE */
146         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),        /* AuxReg */
147         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 4, 0),        /* TCM */
148         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),        /* ShareLvl */
149         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0), /* OuterShr */
150         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* PMSA */
151         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* VMSA */
152         ARM64_FTR_END,
153 };
154
155 static struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
156         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
157         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
158         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
159         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
160         U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
161         U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
162         U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
163         ARM64_FTR_END,
164 };
165
166 static struct arm64_ftr_bits ftr_mvfr2[] = {
167         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),        /* RAZ */
168         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* FPMisc */
169         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* SIMDMisc */
170         ARM64_FTR_END,
171 };
172
173 static struct arm64_ftr_bits ftr_dczid[] = {
174         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 5, 27, 0),        /* RAZ */
175         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 1, 1),         /* DZP */
176         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),    /* BS */
177         ARM64_FTR_END,
178 };
179
180
181 static struct arm64_ftr_bits ftr_id_isar5[] = {
182         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
183         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 20, 4, 0),        /* RAZ */
184         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
185         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
186         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
187         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
188         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
189         ARM64_FTR_END,
190 };
191
192 static struct arm64_ftr_bits ftr_id_mmfr4[] = {
193         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),        /* RAZ */
194         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* ac2 */
195         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* RAZ */
196         ARM64_FTR_END,
197 };
198
199 static struct arm64_ftr_bits ftr_id_pfr0[] = {
200         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 16, 0),       /* RAZ */
201         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),        /* State3 */
202         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0),         /* State2 */
203         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* State1 */
204         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* State0 */
205         ARM64_FTR_END,
206 };
207
208 /*
209  * Common ftr bits for a 32bit register with all hidden, strict
210  * attributes, with 4bit feature fields and a default safe value of
211  * 0. Covers the following 32bit registers:
212  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
213  */
214 static struct arm64_ftr_bits ftr_generic_32bits[] = {
215         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
216         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
217         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
218         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
219         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
220         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
221         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
222         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
223         ARM64_FTR_END,
224 };
225
226 static struct arm64_ftr_bits ftr_generic[] = {
227         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
228         ARM64_FTR_END,
229 };
230
231 static struct arm64_ftr_bits ftr_generic32[] = {
232         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 32, 0),
233         ARM64_FTR_END,
234 };
235
236 static struct arm64_ftr_bits ftr_aa64raz[] = {
237         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
238         ARM64_FTR_END,
239 };
240
241 #define ARM64_FTR_REG(id, table)                \
242         {                                       \
243                 .sys_id = id,                   \
244                 .name = #id,                    \
245                 .ftr_bits = &((table)[0]),      \
246         }
247
248 static struct arm64_ftr_reg arm64_ftr_regs[] = {
249
250         /* Op1 = 0, CRn = 0, CRm = 1 */
251         ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
252         ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
253         ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_generic_32bits),
254         ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
255         ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
256         ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
257         ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
258
259         /* Op1 = 0, CRn = 0, CRm = 2 */
260         ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
261         ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
262         ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
263         ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
264         ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
265         ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
266         ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
267
268         /* Op1 = 0, CRn = 0, CRm = 3 */
269         ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
270         ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
271         ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
272
273         /* Op1 = 0, CRn = 0, CRm = 4 */
274         ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
275         ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_aa64raz),
276
277         /* Op1 = 0, CRn = 0, CRm = 5 */
278         ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
279         ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_generic),
280
281         /* Op1 = 0, CRn = 0, CRm = 6 */
282         ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
283         ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_aa64raz),
284
285         /* Op1 = 0, CRn = 0, CRm = 7 */
286         ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
287         ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
288
289         /* Op1 = 3, CRn = 0, CRm = 0 */
290         ARM64_FTR_REG(SYS_CTR_EL0, ftr_ctr),
291         ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
292
293         /* Op1 = 3, CRn = 14, CRm = 0 */
294         ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_generic32),
295 };
296
297 static int search_cmp_ftr_reg(const void *id, const void *regp)
298 {
299         return (int)(unsigned long)id - (int)((const struct arm64_ftr_reg *)regp)->sys_id;
300 }
301
302 /*
303  * get_arm64_ftr_reg - Lookup a feature register entry using its
304  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
305  * ascending order of sys_id , we use binary search to find a matching
306  * entry.
307  *
308  * returns - Upon success,  matching ftr_reg entry for id.
