arm64: cpufeature: constify arm64_ftr_regs array
[cascardo/linux.git] / arch / arm64 / kernel / cpufeature.c
1 /*
2  * Contains CPU feature definitions
3  *
4  * Copyright (C) 2015 ARM Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18
19 #define pr_fmt(fmt) "CPU features: " fmt
20
21 #include <linux/bsearch.h>
22 #include <linux/sort.h>
23 #include <linux/types.h>
24 #include <asm/cpu.h>
25 #include <asm/cpufeature.h>
26 #include <asm/cpu_ops.h>
27 #include <asm/mmu_context.h>
28 #include <asm/processor.h>
29 #include <asm/sysreg.h>
30 #include <asm/virt.h>
31
32 unsigned long elf_hwcap __read_mostly;
33 EXPORT_SYMBOL_GPL(elf_hwcap);
34
35 #ifdef CONFIG_COMPAT
36 #define COMPAT_ELF_HWCAP_DEFAULT        \
37                                 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
38                                  COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
39                                  COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
40                                  COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
41                                  COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
42                                  COMPAT_HWCAP_LPAE)
43 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
44 unsigned int compat_elf_hwcap2 __read_mostly;
45 #endif
46
47 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
48
49 #define __ARM64_FTR_BITS(SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
50         {                                               \
51                 .sign = SIGNED,                         \
52                 .strict = STRICT,                       \
53                 .type = TYPE,                           \
54                 .shift = SHIFT,                         \
55                 .width = WIDTH,                         \
56                 .safe_val = SAFE_VAL,                   \
57         }
58
59 /* Define a feature with unsigned values */
60 #define ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
61         __ARM64_FTR_BITS(FTR_UNSIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
62
63 /* Define a feature with a signed value */
64 #define S_ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
65         __ARM64_FTR_BITS(FTR_SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
66
67 #define ARM64_FTR_END                                   \
68         {                                               \
69                 .width = 0,                             \
70         }
71
72 /* meta feature for alternatives */
73 static bool __maybe_unused
74 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
75
76
77 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
78         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
79         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
80         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),
81         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
82         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
83         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
84         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
85         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
86         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* RAZ */
87         ARM64_FTR_END,
88 };
89
90 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
91         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
92         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),
93         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
94         S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
95         S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
96         /* Linux doesn't care about the EL3 */
97         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
98         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
99         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
100         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
101         ARM64_FTR_END,
102 };
103
104 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
105         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
106         S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
107         S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
108         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
109         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
110         /* Linux shouldn't care about secure memory */
111         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
112         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
113         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
114         /*
115          * Differing PARange is fine as long as all peripherals and memory are mapped
116          * within the minimum PARange of all CPUs
117          */
118         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
119         ARM64_FTR_END,
120 };
121
122 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
123         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
124         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
125         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
126         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
127         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
128         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
129         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
130         ARM64_FTR_END,
131 };
132
133 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
134         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
135         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
136         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
137         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
138         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
139         ARM64_FTR_END,
140 };
141
142 static const struct arm64_ftr_bits ftr_ctr[] = {
143         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 31, 1, 1),        /* RAO */
144         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 3, 0),
145         ARM64_FTR_BITS(FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0),  /* CWG */
146         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),   /* ERG */
147         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1),   /* DminLine */
148         /*
149          * Linux can handle differing I-cache policies. Userspace JITs will
150          * make use of *minLine
151          */
152         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, 14, 2, 0),     /* L1Ip */
153         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 10, 0),        /* RAZ */
154         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),    /* IminLine */
155         ARM64_FTR_END,
156 };
157
158 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
159         S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0xf),    /* InnerShr */
160         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),        /* FCSE */
161         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),        /* AuxReg */
162         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 4, 0),        /* TCM */
163         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),        /* ShareLvl */
164         S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0xf),     /* OuterShr */
165         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* PMSA */
166         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* VMSA */
167         ARM64_FTR_END,
168 };
169
170 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
171         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
