Merge branch 'work.iget' into work.misc
[cascardo/linux.git] / arch / arm64 / kernel / cpufeature.c
1 /*
2  * Contains CPU feature definitions
3  *
4  * Copyright (C) 2015 ARM Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18
19 #define pr_fmt(fmt) "CPU features: " fmt
20
21 #include <linux/bsearch.h>
22 #include <linux/sort.h>
23 #include <linux/types.h>
24 #include <asm/cpu.h>
25 #include <asm/cpufeature.h>
26 #include <asm/cpu_ops.h>
27 #include <asm/mmu_context.h>
28 #include <asm/processor.h>
29 #include <asm/sysreg.h>
30 #include <asm/virt.h>
31
32 unsigned long elf_hwcap __read_mostly;
33 EXPORT_SYMBOL_GPL(elf_hwcap);
34
35 #ifdef CONFIG_COMPAT
36 #define COMPAT_ELF_HWCAP_DEFAULT        \
37                                 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
38                                  COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
39                                  COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
40                                  COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
41                                  COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
42                                  COMPAT_HWCAP_LPAE)
43 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
44 unsigned int compat_elf_hwcap2 __read_mostly;
45 #endif
46
47 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
48
49 #define __ARM64_FTR_BITS(SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
50         {                                               \
51                 .sign = SIGNED,                         \
52                 .strict = STRICT,                       \
53                 .type = TYPE,                           \
54                 .shift = SHIFT,                         \
55                 .width = WIDTH,                         \
56                 .safe_val = SAFE_VAL,                   \
57         }
58
59 /* Define a feature with unsigned values */
60 #define ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
61         __ARM64_FTR_BITS(FTR_UNSIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
62
63 /* Define a feature with a signed value */
64 #define S_ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
65         __ARM64_FTR_BITS(FTR_SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
66
67 #define ARM64_FTR_END                                   \
68         {                                               \
69                 .width = 0,                             \
70         }
71
72 /* meta feature for alternatives */
73 static bool __maybe_unused
74 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
75
76
77 static struct arm64_ftr_bits ftr_id_aa64isar0[] = {
78         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
79         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
80         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),
81         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
82         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
83         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
84         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
85         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
86         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* RAZ */
87         ARM64_FTR_END,
88 };
89
90 static struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
91         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
92         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),
93         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
94         S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
95         S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
96         /* Linux doesn't care about the EL3 */
97         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
98         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
99         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
100         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
101         ARM64_FTR_END,
102 };
103
104 static struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
105         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
106         S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
107         S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
108         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
109         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
110         /* Linux shouldn't care about secure memory */
111         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
112         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
113         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
114         /*
115          * Differing PARange is fine as long as all peripherals and memory are mapped
116          * within the minimum PARange of all CPUs
117          */
118         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
119         ARM64_FTR_END,
120 };
121
122 static struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
123         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
124         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
125         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
126         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
127         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
128         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
129         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
130         ARM64_FTR_END,
131 };
132
133 static struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
134         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
135         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
136         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
137         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
138         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
139         ARM64_FTR_END,
140 };
141
142 static struct arm64_ftr_bits ftr_ctr[] = {
143         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 31, 1, 1),        /* RAO */
144         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 3, 0),
145         ARM64_FTR_BITS(FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0),  /* CWG */
146         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),   /* ERG */
147         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1),   /* DminLine */
148         /*
149          * Linux can handle differing I-cache policies. Userspace JITs will
150          * make use of *minLine
151          */
152         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, 14, 2, 0),     /* L1Ip */
153         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 10, 0),        /* RAZ */
154         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),    /* IminLine */
155         ARM64_FTR_END,
156 };
157
158 static struct arm64_ftr_bits ftr_id_mmfr0[] = {
159         S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0xf),    /* InnerShr */
160         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),        /* FCSE */
161         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),        /* AuxReg */
162         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 4, 0),        /* TCM */
163         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),        /* ShareLvl */
164         S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0xf),     /* OuterShr */
165         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* PMSA */
166         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* VMSA */
167         ARM64_FTR_END,
168 };
169