309  *         - NULL on failure. It is upto the caller to decide
310  *           the impact of a failure.
311  */
312 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
313 {
314         return bsearch((const void *)(unsigned long)sys_id,
315                         arm64_ftr_regs,
316                         ARRAY_SIZE(arm64_ftr_regs),
317                         sizeof(arm64_ftr_regs[0]),
318                         search_cmp_ftr_reg);
319 }
320
321 static u64 arm64_ftr_set_value(struct arm64_ftr_bits *ftrp, s64 reg, s64 ftr_val)
322 {
323         u64 mask = arm64_ftr_mask(ftrp);
324
325         reg &= ~mask;
326         reg |= (ftr_val << ftrp->shift) & mask;
327         return reg;
328 }
329
330 static s64 arm64_ftr_safe_value(struct arm64_ftr_bits *ftrp, s64 new, s64 cur)
331 {
332         s64 ret = 0;
333
334         switch (ftrp->type) {
335         case FTR_EXACT:
336                 ret = ftrp->safe_val;
337                 break;
338         case FTR_LOWER_SAFE:
339                 ret = new < cur ? new : cur;
340                 break;
341         case FTR_HIGHER_SAFE:
342                 ret = new > cur ? new : cur;
343                 break;
344         default:
345                 BUG();
346         }
347
348         return ret;
349 }
350
351 static int __init sort_cmp_ftr_regs(const void *a, const void *b)
352 {
353         return ((const struct arm64_ftr_reg *)a)->sys_id -
354                  ((const struct arm64_ftr_reg *)b)->sys_id;
355 }
356
357 static void __init swap_ftr_regs(void *a, void *b, int size)
358 {
359         struct arm64_ftr_reg tmp = *(struct arm64_ftr_reg *)a;
360         *(struct arm64_ftr_reg *)a = *(struct arm64_ftr_reg *)b;
361         *(struct arm64_ftr_reg *)b = tmp;
362 }
363
364 static void __init sort_ftr_regs(void)
365 {
366         /* Keep the array sorted so that we can do the binary search */
367         sort(arm64_ftr_regs,
368                 ARRAY_SIZE(arm64_ftr_regs),
369                 sizeof(arm64_ftr_regs[0]),
370                 sort_cmp_ftr_regs,
371                 swap_ftr_regs);
372 }
373
374 /*
375  * Initialise the CPU feature register from Boot CPU values.
376  * Also initiliases the strict_mask for the register.
377  */
378 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
379 {
380         u64 val = 0;
381         u64 strict_mask = ~0x0ULL;
382         struct arm64_ftr_bits *ftrp;
383         struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
384
385         BUG_ON(!reg);
386
387         for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
388                 s64 ftr_new = arm64_ftr_value(ftrp, new);
389
390                 val = arm64_ftr_set_value(ftrp, val, ftr_new);
391                 if (!ftrp->strict)
392                         strict_mask &= ~arm64_ftr_mask(ftrp);
393         }
394         reg->sys_val = val;
395         reg->strict_mask = strict_mask;
396 }
397
398 void __init init_cpu_features(struct cpuinfo_arm64 *info)
399 {
400         /* Before we start using the tables, make sure it is sorted */
401         sort_ftr_regs();
402
403         init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
404         init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
405         init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
406         init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
407         init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
408         init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
409         init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
410         init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
411         init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
412         init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
413         init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
414         init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
415         init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
416         init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
417         init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
418         init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
419         init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
420         init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
421         init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
422         init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
423         init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
424         init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
425         init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
426         init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
427         init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
428         init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
429         init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
430 }
431
432 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
433 {
434         struct arm64_ftr_bits *ftrp;
435
436         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
437                 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
438                 s64 ftr_new = arm64_ftr_value(ftrp, new);
439
440                 if (ftr_cur == ftr_new)
441                         continue;
442                 /* Find a safe value */
443                 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
444                 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
445         }
446
447 }
448
449 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
450 {
451         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
452
453         BUG_ON(!regp);
454         update_cpu_ftr_reg(regp, val);
455         if ((boot & regp->strict_mask) == (val & regp->strict_mask))
456                 return 0;
457         pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
458                         regp->name, boot, cpu, val);
459         return 1;
460 }
461
462 /*
463  * Update system wide CPU feature registers with the values from a
464  * non-boot CPU. Also performs SANITY checks to make sure that there
465  * aren't any insane variations from that of the boot CPU.