172         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
173         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
174         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
175         S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
176         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
177         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
178         ARM64_FTR_END,
179 };
180
181 static const struct arm64_ftr_bits ftr_mvfr2[] = {
182         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),        /* RAZ */
183         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* FPMisc */
184         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* SIMDMisc */
185         ARM64_FTR_END,
186 };
187
188 static const struct arm64_ftr_bits ftr_dczid[] = {
189         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 5, 27, 0),        /* RAZ */
190         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 1, 1),         /* DZP */
191         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),    /* BS */
192         ARM64_FTR_END,
193 };
194
195
196 static const struct arm64_ftr_bits ftr_id_isar5[] = {
197         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
198         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 20, 4, 0),        /* RAZ */
199         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
200         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
201         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
202         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
203         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
204         ARM64_FTR_END,
205 };
206
207 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
208         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),        /* RAZ */
209         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* ac2 */
210         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* RAZ */
211         ARM64_FTR_END,
212 };
213
214 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
215         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 16, 0),       /* RAZ */
216         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),        /* State3 */
217         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0),         /* State2 */
218         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* State1 */
219         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* State0 */
220         ARM64_FTR_END,
221 };
222
223 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
224         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
225         S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),       /* PerfMon */
226         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
227         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
228         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
229         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
230         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
231         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
232         ARM64_FTR_END,
233 };
234
235 /*
236  * Common ftr bits for a 32bit register with all hidden, strict
237  * attributes, with 4bit feature fields and a default safe value of
238  * 0. Covers the following 32bit registers:
239  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
240  */
241 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
242         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
243         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
244         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
245         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
246         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
247         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
248         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
249         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
250         ARM64_FTR_END,
251 };
252
253 static const struct arm64_ftr_bits ftr_generic[] = {
254         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
255         ARM64_FTR_END,
256 };
257
258 static const struct arm64_ftr_bits ftr_generic32[] = {
259         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 32, 0),
260         ARM64_FTR_END,
261 };
262
263 static const struct arm64_ftr_bits ftr_aa64raz[] = {
264         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
265         ARM64_FTR_END,
266 };
267
268 #define ARM64_FTR_REG(id, table) {              \
269         .sys_id = id,                           \
270         .reg =  &(struct arm64_ftr_reg){        \
271                 .name = #id,                    \
272                 .ftr_bits = &((table)[0]),      \
273         }}
274
275 static const struct __ftr_reg_entry {
276         u32                     sys_id;
277         struct arm64_ftr_reg    *reg;
278 } arm64_ftr_regs[] = {
279
280         /* Op1 = 0, CRn = 0, CRm = 1 */
281         ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
282         ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
283         ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
284         ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
285         ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
286         ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
287         ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
288
289         /* Op1 = 0, CRn = 0, CRm = 2 */
290         ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
291         ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
292         ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
293         ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
294         ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
295         ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
296         ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
297
298         /* Op1 = 0, CRn = 0, CRm = 3 */
299         ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
300         ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
301         ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
302
303         /* Op1 = 0, CRn = 0, CRm = 4 */
304         ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
305         ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_aa64raz),
306
307         /* Op1 = 0, CRn = 0, CRm = 5 */
308         ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
309         ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_generic),
310
311         /* Op1 = 0, CRn = 0, CRm = 6 */
312         ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
313         ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_aa64raz),
314
315         /* Op1 = 0, CRn = 0, CRm = 7 */
316         ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
317         ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
318         ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
319
320         /* Op1 = 3, CRn = 0, CRm = 0 */
321         ARM64_FTR_REG(SYS_CTR_EL0, ftr_ctr),
322         ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
323
324         /* Op1 = 3, CRn = 14, CRm = 0 */
325         ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_generic32),
326 };
327
328 static int search_cmp_ftr_reg(const void *id, const void *regp)
329 {
330         return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
331 }
332
333 /*
334  * get_arm64_ftr_reg - Lookup a feature register entry using its
335  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
336  * ascending order of sys_id , we use binary search to find a matching
337  * entry.
338  *
339  * returns - Upon success,  matching ftr_reg entry for id.