170 static struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
171         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
172         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
173         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
174         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
175         S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
176         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
177         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
178         ARM64_FTR_END,
179 };
180
181 static struct arm64_ftr_bits ftr_mvfr2[] = {
182         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),        /* RAZ */
183         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* FPMisc */
184         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* SIMDMisc */
185         ARM64_FTR_END,
186 };
187
188 static struct arm64_ftr_bits ftr_dczid[] = {
189         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 5, 27, 0),        /* RAZ */
190         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 1, 1),         /* DZP */
191         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),    /* BS */
192         ARM64_FTR_END,
193 };
194
195
196 static struct arm64_ftr_bits ftr_id_isar5[] = {
197         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
198         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 20, 4, 0),        /* RAZ */
199         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
200         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
201         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
202         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
203         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
204         ARM64_FTR_END,
205 };
206
207 static struct arm64_ftr_bits ftr_id_mmfr4[] = {
208         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),        /* RAZ */
209         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* ac2 */
210         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* RAZ */
211         ARM64_FTR_END,
212 };
213
214 static struct arm64_ftr_bits ftr_id_pfr0[] = {
215         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 16, 0),       /* RAZ */
216         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),        /* State3 */
217         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0),         /* State2 */
218         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* State1 */
219         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* State0 */
220         ARM64_FTR_END,
221 };
222
223 static struct arm64_ftr_bits ftr_id_dfr0[] = {
224         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
225         S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),       /* PerfMon */
226         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
227         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
228         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
229         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
230         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
231         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
232         ARM64_FTR_END,
233 };
234
235 /*
236  * Common ftr bits for a 32bit register with all hidden, strict
237  * attributes, with 4bit feature fields and a default safe value of
238  * 0. Covers the following 32bit registers:
239  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
240  */
241 static struct arm64_ftr_bits ftr_generic_32bits[] = {
242         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
243         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
244         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
245         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
246         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
247         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
248         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
249         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
250         ARM64_FTR_END,
251 };
252
253 static struct arm64_ftr_bits ftr_generic[] = {
254         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
255         ARM64_FTR_END,
256 };
257
258 static struct arm64_ftr_bits ftr_generic32[] = {
259         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 32, 0),
260         ARM64_FTR_END,
261 };
262
263 static struct arm64_ftr_bits ftr_aa64raz[] = {
264         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
265         ARM64_FTR_END,
266 };
267
268 #define ARM64_FTR_REG(id, table)                \
269         {                                       \
270                 .sys_id = id,                   \
271                 .name = #id,                    \
272                 .ftr_bits = &((table)[0]),      \
273         }
274
275 static struct arm64_ftr_reg arm64_ftr_regs[] = {
276
277         /* Op1 = 0, CRn = 0, CRm = 1 */
278         ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
279         ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
280         ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
281         ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
282         ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
283         ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
284         ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
285
286         /* Op1 = 0, CRn = 0, CRm = 2 */
287         ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
288         ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
289         ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
290         ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
291         ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
292         ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
293         ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
294
295         /* Op1 = 0, CRn = 0, CRm = 3 */
296         ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
297         ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
298         ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
299
300         /* Op1 = 0, CRn = 0, CRm = 4 */
301         ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
302         ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_aa64raz),
303
304         /* Op1 = 0, CRn = 0, CRm = 5 */
305         ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
306         ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_generic),
307
308         /* Op1 = 0, CRn = 0, CRm = 6 */
309         ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
310         ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_aa64raz),
311
312         /* Op1 = 0, CRn = 0, CRm = 7 */
313         ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
314         ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
315         ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
316
317         /* Op1 = 3, CRn = 0, CRm = 0 */
318         ARM64_FTR_REG(SYS_CTR_EL0, ftr_ctr),
319         ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
320
321         /* Op1 = 3, CRn = 14, CRm = 0 */
322         ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_generic32),
323 };
324
325 static int search_cmp_ftr_reg(const void *id, const void *regp)
326 {
327         return (int)(unsigned long)id - (int)((const struct arm64_ftr_reg *)regp)->sys_id;
328 }
329
330 /*
331  * get_arm64_ftr_reg - Lookup a feature register entry using its
332  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
333  * ascending order of sys_id , we use binary search to find a matching
334  * entry.