466  */
467 void update_cpu_features(int cpu,
468                          struct cpuinfo_arm64 *info,
469                          struct cpuinfo_arm64 *boot)
470 {
471         int taint = 0;
472
473         /*
474          * The kernel can handle differing I-cache policies, but otherwise
475          * caches should look identical. Userspace JITs will make use of
476          * *minLine.
477          */
478         taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
479                                       info->reg_ctr, boot->reg_ctr);
480
481         /*
482          * Userspace may perform DC ZVA instructions. Mismatched block sizes
483          * could result in too much or too little memory being zeroed if a
484          * process is preempted and migrated between CPUs.
485          */
486         taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
487                                       info->reg_dczid, boot->reg_dczid);
488
489         /* If different, timekeeping will be broken (especially with KVM) */
490         taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
491                                       info->reg_cntfrq, boot->reg_cntfrq);
492
493         /*
494          * The kernel uses self-hosted debug features and expects CPUs to
495          * support identical debug features. We presently need CTX_CMPs, WRPs,
496          * and BRPs to be identical.
497          * ID_AA64DFR1 is currently RES0.
498          */
499         taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
500                                       info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
501         taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
502                                       info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
503         /*
504          * Even in big.LITTLE, processors should be identical instruction-set
505          * wise.
506          */
507         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
508                                       info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
509         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
510                                       info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
511
512         /*
513          * Differing PARange support is fine as long as all peripherals and
514          * memory are mapped within the minimum PARange of all CPUs.
515          * Linux should not care about secure memory.
516          */
517         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
518                                       info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
519         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
520                                       info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
521
522         /*
523          * EL3 is not our concern.
524          * ID_AA64PFR1 is currently RES0.
525          */
526         taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
527                                       info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
528         taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
529                                       info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
530
531         /*
532          * If we have AArch32, we care about 32-bit features for compat. These
533          * registers should be RES0 otherwise.
534          */
535         taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
536                                         info->reg_id_dfr0, boot->reg_id_dfr0);
537         taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
538                                         info->reg_id_isar0, boot->reg_id_isar0);
539         taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
540                                         info->reg_id_isar1, boot->reg_id_isar1);
541         taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
542                                         info->reg_id_isar2, boot->reg_id_isar2);
543         taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
544                                         info->reg_id_isar3, boot->reg_id_isar3);
545         taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
546                                         info->reg_id_isar4, boot->reg_id_isar4);
547         taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
548                                         info->reg_id_isar5, boot->reg_id_isar5);
549
550         /*
551          * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
552          * ACTLR formats could differ across CPUs and therefore would have to
553          * be trapped for virtualization anyway.
554          */
555         taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
556                                         info->reg_id_mmfr0, boot->reg_id_mmfr0);
557         taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
558                                         info->reg_id_mmfr1, boot->reg_id_mmfr1);
559         taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
560                                         info->reg_id_mmfr2, boot->reg_id_mmfr2);
561         taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
562                                         info->reg_id_mmfr3, boot->reg_id_mmfr3);
563         taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
564                                         info->reg_id_pfr0, boot->reg_id_pfr0);
565         taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
566                                         info->reg_id_pfr1, boot->reg_id_pfr1);
567         taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
568                                         info->reg_mvfr0, boot->reg_mvfr0);
569         taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
570                                         info->reg_mvfr1, boot->reg_mvfr1);
571         taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
572                                         info->reg_mvfr2, boot->reg_mvfr2);
573
574         /*
575          * Mismatched CPU features are a recipe for disaster. Don't even
576          * pretend to support them.