340  *         - NULL on failure. It is upto the caller to decide
341  *           the impact of a failure.
342  */
343 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
344 {
345         const struct __ftr_reg_entry *ret;
346
347         ret = bsearch((const void *)(unsigned long)sys_id,
348                         arm64_ftr_regs,
349                         ARRAY_SIZE(arm64_ftr_regs),
350                         sizeof(arm64_ftr_regs[0]),
351                         search_cmp_ftr_reg);
352         if (ret)
353                 return ret->reg;
354         return NULL;
355 }
356
357 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
358                                s64 ftr_val)
359 {
360         u64 mask = arm64_ftr_mask(ftrp);
361
362         reg &= ~mask;
363         reg |= (ftr_val << ftrp->shift) & mask;
364         return reg;
365 }
366
367 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
368                                 s64 cur)
369 {
370         s64 ret = 0;
371
372         switch (ftrp->type) {
373         case FTR_EXACT:
374                 ret = ftrp->safe_val;
375                 break;
376         case FTR_LOWER_SAFE:
377                 ret = new < cur ? new : cur;
378                 break;
379         case FTR_HIGHER_SAFE:
380                 ret = new > cur ? new : cur;
381                 break;
382         default:
383                 BUG();
384         }
385
386         return ret;
387 }
388
389 static void __init sort_ftr_regs(void)
390 {
391         int i;
392
393         /* Check that the array is sorted so that we can do the binary search */
394         for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
395                 BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
396 }
397
398 /*
399  * Initialise the CPU feature register from Boot CPU values.
400  * Also initiliases the strict_mask for the register.
401  */
402 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
403 {
404         u64 val = 0;
405         u64 strict_mask = ~0x0ULL;
406         const struct arm64_ftr_bits *ftrp;
407         struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
408
409         BUG_ON(!reg);
410
411         for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
412                 s64 ftr_new = arm64_ftr_value(ftrp, new);
413
414                 val = arm64_ftr_set_value(ftrp, val, ftr_new);
415                 if (!ftrp->strict)
416                         strict_mask &= ~arm64_ftr_mask(ftrp);
417         }
418         reg->sys_val = val;
419         reg->strict_mask = strict_mask;
420 }
421
422 void __init init_cpu_features(struct cpuinfo_arm64 *info)
423 {
424         /* Before we start using the tables, make sure it is sorted */
425         sort_ftr_regs();
426
427         init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
428         init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
429         init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
430         init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
431         init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
432         init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
433         init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
434         init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
435         init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
436         init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
437         init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
438         init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
439
440         if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
441                 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
442                 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
443                 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
444                 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
445                 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
446                 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
447                 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
448                 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
449                 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
450                 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
451                 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
452                 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
453                 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
454                 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
455                 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
456                 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
457         }
458
459 }
460
461 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
462 {
463         const struct arm64_ftr_bits *ftrp;
464
465         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
466                 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
467                 s64 ftr_new = arm64_ftr_value(ftrp, new);
468
469                 if (ftr_cur == ftr_new)
470                         continue;
471                 /* Find a safe value */
472                 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
473                 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
474         }
475
476 }
477
478 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
479 {
480         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
481
482         BUG_ON(!regp);
483         update_cpu_ftr_reg(regp, val);
484         if ((boot & regp->strict_mask) == (val & regp->strict_mask))
485                 return 0;
486         pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
487                         regp->name, boot, cpu, val);
488         return 1;
489 }
490
491 /*
492  * Update system wide CPU feature registers with the values from a
493  * non-boot CPU. Also performs SANITY checks to make sure that there
494  * aren't any insane variations from that of the boot CPU.
495  */
496 void update_cpu_features(int cpu,
497                          struct cpuinfo_arm64 *info,
498                          struct cpuinfo_arm64 *boot)
499 {
500         int taint = 0;
501
502         /*
503          * The kernel can handle differing I-cache policies, but otherwise
504          * caches should look identical. Userspace JITs will make use of
505          * *minLine.