335  *
336  * returns - Upon success,  matching ftr_reg entry for id.
337  *         - NULL on failure. It is upto the caller to decide
338  *           the impact of a failure.
339  */
340 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
341 {
342         return bsearch((const void *)(unsigned long)sys_id,
343                         arm64_ftr_regs,
344                         ARRAY_SIZE(arm64_ftr_regs),
345                         sizeof(arm64_ftr_regs[0]),
346                         search_cmp_ftr_reg);
347 }
348
349 static u64 arm64_ftr_set_value(struct arm64_ftr_bits *ftrp, s64 reg, s64 ftr_val)
350 {
351         u64 mask = arm64_ftr_mask(ftrp);
352
353         reg &= ~mask;
354         reg |= (ftr_val << ftrp->shift) & mask;
355         return reg;
356 }
357
358 static s64 arm64_ftr_safe_value(struct arm64_ftr_bits *ftrp, s64 new, s64 cur)
359 {
360         s64 ret = 0;
361
362         switch (ftrp->type) {
363         case FTR_EXACT:
364                 ret = ftrp->safe_val;
365                 break;
366         case FTR_LOWER_SAFE:
367                 ret = new < cur ? new : cur;
368                 break;
369         case FTR_HIGHER_SAFE:
370                 ret = new > cur ? new : cur;
371                 break;
372         default:
373                 BUG();
374         }
375
376         return ret;
377 }
378
379 static int __init sort_cmp_ftr_regs(const void *a, const void *b)
380 {
381         return ((const struct arm64_ftr_reg *)a)->sys_id -
382                  ((const struct arm64_ftr_reg *)b)->sys_id;
383 }
384
385 static void __init swap_ftr_regs(void *a, void *b, int size)
386 {
387         struct arm64_ftr_reg tmp = *(struct arm64_ftr_reg *)a;
388         *(struct arm64_ftr_reg *)a = *(struct arm64_ftr_reg *)b;
389         *(struct arm64_ftr_reg *)b = tmp;
390 }
391
392 static void __init sort_ftr_regs(void)
393 {
394         /* Keep the array sorted so that we can do the binary search */
395         sort(arm64_ftr_regs,
396                 ARRAY_SIZE(arm64_ftr_regs),
397                 sizeof(arm64_ftr_regs[0]),
398                 sort_cmp_ftr_regs,
399                 swap_ftr_regs);
400 }
401
402 /*
403  * Initialise the CPU feature register from Boot CPU values.
404  * Also initiliases the strict_mask for the register.
405  */
406 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
407 {
408         u64 val = 0;
409         u64 strict_mask = ~0x0ULL;
410         struct arm64_ftr_bits *ftrp;
411         struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
412
413         BUG_ON(!reg);
414
415         for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
416                 s64 ftr_new = arm64_ftr_value(ftrp, new);
417
418                 val = arm64_ftr_set_value(ftrp, val, ftr_new);
419                 if (!ftrp->strict)
420                         strict_mask &= ~arm64_ftr_mask(ftrp);
421         }
422         reg->sys_val = val;
423         reg->strict_mask = strict_mask;
424 }
425
426 void __init init_cpu_features(struct cpuinfo_arm64 *info)
427 {
428         /* Before we start using the tables, make sure it is sorted */
429         sort_ftr_regs();
430
431         init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
432         init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
433         init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
434         init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
435         init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
436         init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
437         init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
438         init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
439         init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
440         init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
441         init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
442         init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
443
444         if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
445                 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
446                 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
447                 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
448                 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
449                 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
450                 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
451                 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
452                 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
453                 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
454                 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
455                 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
456                 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
457                 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
458                 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
459                 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
460                 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
461         }
462
463 }
464
465 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
466 {
467         struct arm64_ftr_bits *ftrp;
468
469         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
470                 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
471                 s64 ftr_new = arm64_ftr_value(ftrp, new);
472
473                 if (ftr_cur == ftr_new)
474                         continue;
475                 /* Find a safe value */
476                 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
477                 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
478         }
479
480 }
481
482 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
483 {
484         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
485
486         BUG_ON(!regp);
487         update_cpu_ftr_reg(regp, val);
488         if ((boot & regp->strict_mask) == (val & regp->strict_mask))
489                 return 0;
490         pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
491                         regp->name, boot, cpu, val);
492         return 1;
493 }
494
495 /*
496  * Update system wide CPU feature registers with the values from a
497  * non-boot CPU. Also performs SANITY checks to make sure that there
498  * aren't any insane variations from that of the boot CPU.