577          */
578         WARN_TAINT_ONCE(taint, TAINT_CPU_OUT_OF_SPEC,
579                         "Unsupported CPU feature variation.\n");
580 }
581
582 u64 read_system_reg(u32 id)
583 {
584         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
585
586         /* We shouldn't get a request for an unsupported register */
587         BUG_ON(!regp);
588         return regp->sys_val;
589 }
590
591 #include <linux/irqchip/arm-gic-v3.h>
592
593 static bool
594 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
595 {
596         int val = cpuid_feature_extract_field(reg, entry->field_pos);
597
598         return val >= entry->min_field_value;
599 }
600
601 static bool
602 has_cpuid_feature(const struct arm64_cpu_capabilities *entry)
603 {
604         u64 val;
605
606         val = read_system_reg(entry->sys_reg);
607         return feature_matches(val, entry);
608 }
609
610 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry)
611 {
612         bool has_sre;
613
614         if (!has_cpuid_feature(entry))
615                 return false;
616
617         has_sre = gic_enable_sre();
618         if (!has_sre)
619                 pr_warn_once("%s present but disabled by higher exception level\n",
620                              entry->desc);
621
622         return has_sre;
623 }
624
625 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry)
626 {
627         return is_kernel_in_hyp_mode();
628 }
629
630 static const struct arm64_cpu_capabilities arm64_features[] = {
631         {
632                 .desc = "GIC system register CPU interface",
633                 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
634                 .matches = has_useable_gicv3_cpuif,
635                 .sys_reg = SYS_ID_AA64PFR0_EL1,
636                 .field_pos = ID_AA64PFR0_GIC_SHIFT,
637                 .min_field_value = 1,
638         },
639 #ifdef CONFIG_ARM64_PAN
640         {
641                 .desc = "Privileged Access Never",
642                 .capability = ARM64_HAS_PAN,
643                 .matches = has_cpuid_feature,
644                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
645                 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
646                 .min_field_value = 1,
647                 .enable = cpu_enable_pan,
648         },
649 #endif /* CONFIG_ARM64_PAN */
650 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
651         {
652                 .desc = "LSE atomic instructions",
653                 .capability = ARM64_HAS_LSE_ATOMICS,
654                 .matches = has_cpuid_feature,
655                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
656                 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
657                 .min_field_value = 2,
658         },
659 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
660         {
661                 .desc = "Virtualization Host Extensions",
662                 .capability = ARM64_HAS_VIRT_HOST_EXTN,
663                 .matches = runs_at_el2,
664         },
665         {},
666 };
667
668 #define HWCAP_CAP(reg, field, min_value, type, cap)             \
669         {                                                       \
670                 .desc = #cap,                                   \
671                 .matches = has_cpuid_feature,                   \
672                 .sys_reg = reg,                                 \
673                 .field_pos = field,                             \
674                 .min_field_value = min_value,                   \
675                 .hwcap_type = type,                             \
676                 .hwcap = cap,                                   \
677         }
678
679 static const struct arm64_cpu_capabilities arm64_hwcaps[] = {
680         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, 2, CAP_HWCAP, HWCAP_PMULL),
681         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, 1, CAP_HWCAP, HWCAP_AES),
682         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, 1, CAP_HWCAP, HWCAP_SHA1),
683         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, 1, CAP_HWCAP, HWCAP_SHA2),
684         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, 1, CAP_HWCAP, HWCAP_CRC32),
685         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, 2, CAP_HWCAP, HWCAP_ATOMICS),
686         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, 0, CAP_HWCAP, HWCAP_FP),
687         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, 0, CAP_HWCAP, HWCAP_ASIMD),
688 #ifdef CONFIG_COMPAT
689         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
690         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
691         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
692         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
693         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
694 #endif
695         {},
696 };
697
698 static void __init cap_set_hwcap(const struct arm64_cpu_capabilities *cap)
699 {
700         switch (cap->hwcap_type) {
701         case CAP_HWCAP:
702                 elf_hwcap |= cap->hwcap;
703                 break;
704 #ifdef CONFIG_COMPAT
705         case CAP_COMPAT_HWCAP:
706                 compat_elf_hwcap |= (u32)cap->hwcap;
707                 break;
708         case CAP_COMPAT_HWCAP2:
709                 compat_elf_hwcap2 |= (u32)cap->hwcap;
710                 break;
711 #endif
712         default:
713                 WARN_ON(1);
714                 break;
715         }
716 }
717
718 /* Check if we have a particular HWCAP enabled */
719 static bool __maybe_unused cpus_have_hwcap(const struct arm64_cpu_capabilities *cap)
720 {
721         bool rc;
722
723         switch (cap->hwcap_type) {
724         case CAP_HWCAP:
725                 rc = (elf_hwcap & cap->hwcap) != 0;
726                 break;
727 #ifdef CONFIG_COMPAT
728         case CAP_COMPAT_HWCAP:
729                 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
730                 break;
731         case CAP_COMPAT_HWCAP2:
732                 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
733                 break;
734 #endif
735         default:
736                 WARN_ON(1);
737                 rc = false;
738         }
739
740         return rc;
741 }
742
743 static void __init setup_cpu_hwcaps(void)
744 {
745         int i;
746         const struct arm64_cpu_capabilities *hwcaps = arm64_hwcaps;
747
748         for (i = 0; hwcaps[i].desc; i++)
749                 if (hwcaps[i].matches(&hwcaps[i]))
750                         cap_set_hwcap(&hwcaps[i]);
751 }
752
753 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
754                             const char *info)
755 {
756         int i;
757
758         for (i = 0; caps[i].desc; i++) {
759                 if (!caps[i].matches(&caps[i]))
760                         continue;
761
762                 if (!cpus_have_cap(caps[i].capability))
763                         pr_info("%s %s\n", info, caps[i].desc);
764                 cpus_set_cap(caps[i].capability);
765         }
766 }
767
768 /*
769  * Run through the enabled capabilities and enable() it on all active
770  * CPUs
771  */
772 static void __init
773 enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
774 {
775         int i;
776
777         for (i = 0; caps[i].desc; i++)
778                 if (caps[i].enable && cpus_have_cap(caps[i].capability))
779                         on_each_cpu(caps[i].enable, NULL, true);
780 }
781
782 #ifdef CONFIG_HOTPLUG_CPU
783
784 /*
785  * Flag to indicate if we have computed the system wide
786  * capabilities based on the boot time active CPUs. This
787  * will be used to determine if a new booting CPU should
788  * go through the verification process to make sure that it
789  * supports the system capabilities, without using a hotplug
790  * notifier.
791  */
792 static bool sys_caps_initialised;
793
794 static inline void set_sys_caps_initialised(void)
795 {
796         sys_caps_initialised = true;
797 }
798
799 /*
800  * __raw_read_system_reg() - Used by a STARTING cpu before cpuinfo is populated.
801  */
802 static u64 __raw_read_system_reg(u32 sys_id)
803 {
804         switch (sys_id) {
805         case SYS_ID_PFR0_EL1:           return (u64)read_cpuid(ID_PFR0_EL1);
806         case SYS_ID_PFR1_EL1:           return (u64)read_cpuid(ID_PFR1_EL1);
807         case SYS_ID_DFR0_EL1:           return (u64)read_cpuid(ID_DFR0_EL1);
808         case SYS_ID_MMFR0_EL1:          return (u64)read_cpuid(ID_MMFR0_EL1);
809         case SYS_ID_MMFR1_EL1:          return (u64)read_cpuid(ID_MMFR1_EL1);
810         case SYS_ID_MMFR2_EL1:          return (u64)read_cpuid(ID_MMFR2_EL1);
811         case SYS_ID_MMFR3_EL1:          return (u64)read_cpuid(ID_MMFR3_EL1);
812         case SYS_ID_ISAR0_EL1:          return (u64)read_cpuid(ID_ISAR0_EL1);
813         case SYS_ID_ISAR1_EL1:          return (u64)read_cpuid(ID_ISAR1_EL1);
814         case SYS_ID_ISAR2_EL1:          return (u64)read_cpuid(ID_ISAR2_EL1);
815         case SYS_ID_ISAR3_EL1:          return (u64)read_cpuid(ID_ISAR3_EL1);
816         case SYS_ID_ISAR4_EL1:          return (u64)read_cpuid(ID_ISAR4_EL1);
817         case SYS_ID_ISAR5_EL1:          return (u64)read_cpuid(ID_ISAR4_EL1);
818         case SYS_MVFR0_EL1:             return (u64)read_cpuid(MVFR0_EL1);
819         case SYS_MVFR1_EL1:             return (u64)read_cpuid(MVFR1_EL1);
820         case SYS_MVFR2_EL1:             return (u64)read_cpuid(MVFR2_EL1);
821
822         case SYS_ID_AA64PFR0_EL1:       return (u64)read_cpuid(ID_AA64PFR0_EL1);
823         case SYS_ID_AA64PFR1_EL1:       return (u64)read_cpuid(ID_AA64PFR0_EL1);
824         case SYS_ID_AA64DFR0_EL1:       return (u64)read_cpuid(ID_AA64DFR0_EL1);
825         case SYS_ID_AA64DFR1_EL1:       return (u64)read_cpuid(ID_AA64DFR0_EL1);
826         case SYS_ID_AA64MMFR0_EL1:      return (u64)read_cpuid(ID_AA64MMFR0_EL1);
827         case SYS_ID_AA64MMFR1_EL1:      return (u64)read_cpuid(ID_AA64MMFR1_EL1);
828         case SYS_ID_AA64ISAR0_EL1:      return (u64)read_cpuid(ID_AA64ISAR0_EL1);
829         case SYS_ID_AA64ISAR1_EL1:      return (u64)read_cpuid(ID_AA64ISAR1_EL1);
830
831         case SYS_CNTFRQ_EL0:            return (u64)read_cpuid(CNTFRQ_EL0);
832         case SYS_CTR_EL0:               return (u64)read_cpuid(CTR_EL0);
833         case SYS_DCZID_EL0:             return (u64)read_cpuid(DCZID_EL0);
834         default:
835                 BUG();
836                 return 0;
837         }
838 }
839
840 /*
841  * Park the CPU which doesn't have the capability as advertised
842  * by the system.