506          */
507         taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
508                                       info->reg_ctr, boot->reg_ctr);
509
510         /*
511          * Userspace may perform DC ZVA instructions. Mismatched block sizes
512          * could result in too much or too little memory being zeroed if a
513          * process is preempted and migrated between CPUs.
514          */
515         taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
516                                       info->reg_dczid, boot->reg_dczid);
517
518         /* If different, timekeeping will be broken (especially with KVM) */
519         taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
520                                       info->reg_cntfrq, boot->reg_cntfrq);
521
522         /*
523          * The kernel uses self-hosted debug features and expects CPUs to
524          * support identical debug features. We presently need CTX_CMPs, WRPs,
525          * and BRPs to be identical.
526          * ID_AA64DFR1 is currently RES0.
527          */
528         taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
529                                       info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
530         taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
531                                       info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
532         /*
533          * Even in big.LITTLE, processors should be identical instruction-set
534          * wise.
535          */
536         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
537                                       info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
538         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
539                                       info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
540
541         /*
542          * Differing PARange support is fine as long as all peripherals and
543          * memory are mapped within the minimum PARange of all CPUs.
544          * Linux should not care about secure memory.
545          */
546         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
547                                       info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
548         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
549                                       info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
550         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
551                                       info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
552
553         /*
554          * EL3 is not our concern.
555          * ID_AA64PFR1 is currently RES0.
556          */
557         taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
558                                       info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
559         taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
560                                       info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
561
562         /*
563          * If we have AArch32, we care about 32-bit features for compat.
564          * If the system doesn't support AArch32, don't update them.
565          */
566         if (id_aa64pfr0_32bit_el0(read_system_reg(SYS_ID_AA64PFR0_EL1)) &&
567                 id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
568
569                 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
570                                         info->reg_id_dfr0, boot->reg_id_dfr0);
571                 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
572                                         info->reg_id_isar0, boot->reg_id_isar0);
573                 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
574                                         info->reg_id_isar1, boot->reg_id_isar1);
575                 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
576                                         info->reg_id_isar2, boot->reg_id_isar2);
577                 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
578                                         info->reg_id_isar3, boot->reg_id_isar3);
579                 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
580                                         info->reg_id_isar4, boot->reg_id_isar4);
581                 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
582                                         info->reg_id_isar5, boot->reg_id_isar5);
583
584                 /*
585                  * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
586                  * ACTLR formats could differ across CPUs and therefore would have to
587                  * be trapped for virtualization anyway.
588                  */
589                 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
590                                         info->reg_id_mmfr0, boot->reg_id_mmfr0);
591                 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
592                                         info->reg_id_mmfr1, boot->reg_id_mmfr1);
593                 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
594                                         info->reg_id_mmfr2, boot->reg_id_mmfr2);
595                 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
596                                         info->reg_id_mmfr3, boot->reg_id_mmfr3);
597                 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
598                                         info->reg_id_pfr0, boot->reg_id_pfr0);
599                 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
600                                         info->reg_id_pfr1, boot->reg_id_pfr1);
601                 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
602                                         info->reg_mvfr0, boot->reg_mvfr0);
603                 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
604                                         info->reg_mvfr1, boot->reg_mvfr1);
605                 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
606                                         info->reg_mvfr2, boot->reg_mvfr2);
607         }
608
609         /*
610          * Mismatched CPU features are a recipe for disaster. Don't even
611          * pretend to support them.
612          */
613         WARN_TAINT_ONCE(taint, TAINT_CPU_OUT_OF_SPEC,
614                         "Unsupported CPU feature variation.\n");
615 }
616
617 u64 read_system_reg(u32 id)
618 {
619         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
620
621         /* We shouldn't get a request for an unsupported register */
622         BUG_ON(!regp);
623         return regp->sys_val;
624 }
625
626 /*
627  * __raw_read_system_reg() - Used by a STARTING cpu before cpuinfo is populated.