499  */
500 void update_cpu_features(int cpu,
501                          struct cpuinfo_arm64 *info,
502                          struct cpuinfo_arm64 *boot)
503 {
504         int taint = 0;
505
506         /*
507          * The kernel can handle differing I-cache policies, but otherwise
508          * caches should look identical. Userspace JITs will make use of
509          * *minLine.
510          */
511         taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
512                                       info->reg_ctr, boot->reg_ctr);
513
514         /*
515          * Userspace may perform DC ZVA instructions. Mismatched block sizes
516          * could result in too much or too little memory being zeroed if a
517          * process is preempted and migrated between CPUs.
518          */
519         taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
520                                       info->reg_dczid, boot->reg_dczid);
521
522         /* If different, timekeeping will be broken (especially with KVM) */
523         taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
524                                       info->reg_cntfrq, boot->reg_cntfrq);
525
526         /*
527          * The kernel uses self-hosted debug features and expects CPUs to
528          * support identical debug features. We presently need CTX_CMPs, WRPs,
529          * and BRPs to be identical.
530          * ID_AA64DFR1 is currently RES0.
531          */
532         taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
533                                       info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
534         taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
535                                       info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
536         /*
537          * Even in big.LITTLE, processors should be identical instruction-set
538          * wise.
539          */
540         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
541                                       info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
542         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
543                                       info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
544
545         /*
546          * Differing PARange support is fine as long as all peripherals and
547          * memory are mapped within the minimum PARange of all CPUs.
548          * Linux should not care about secure memory.
549          */
550         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
551                                       info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
552         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
553                                       info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
554         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
555                                       info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
556
557         /*
558          * EL3 is not our concern.
559          * ID_AA64PFR1 is currently RES0.
560          */
561         taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
562                                       info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
563         taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
564                                       info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
565
566         /*
567          * If we have AArch32, we care about 32-bit features for compat.
568          * If the system doesn't support AArch32, don't update them.
569          */
570         if (id_aa64pfr0_32bit_el0(read_system_reg(SYS_ID_AA64PFR0_EL1)) &&
571                 id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
572
573                 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
574                                         info->reg_id_dfr0, boot->reg_id_dfr0);
575                 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
576                                         info->reg_id_isar0, boot->reg_id_isar0);
577                 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
578                                         info->reg_id_isar1, boot->reg_id_isar1);
579                 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
580                                         info->reg_id_isar2, boot->reg_id_isar2);
581                 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
582                                         info->reg_id_isar3, boot->reg_id_isar3);
583                 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
584                                         info->reg_id_isar4, boot->reg_id_isar4);
585                 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
586                                         info->reg_id_isar5, boot->reg_id_isar5);
587
588                 /*
589                  * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
590                  * ACTLR formats could differ across CPUs and therefore would have to
591                  * be trapped for virtualization anyway.
592                  */
593                 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
594                                         info->reg_id_mmfr0, boot->reg_id_mmfr0);
595                 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
596                                         info->reg_id_mmfr1, boot->reg_id_mmfr1);
597                 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
598                                         info->reg_id_mmfr2, boot->reg_id_mmfr2);
599                 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
600                                         info->reg_id_mmfr3, boot->reg_id_mmfr3);
601                 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
602                                         info->reg_id_pfr0, boot->reg_id_pfr0);
603                 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
604                                         info->reg_id_pfr1, boot->reg_id_pfr1);
605                 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
606                                         info->reg_mvfr0, boot->reg_mvfr0);
607                 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
608                                         info->reg_mvfr1, boot->reg_mvfr1);
609                 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
610                                         info->reg_mvfr2, boot->reg_mvfr2);
611         }
612
613         /*
614          * Mismatched CPU features are a recipe for disaster. Don't even
615          * pretend to support them.