843  */
844 static void fail_incapable_cpu(char *cap_type,
845                                  const struct arm64_cpu_capabilities *cap)
846 {
847         int cpu = smp_processor_id();
848
849         pr_crit("CPU%d: missing %s : %s\n", cpu, cap_type, cap->desc);
850         /* Mark this CPU absent */
851         set_cpu_present(cpu, 0);
852
853         /* Check if we can park ourselves */
854         if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die)
855                 cpu_ops[cpu]->cpu_die(cpu);
856         asm(
857         "1:     wfe\n"
858         "       wfi\n"
859         "       b       1b");
860 }
861
862 /*
863  * Run through the enabled system capabilities and enable() it on this CPU.
864  * The capabilities were decided based on the available CPUs at the boot time.
865  * Any new CPU should match the system wide status of the capability. If the
866  * new CPU doesn't have a capability which the system now has enabled, we
867  * cannot do anything to fix it up and could cause unexpected failures. So
868  * we park the CPU.
869  */
870 void verify_local_cpu_capabilities(void)
871 {
872         int i;
873         const struct arm64_cpu_capabilities *caps;
874
875         /*
876          * If we haven't computed the system capabilities, there is nothing
877          * to verify.
878          */
879         if (!sys_caps_initialised)
880                 return;
881
882         caps = arm64_features;
883         for (i = 0; caps[i].desc; i++) {
884                 if (!cpus_have_cap(caps[i].capability) || !caps[i].sys_reg)
885                         continue;
886                 /*
887                  * If the new CPU misses an advertised feature, we cannot proceed
888                  * further, park the cpu.
889                  */
890                 if (!feature_matches(__raw_read_system_reg(caps[i].sys_reg), &caps[i]))
891                         fail_incapable_cpu("arm64_features", &caps[i]);
892                 if (caps[i].enable)
893                         caps[i].enable(NULL);
894         }
895
896         for (i = 0, caps = arm64_hwcaps; caps[i].desc; i++) {
897                 if (!cpus_have_hwcap(&caps[i]))
898                         continue;
899                 if (!feature_matches(__raw_read_system_reg(caps[i].sys_reg), &caps[i]))
900                         fail_incapable_cpu("arm64_hwcaps", &caps[i]);
901         }
902 }
903
904 #else   /* !CONFIG_HOTPLUG_CPU */
905
906 static inline void set_sys_caps_initialised(void)
907 {
908 }
909
910 #endif  /* CONFIG_HOTPLUG_CPU */
911
912 static void __init setup_feature_capabilities(void)
913 {
914         update_cpu_capabilities(arm64_features, "detected feature:");
915         enable_cpu_capabilities(arm64_features);
916 }
917
918 void __init setup_cpu_features(void)
919 {
920         u32 cwg;
921         int cls;
922
923         /* Set the CPU feature capabilies */
924         setup_feature_capabilities();
925         setup_cpu_hwcaps();
926
927         /* Advertise that we have computed the system capabilities */
928         set_sys_caps_initialised();
929
930         /*
931          * Check for sane CTR_EL0.CWG value.
932          */
933         cwg = cache_type_cwg();
934         cls = cache_line_size();
935         if (!cwg)
936                 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
937                         cls);
938         if (L1_CACHE_BYTES < cls)
939                 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
940                         L1_CACHE_BYTES, cls);
941 }