628  * Read the system register on the current CPU
629  */
630 static u64 __raw_read_system_reg(u32 sys_id)
631 {
632         switch (sys_id) {
633         case SYS_ID_PFR0_EL1:           return read_cpuid(ID_PFR0_EL1);
634         case SYS_ID_PFR1_EL1:           return read_cpuid(ID_PFR1_EL1);
635         case SYS_ID_DFR0_EL1:           return read_cpuid(ID_DFR0_EL1);
636         case SYS_ID_MMFR0_EL1:          return read_cpuid(ID_MMFR0_EL1);
637         case SYS_ID_MMFR1_EL1:          return read_cpuid(ID_MMFR1_EL1);
638         case SYS_ID_MMFR2_EL1:          return read_cpuid(ID_MMFR2_EL1);
639         case SYS_ID_MMFR3_EL1:          return read_cpuid(ID_MMFR3_EL1);
640         case SYS_ID_ISAR0_EL1:          return read_cpuid(ID_ISAR0_EL1);
641         case SYS_ID_ISAR1_EL1:          return read_cpuid(ID_ISAR1_EL1);
642         case SYS_ID_ISAR2_EL1:          return read_cpuid(ID_ISAR2_EL1);
643         case SYS_ID_ISAR3_EL1:          return read_cpuid(ID_ISAR3_EL1);
644         case SYS_ID_ISAR4_EL1:          return read_cpuid(ID_ISAR4_EL1);
645         case SYS_ID_ISAR5_EL1:          return read_cpuid(ID_ISAR4_EL1);
646         case SYS_MVFR0_EL1:             return read_cpuid(MVFR0_EL1);
647         case SYS_MVFR1_EL1:             return read_cpuid(MVFR1_EL1);
648         case SYS_MVFR2_EL1:             return read_cpuid(MVFR2_EL1);
649
650         case SYS_ID_AA64PFR0_EL1:       return read_cpuid(ID_AA64PFR0_EL1);
651         case SYS_ID_AA64PFR1_EL1:       return read_cpuid(ID_AA64PFR0_EL1);
652         case SYS_ID_AA64DFR0_EL1:       return read_cpuid(ID_AA64DFR0_EL1);
653         case SYS_ID_AA64DFR1_EL1:       return read_cpuid(ID_AA64DFR0_EL1);
654         case SYS_ID_AA64MMFR0_EL1:      return read_cpuid(ID_AA64MMFR0_EL1);
655         case SYS_ID_AA64MMFR1_EL1:      return read_cpuid(ID_AA64MMFR1_EL1);
656         case SYS_ID_AA64MMFR2_EL1:      return read_cpuid(ID_AA64MMFR2_EL1);
657         case SYS_ID_AA64ISAR0_EL1:      return read_cpuid(ID_AA64ISAR0_EL1);
658         case SYS_ID_AA64ISAR1_EL1:      return read_cpuid(ID_AA64ISAR1_EL1);
659
660         case SYS_CNTFRQ_EL0:            return read_cpuid(CNTFRQ_EL0);
661         case SYS_CTR_EL0:               return read_cpuid(CTR_EL0);
662         case SYS_DCZID_EL0:             return read_cpuid(DCZID_EL0);
663         default:
664                 BUG();
665                 return 0;
666         }
667 }
668
669 #include <linux/irqchip/arm-gic-v3.h>
670
671 static bool
672 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
673 {
674         int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
675
676         return val >= entry->min_field_value;
677 }
678
679 static bool
680 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
681 {
682         u64 val;
683
684         WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
685         if (scope == SCOPE_SYSTEM)
686                 val = read_system_reg(entry->sys_reg);
687         else
688                 val = __raw_read_system_reg(entry->sys_reg);
689
690         return feature_matches(val, entry);
691 }
692
693 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
694 {
695         bool has_sre;
696
697         if (!has_cpuid_feature(entry, scope))
698                 return false;
699
700         has_sre = gic_enable_sre();
701         if (!has_sre)
702                 pr_warn_once("%s present but disabled by higher exception level\n",
703                              entry->desc);
704
705         return has_sre;
706 }
707
708 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
709 {
710         u32 midr = read_cpuid_id();
711         u32 rv_min, rv_max;
712
713         /* Cavium ThunderX pass 1.x and 2.x */
714         rv_min = 0;
715         rv_max = (1 << MIDR_VARIANT_SHIFT) | MIDR_REVISION_MASK;
716
717         return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX, rv_min, rv_max);
718 }
719
720 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
721 {
722         return is_kernel_in_hyp_mode();
723 }
724
725 static bool hyp_offset_low(const struct arm64_cpu_capabilities *entry,
726                            int __unused)
727 {
728         phys_addr_t idmap_addr = virt_to_phys(__hyp_idmap_text_start);
729
730         /*
731          * Activate the lower HYP offset only if:
732          * - the idmap doesn't clash with it,
733          * - the kernel is not running at EL2.