616          */
617         WARN_TAINT_ONCE(taint, TAINT_CPU_OUT_OF_SPEC,
618                         "Unsupported CPU feature variation.\n");
619 }
620
621 u64 read_system_reg(u32 id)
622 {
623         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
624
625         /* We shouldn't get a request for an unsupported register */
626         BUG_ON(!regp);
627         return regp->sys_val;
628 }
629
630 /*
631  * __raw_read_system_reg() - Used by a STARTING cpu before cpuinfo is populated.
632  * Read the system register on the current CPU
633  */
634 static u64 __raw_read_system_reg(u32 sys_id)
635 {
636         switch (sys_id) {
637         case SYS_ID_PFR0_EL1:           return read_cpuid(ID_PFR0_EL1);
638         case SYS_ID_PFR1_EL1:           return read_cpuid(ID_PFR1_EL1);
639         case SYS_ID_DFR0_EL1:           return read_cpuid(ID_DFR0_EL1);
640         case SYS_ID_MMFR0_EL1:          return read_cpuid(ID_MMFR0_EL1);
641         case SYS_ID_MMFR1_EL1:          return read_cpuid(ID_MMFR1_EL1);
642         case SYS_ID_MMFR2_EL1:          return read_cpuid(ID_MMFR2_EL1);
643         case SYS_ID_MMFR3_EL1:          return read_cpuid(ID_MMFR3_EL1);
644         case SYS_ID_ISAR0_EL1:          return read_cpuid(ID_ISAR0_EL1);
645         case SYS_ID_ISAR1_EL1:          return read_cpuid(ID_ISAR1_EL1);
646         case SYS_ID_ISAR2_EL1:          return read_cpuid(ID_ISAR2_EL1);
647         case SYS_ID_ISAR3_EL1:          return read_cpuid(ID_ISAR3_EL1);
648         case SYS_ID_ISAR4_EL1:          return read_cpuid(ID_ISAR4_EL1);
649         case SYS_ID_ISAR5_EL1:          return read_cpuid(ID_ISAR4_EL1);
650         case SYS_MVFR0_EL1:             return read_cpuid(MVFR0_EL1);
651         case SYS_MVFR1_EL1:             return read_cpuid(MVFR1_EL1);
652         case SYS_MVFR2_EL1:             return read_cpuid(MVFR2_EL1);
653
654         case SYS_ID_AA64PFR0_EL1:       return read_cpuid(ID_AA64PFR0_EL1);
655         case SYS_ID_AA64PFR1_EL1:       return read_cpuid(ID_AA64PFR0_EL1);
656         case SYS_ID_AA64DFR0_EL1:       return read_cpuid(ID_AA64DFR0_EL1);
657         case SYS_ID_AA64DFR1_EL1:       return read_cpuid(ID_AA64DFR0_EL1);
658         case SYS_ID_AA64MMFR0_EL1:      return read_cpuid(ID_AA64MMFR0_EL1);
659         case SYS_ID_AA64MMFR1_EL1:      return read_cpuid(ID_AA64MMFR1_EL1);
660         case SYS_ID_AA64MMFR2_EL1:      return read_cpuid(ID_AA64MMFR2_EL1);
661         case SYS_ID_AA64ISAR0_EL1:      return read_cpuid(ID_AA64ISAR0_EL1);
662         case SYS_ID_AA64ISAR1_EL1:      return read_cpuid(ID_AA64ISAR1_EL1);
663
664         case SYS_CNTFRQ_EL0:            return read_cpuid(CNTFRQ_EL0);
665         case SYS_CTR_EL0:               return read_cpuid(CTR_EL0);
666         case SYS_DCZID_EL0:             return read_cpuid(DCZID_EL0);
667         default:
668                 BUG();
669                 return 0;
670         }
671 }
672
673 #include <linux/irqchip/arm-gic-v3.h>
674
675 static bool
676 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
677 {
678         int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
679
680         return val >= entry->min_field_value;
681 }
682
683 static bool
684 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
685 {
686         u64 val;
687
688         WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
689         if (scope == SCOPE_SYSTEM)
690                 val = read_system_reg(entry->sys_reg);
691         else
692                 val = __raw_read_system_reg(entry->sys_reg);
693
694         return feature_matches(val, entry);
695 }
696
697 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
698 {
699         bool has_sre;
700
701         if (!has_cpuid_feature(entry, scope))
702                 return false;
703
704         has_sre = gic_enable_sre();
705         if (!has_sre)
706                 pr_warn_once("%s present but disabled by higher exception level\n",
707                              entry->desc);
708
709         return has_sre;
710 }
711
712 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
713 {
714         u32 midr = read_cpuid_id();
715         u32 rv_min, rv_max;
716
717         /* Cavium ThunderX pass 1.x and 2.x */
718         rv_min = 0;
719         rv_max = (1 << MIDR_VARIANT_SHIFT) | MIDR_REVISION_MASK;
720
721         return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX, rv_min, rv_max);
722 }
723
724 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
725 {
726         return is_kernel_in_hyp_mode();
727 }
728
729 static bool hyp_offset_low(const struct arm64_cpu_capabilities *entry,
730                            int __unused)
731 {
732         phys_addr_t idmap_addr = virt_to_phys(__hyp_idmap_text_start);
733
734         /*
735          * Activate the lower HYP offset only if:
736          * - the idmap doesn't clash with it,
737          * - the kernel is not running at EL2.
738          */
739         return idmap_addr > GENMASK(VA_BITS - 2, 0) && !is_kernel_in_hyp_mode();
740 }
741
742 static const struct arm64_cpu_capabilities arm64_features[] = {
743         {
744                 .desc = "GIC system register CPU interface",
745                 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
746                 .def_scope = SCOPE_SYSTEM,
747                 .matches = has_useable_gicv3_cpuif,
748                 .sys_reg = SYS_ID_AA64PFR0_EL1,
749                 .field_pos = ID_AA64PFR0_GIC_SHIFT,
750                 .sign = FTR_UNSIGNED,
751                 .min_field_value = 1,
752         },
753 #ifdef CONFIG_ARM64_PAN
754         {
755                 .desc = "Privileged Access Never",
756                 .capability = ARM64_HAS_PAN,
757                 .def_scope = SCOPE_SYSTEM,
758                 .matches = has_cpuid_feature,
759                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
760                 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
761                 .sign = FTR_UNSIGNED,
762                 .min_field_value = 1,
763                 .enable = cpu_enable_pan,
764         },
765 #endif /* CONFIG_ARM64_PAN */
766 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
767         {
768                 .desc = "LSE atomic instructions",
769                 .capability = ARM64_HAS_LSE_ATOMICS,
770                 .def_scope = SCOPE_SYSTEM,
771                 .matches = has_cpuid_feature,
772                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
773                 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
774                 .sign = FTR_UNSIGNED,
775                 .min_field_value = 2,
776         },
777 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
778         {
779                 .desc = "Software prefetching using PRFM",
780                 .capability = ARM64_HAS_NO_HW_PREFETCH,
781                 .def_scope = SCOPE_SYSTEM,
782                 .matches = has_no_hw_prefetch,
783         },
784 #ifdef CONFIG_ARM64_UAO
785         {
786                 .desc = "User Access Override",
787                 .capability = ARM64_HAS_UAO,
788                 .def_scope = SCOPE_SYSTEM,
789                 .matches = has_cpuid_feature,
790                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
791                 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
792                 .min_field_value = 1,
793                 .enable = cpu_enable_uao,
794         },
795 #endif /* CONFIG_ARM64_UAO */
796 #ifdef CONFIG_ARM64_PAN
797         {
798                 .capability = ARM64_ALT_PAN_NOT_UAO,
799                 .def_scope = SCOPE_SYSTEM,
800                 .matches = cpufeature_pan_not_uao,
801         },
802 #endif /* CONFIG_ARM64_PAN */
803         {
804                 .desc = "Virtualization Host Extensions",
805                 .capability = ARM64_HAS_VIRT_HOST_EXTN,
806                 .def_scope = SCOPE_SYSTEM,
807                 .matches = runs_at_el2,
808         },
809         {
810                 .desc = "32-bit EL0 Support",
811                 .capability = ARM64_HAS_32BIT_EL0,
812                 .def_scope = SCOPE_SYSTEM,
813                 .matches = has_cpuid_feature,
814                 .sys_reg = SYS_ID_AA64PFR0_EL1,
815                 .sign = FTR_UNSIGNED,
816                 .field_pos = ID_AA64PFR0_EL0_SHIFT,
817                 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
818         },
819         {
820                 .desc = "Reduced HYP mapping offset",
821                 .capability = ARM64_HYP_OFFSET_LOW,
822                 .def_scope = SCOPE_SYSTEM,
823                 .matches = hyp_offset_low,
824         },
825         {},
826 };
827
828 #define HWCAP_CAP(reg, field, s, min_value, type, cap)  \
829         {                                                       \
830                 .desc = #cap,                                   \
831                 .def_scope = SCOPE_SYSTEM,                      \
832                 .matches = has_cpuid_feature,                   \
833                 .sys_reg = reg,                                 \