734          */
735         return idmap_addr > GENMASK(VA_BITS - 2, 0) && !is_kernel_in_hyp_mode();
736 }
737
738 static const struct arm64_cpu_capabilities arm64_features[] = {
739         {
740                 .desc = "GIC system register CPU interface",
741                 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
742                 .def_scope = SCOPE_SYSTEM,
743                 .matches = has_useable_gicv3_cpuif,
744                 .sys_reg = SYS_ID_AA64PFR0_EL1,
745                 .field_pos = ID_AA64PFR0_GIC_SHIFT,
746                 .sign = FTR_UNSIGNED,
747                 .min_field_value = 1,
748         },
749 #ifdef CONFIG_ARM64_PAN
750         {
751                 .desc = "Privileged Access Never",
752                 .capability = ARM64_HAS_PAN,
753                 .def_scope = SCOPE_SYSTEM,
754                 .matches = has_cpuid_feature,
755                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
756                 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
757                 .sign = FTR_UNSIGNED,
758                 .min_field_value = 1,
759                 .enable = cpu_enable_pan,
760         },
761 #endif /* CONFIG_ARM64_PAN */
762 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
763         {
764                 .desc = "LSE atomic instructions",
765                 .capability = ARM64_HAS_LSE_ATOMICS,
766                 .def_scope = SCOPE_SYSTEM,
767                 .matches = has_cpuid_feature,
768                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
769                 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
770                 .sign = FTR_UNSIGNED,
771                 .min_field_value = 2,
772         },
773 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
774         {
775                 .desc = "Software prefetching using PRFM",
776                 .capability = ARM64_HAS_NO_HW_PREFETCH,
777                 .def_scope = SCOPE_SYSTEM,
778                 .matches = has_no_hw_prefetch,
779         },
780 #ifdef CONFIG_ARM64_UAO
781         {
782                 .desc = "User Access Override",
783                 .capability = ARM64_HAS_UAO,
784                 .def_scope = SCOPE_SYSTEM,
785                 .matches = has_cpuid_feature,
786                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
787                 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
788                 .min_field_value = 1,
789                 .enable = cpu_enable_uao,
790         },
791 #endif /* CONFIG_ARM64_UAO */
792 #ifdef CONFIG_ARM64_PAN
793         {
794                 .capability = ARM64_ALT_PAN_NOT_UAO,
795                 .def_scope = SCOPE_SYSTEM,
796                 .matches = cpufeature_pan_not_uao,
797         },
798 #endif /* CONFIG_ARM64_PAN */
799         {
800                 .desc = "Virtualization Host Extensions",
801                 .capability = ARM64_HAS_VIRT_HOST_EXTN,
802                 .def_scope = SCOPE_SYSTEM,
803                 .matches = runs_at_el2,
804         },
805         {
806                 .desc = "32-bit EL0 Support",
807                 .capability = ARM64_HAS_32BIT_EL0,
808                 .def_scope = SCOPE_SYSTEM,
809                 .matches = has_cpuid_feature,
810                 .sys_reg = SYS_ID_AA64PFR0_EL1,
811                 .sign = FTR_UNSIGNED,
812                 .field_pos = ID_AA64PFR0_EL0_SHIFT,
813                 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
814         },
815         {
816                 .desc = "Reduced HYP mapping offset",
817                 .capability = ARM64_HYP_OFFSET_LOW,
818                 .def_scope = SCOPE_SYSTEM,
819                 .matches = hyp_offset_low,
820         },
821         {},
822 };
823
824 #define HWCAP_CAP(reg, field, s, min_value, type, cap)  \
825         {                                                       \
826                 .desc = #cap,                                   \
827                 .def_scope = SCOPE_SYSTEM,                      \
828                 .matches = has_cpuid_feature,                   \
829                 .sys_reg = reg,                                 \
830                 .field_pos = field,                             \
831                 .sign = s,                                      \
832                 .min_field_value = min_value,                   \
833                 .hwcap_type = type,                             \
834                 .hwcap = cap,                                   \
835         }
836
837 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
838         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
839         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
840         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
841         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
842         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
843         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
844         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
845         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
846         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
847         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
848         {},
849 };
850
851 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
852 #ifdef CONFIG_COMPAT
853         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
854         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
855         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
856         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
857         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
858 #endif
859         {},
860 };
861
862 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
863 {
864         switch (cap->hwcap_type) {
865         case CAP_HWCAP:
866                 elf_hwcap |= cap->hwcap;
867                 break;
868 #ifdef CONFIG_COMPAT
869         case CAP_COMPAT_HWCAP:
870                 compat_elf_hwcap |= (u32)cap->hwcap;
871                 break;
872         case CAP_COMPAT_HWCAP2:
873                 compat_elf_hwcap2 |= (u32)cap->hwcap;
874                 break;
875 #endif
876         default:
877                 WARN_ON(1);
878                 break;
879         }
880 }
881
882 /* Check if we have a particular HWCAP enabled */
883 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
884 {
885         bool rc;
886
887         switch (cap->hwcap_type) {
888         case CAP_HWCAP:
889                 rc = (elf_hwcap & cap->hwcap) != 0;
890                 break;
891 #ifdef CONFIG_COMPAT
892         case CAP_COMPAT_HWCAP:
893                 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
894                 break;
895         case CAP_COMPAT_HWCAP2:
896                 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
897                 break;
898 #endif
899         default:
900                 WARN_ON(1);
901                 rc = false;
902         }
903
904         return rc;
905 }
906
907 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
908 {
909         for (; hwcaps->matches; hwcaps++)
910                 if (hwcaps->matches(hwcaps, hwcaps->def_scope))
911                         cap_set_elf_hwcap(hwcaps);
912 }
913
914 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
915                             const char *info)
916 {
917         for (; caps->matches; caps++) {
918                 if (!caps->matches(caps, caps->def_scope))
919                         continue;
920
921                 if (!cpus_have_cap(caps->capability) && caps->desc)
922                         pr_info("%s %s\n", info, caps->desc);
923                 cpus_set_cap(caps->capability);
924         }
925 }
926
927 /*
928  * Run through the enabled capabilities and enable() it on all active
929  * CPUs
930  */
931 void __init enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
932 {
933         for (; caps->matches; caps++)
934                 if (caps->enable && cpus_have_cap(caps->capability))
935                         on_each_cpu(caps->enable, NULL, true);
936 }
937
938 /*
939  * Flag to indicate if we have computed the system wide
940  * capabilities based on the boot time active CPUs. This
941  * will be used to determine if a new booting CPU should
942  * go through the verification process to make sure that it
943  * supports the system capabilities, without using a hotplug
944  * notifier.
945  */
946 static bool sys_caps_initialised;
947
948 static inline void set_sys_caps_initialised(void)
949 {
950         sys_caps_initialised = true;
951 }
952
953 /*
954  * Check for CPU features that are used in early boot
955  * based on the Boot CPU value.