834                 .field_pos = field,                             \
835                 .sign = s,                                      \
836                 .min_field_value = min_value,                   \
837                 .hwcap_type = type,                             \
838                 .hwcap = cap,                                   \
839         }
840
841 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
842         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
843         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
844         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
845         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
846         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
847         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
848         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
849         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
850         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
851         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
852         {},
853 };
854
855 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
856 #ifdef CONFIG_COMPAT
857         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
858         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
859         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
860         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
861         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
862 #endif
863         {},
864 };
865
866 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
867 {
868         switch (cap->hwcap_type) {
869         case CAP_HWCAP:
870                 elf_hwcap |= cap->hwcap;
871                 break;
872 #ifdef CONFIG_COMPAT
873         case CAP_COMPAT_HWCAP:
874                 compat_elf_hwcap |= (u32)cap->hwcap;
875                 break;
876         case CAP_COMPAT_HWCAP2:
877                 compat_elf_hwcap2 |= (u32)cap->hwcap;
878                 break;
879 #endif
880         default:
881                 WARN_ON(1);
882                 break;
883         }
884 }
885
886 /* Check if we have a particular HWCAP enabled */
887 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
888 {
889         bool rc;
890
891         switch (cap->hwcap_type) {
892         case CAP_HWCAP:
893                 rc = (elf_hwcap & cap->hwcap) != 0;
894                 break;
895 #ifdef CONFIG_COMPAT
896         case CAP_COMPAT_HWCAP:
897                 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
898                 break;
899         case CAP_COMPAT_HWCAP2:
900                 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
901                 break;
902 #endif
903         default:
904                 WARN_ON(1);
905                 rc = false;
906         }
907
908         return rc;
909 }
910
911 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
912 {
913         for (; hwcaps->matches; hwcaps++)
914                 if (hwcaps->matches(hwcaps, hwcaps->def_scope))
915                         cap_set_elf_hwcap(hwcaps);
916 }
917
918 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
919                             const char *info)
920 {
921         for (; caps->matches; caps++) {
922                 if (!caps->matches(caps, caps->def_scope))
923                         continue;
924
925                 if (!cpus_have_cap(caps->capability) && caps->desc)
926                         pr_info("%s %s\n", info, caps->desc);
927                 cpus_set_cap(caps->capability);
928         }
929 }
930
931 /*
932  * Run through the enabled capabilities and enable() it on all active
933  * CPUs
934  */
935 void __init enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
936 {
937         for (; caps->matches; caps++)
938                 if (caps->enable && cpus_have_cap(caps->capability))
939                         on_each_cpu(caps->enable, NULL, true);
940 }
941
942 /*
943  * Flag to indicate if we have computed the system wide
944  * capabilities based on the boot time active CPUs. This
945  * will be used to determine if a new booting CPU should
946  * go through the verification process to make sure that it
947  * supports the system capabilities, without using a hotplug
948  * notifier.
949  */
950 static bool sys_caps_initialised;
951
952 static inline void set_sys_caps_initialised(void)
953 {
954         sys_caps_initialised = true;
955 }
956
957 /*
958  * Check for CPU features that are used in early boot
959  * based on the Boot CPU value.