956  */
957 static void check_early_cpu_features(void)
958 {
959         verify_cpu_run_el();
960         verify_cpu_asid_bits();
961 }
962
963 static void
964 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
965 {
966
967         for (; caps->matches; caps++)
968                 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
969                         pr_crit("CPU%d: missing HWCAP: %s\n",
970                                         smp_processor_id(), caps->desc);
971                         cpu_die_early();
972                 }
973 }
974
975 static void
976 verify_local_cpu_features(const struct arm64_cpu_capabilities *caps)
977 {
978         for (; caps->matches; caps++) {
979                 if (!cpus_have_cap(caps->capability))
980                         continue;
981                 /*
982                  * If the new CPU misses an advertised feature, we cannot proceed
983                  * further, park the cpu.
984                  */
985                 if (!caps->matches(caps, SCOPE_LOCAL_CPU)) {
986                         pr_crit("CPU%d: missing feature: %s\n",
987                                         smp_processor_id(), caps->desc);
988                         cpu_die_early();
989                 }
990                 if (caps->enable)
991                         caps->enable(NULL);
992         }
993 }
994
995 /*
996  * Run through the enabled system capabilities and enable() it on this CPU.
997  * The capabilities were decided based on the available CPUs at the boot time.
998  * Any new CPU should match the system wide status of the capability. If the
999  * new CPU doesn't have a capability which the system now has enabled, we
1000  * cannot do anything to fix it up and could cause unexpected failures. So
1001  * we park the CPU.
1002  */
1003 void verify_local_cpu_capabilities(void)
1004 {
1005
1006         check_early_cpu_features();
1007
1008         /*
1009          * If we haven't computed the system capabilities, there is nothing
1010          * to verify.
1011          */
1012         if (!sys_caps_initialised)
1013                 return;
1014
1015         verify_local_cpu_errata();
1016         verify_local_cpu_features(arm64_features);
1017         verify_local_elf_hwcaps(arm64_elf_hwcaps);
1018         if (system_supports_32bit_el0())
1019                 verify_local_elf_hwcaps(compat_elf_hwcaps);
1020 }
1021
1022 static void __init setup_feature_capabilities(void)
1023 {
1024         update_cpu_capabilities(arm64_features, "detected feature:");
1025         enable_cpu_capabilities(arm64_features);
1026 }
1027
1028 /*
1029  * Check if the current CPU has a given feature capability.
1030  * Should be called from non-preemptible context.
1031  */
1032 bool this_cpu_has_cap(unsigned int cap)
1033 {
1034         const struct arm64_cpu_capabilities *caps;
1035
1036         if (WARN_ON(preemptible()))
1037                 return false;
1038
1039         for (caps = arm64_features; caps->desc; caps++)
1040                 if (caps->capability == cap && caps->matches)
1041                         return caps->matches(caps, SCOPE_LOCAL_CPU);
1042
1043         return false;
1044 }
1045
1046 void __init setup_cpu_features(void)
1047 {
1048         u32 cwg;
1049         int cls;
1050
1051         /* Set the CPU feature capabilies */
1052         setup_feature_capabilities();
1053         enable_errata_workarounds();
1054         setup_elf_hwcaps(arm64_elf_hwcaps);
1055
1056         if (system_supports_32bit_el0())
1057                 setup_elf_hwcaps(compat_elf_hwcaps);
1058
1059         /* Advertise that we have computed the system capabilities */
1060         set_sys_caps_initialised();
1061
1062         /*
1063          * Check for sane CTR_EL0.CWG value.
1064          */
1065         cwg = cache_type_cwg();
1066         cls = cache_line_size();
1067         if (!cwg)
1068                 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
1069                         cls);
1070         if (L1_CACHE_BYTES < cls)
1071                 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
1072                         L1_CACHE_BYTES, cls);
1073 }
1074
1075 static bool __maybe_unused
1076 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1077 {
1078         return (cpus_have_cap(ARM64_HAS_PAN) && !cpus_have_cap(ARM64_HAS_UAO));
1079 }