960  */
961 static void check_early_cpu_features(void)
962 {
963         verify_cpu_run_el();
964         verify_cpu_asid_bits();
965 }
966
967 static void
968 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
969 {
970
971         for (; caps->matches; caps++)
972                 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
973                         pr_crit("CPU%d: missing HWCAP: %s\n",
974                                         smp_processor_id(), caps->desc);
975                         cpu_die_early();
976                 }
977 }
978
979 static void
980 verify_local_cpu_features(const struct arm64_cpu_capabilities *caps)
981 {
982         for (; caps->matches; caps++) {
983                 if (!cpus_have_cap(caps->capability))
984                         continue;
985                 /*
986                  * If the new CPU misses an advertised feature, we cannot proceed
987                  * further, park the cpu.
988                  */
989                 if (!caps->matches(caps, SCOPE_LOCAL_CPU)) {
990                         pr_crit("CPU%d: missing feature: %s\n",
991                                         smp_processor_id(), caps->desc);
992                         cpu_die_early();
993                 }
994                 if (caps->enable)
995                         caps->enable(NULL);
996         }
997 }
998
999 /*
1000  * Run through the enabled system capabilities and enable() it on this CPU.
1001  * The capabilities were decided based on the available CPUs at the boot time.
1002  * Any new CPU should match the system wide status of the capability. If the
1003  * new CPU doesn't have a capability which the system now has enabled, we
1004  * cannot do anything to fix it up and could cause unexpected failures. So
1005  * we park the CPU.
1006  */
1007 void verify_local_cpu_capabilities(void)
1008 {
1009
1010         check_early_cpu_features();
1011
1012         /*
1013          * If we haven't computed the system capabilities, there is nothing
1014          * to verify.
1015          */
1016         if (!sys_caps_initialised)
1017                 return;
1018
1019         verify_local_cpu_errata();
1020         verify_local_cpu_features(arm64_features);
1021         verify_local_elf_hwcaps(arm64_elf_hwcaps);
1022         if (system_supports_32bit_el0())
1023                 verify_local_elf_hwcaps(compat_elf_hwcaps);
1024 }
1025
1026 static void __init setup_feature_capabilities(void)
1027 {
1028         update_cpu_capabilities(arm64_features, "detected feature:");
1029         enable_cpu_capabilities(arm64_features);
1030 }
1031
1032 /*
1033  * Check if the current CPU has a given feature capability.
1034  * Should be called from non-preemptible context.
1035  */
1036 bool this_cpu_has_cap(unsigned int cap)
1037 {
1038         const struct arm64_cpu_capabilities *caps;
1039
1040         if (WARN_ON(preemptible()))
1041                 return false;
1042
1043         for (caps = arm64_features; caps->desc; caps++)
1044                 if (caps->capability == cap && caps->matches)
1045                         return caps->matches(caps, SCOPE_LOCAL_CPU);
1046
1047         return false;
1048 }
1049
1050 void __init setup_cpu_features(void)
1051 {
1052         u32 cwg;
1053         int cls;
1054
1055         /* Set the CPU feature capabilies */
1056         setup_feature_capabilities();
1057         enable_errata_workarounds();
1058         setup_elf_hwcaps(arm64_elf_hwcaps);
1059
1060         if (system_supports_32bit_el0())
1061                 setup_elf_hwcaps(compat_elf_hwcaps);
1062
1063         /* Advertise that we have computed the system capabilities */
1064         set_sys_caps_initialised();
1065
1066         /*
1067          * Check for sane CTR_EL0.CWG value.
1068          */
1069         cwg = cache_type_cwg();
1070         cls = cache_line_size();
1071         if (!cwg)
1072                 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
1073                         cls);
1074         if (L1_CACHE_BYTES < cls)
1075                 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
1076                         L1_CACHE_BYTES, cls);
1077 }
1078
1079 static bool __maybe_unused
1080 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1081 {
1082         return (cpus_have_cap(ARM64_HAS_PAN) && !cpus_have_cap(ARM64_HAS_UAO));
1083 }