arch/tile: adopt prepare_exit_to_usermode() model from x86
[cascardo/linux.git] / arch / tile / include / asm / processor.h
1 /*
2  * Copyright 2010 Tilera Corporation. All Rights Reserved.
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful, but
9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  *   NON INFRINGEMENT.  See the GNU General Public License for
12  *   more details.
13  */
14
15 #ifndef _ASM_TILE_PROCESSOR_H
16 #define _ASM_TILE_PROCESSOR_H
17
18 #include <arch/chip.h>
19
20 #ifndef __ASSEMBLY__
21
22 /*
23  * NOTE: we don't include <linux/ptrace.h> or <linux/percpu.h> as one
24  * normally would, due to #include dependencies.
25  */
26 #include <linux/types.h>
27 #include <asm/ptrace.h>
28 #include <asm/percpu.h>
29
30 #include <arch/spr_def.h>
31
32 struct task_struct;
33 struct thread_struct;
34
35 typedef struct {
36         unsigned long seg;
37 } mm_segment_t;
38
39 /*
40  * Default implementation of macro that returns current
41  * instruction pointer ("program counter").
42  */
43 void *current_text_addr(void);
44
45 #if CHIP_HAS_TILE_DMA()
46 /* Capture the state of a suspended DMA. */
47 struct tile_dma_state {
48         int enabled;
49         unsigned long src;
50         unsigned long dest;
51         unsigned long strides;
52         unsigned long chunk_size;
53         unsigned long src_chunk;
54         unsigned long dest_chunk;
55         unsigned long byte;
56         unsigned long status;
57 };
58
59 /*
60  * A mask of the DMA status register for selecting only the 'running'
61  * and 'done' bits.
62  */
63 #define DMA_STATUS_MASK \
64   (SPR_DMA_STATUS__RUNNING_MASK | SPR_DMA_STATUS__DONE_MASK)
65 #endif
66
67 /*
68  * Track asynchronous TLB events (faults and access violations)
69  * that occur while we are in kernel mode from DMA or the SN processor.
70  */
71 struct async_tlb {
72         short fault_num;         /* original fault number; 0 if none */
73         char is_fault;           /* was it a fault (vs an access violation) */
74         char is_write;           /* for fault: was it caused by a write? */
75         unsigned long address;   /* what address faulted? */
76 };
77
78 #ifdef CONFIG_HARDWALL
79 struct hardwall_info;
80 struct hardwall_task {
81         /* Which hardwall is this task tied to? (or NULL if none) */
82         struct hardwall_info *info;
83         /* Chains this task into the list at info->task_head. */
84         struct list_head list;
85 };
86 #ifdef __tilepro__
87 #define HARDWALL_TYPES 1   /* udn */
88 #else
89 #define HARDWALL_TYPES 3   /* udn, idn, and ipi */
90 #endif
91 #endif
92
93 struct thread_struct {
94         /* kernel stack pointer */
95         unsigned long  ksp;
96         /* kernel PC */
97         unsigned long  pc;
98         /* starting user stack pointer (for page migration) */
99         unsigned long  usp0;
100         /* pid of process that created this one */
101         pid_t creator_pid;
102 #if CHIP_HAS_TILE_DMA()
103         /* DMA info for suspended threads (byte == 0 means no DMA state) */
104         struct tile_dma_state tile_dma_state;
105 #endif
106         /* User EX_CONTEXT registers */
107         unsigned long ex_context[2];
108         /* User SYSTEM_SAVE registers */
109         unsigned long system_save[4];
110         /* User interrupt mask */
111         unsigned long long interrupt_mask;
112         /* User interrupt-control 0 state */
113         unsigned long intctrl_0;
114         /* Any other miscellaneous processor state bits */
115         unsigned long proc_status;
116 #if !CHIP_HAS_FIXED_INTVEC_BASE()
117         /* Interrupt base for PL0 interrupts */
118         unsigned long interrupt_vector_base;
119 #endif
120         /* Tile cache retry fifo high-water mark */
121         unsigned long tile_rtf_hwm;
122 #if CHIP_HAS_DSTREAM_PF()
123         /* Data stream prefetch control */
124         unsigned long dstream_pf;
125 #endif
126 #ifdef CONFIG_HARDWALL
127         /* Hardwall information for various resources. */
128         struct hardwall_task hardwall[HARDWALL_TYPES];
129 #endif
130 #if CHIP_HAS_TILE_DMA()
131         /* Async DMA TLB fault information */
132         struct async_tlb dma_async_tlb;
133 #endif
134 };
135
136 #endif /* !__ASSEMBLY__ */
137
138 /*
139  * Start with "sp" this many bytes below the top of the kernel stack.
140  * This allows us to be cache-aware when handling the initial save
141  * of the pt_regs value to the stack.
142  */
143 #define STACK_TOP_DELTA 64
144
145 /*
146  * When entering the kernel via a fault, start with the top of the
147  * pt_regs structure this many bytes below the top of the page.
148  * This aligns the pt_regs structure optimally for cache-line access.
149  */
150 #ifdef __tilegx__
151 #define KSTK_PTREGS_GAP  48
152 #else
153 #define KSTK_PTREGS_GAP  56
154 #endif
155
156 #ifndef __ASSEMBLY__
157
158 #ifdef __tilegx__
159 #define TASK_SIZE_MAX           (_AC(1, UL) << (MAX_VA_WIDTH - 1))
160 #else
161 #define TASK_SIZE_MAX           PAGE_OFFSET
162 #endif
163
164 /* TASK_SIZE and related variables are always checked in "current" context. */
165 #ifdef CONFIG_COMPAT
166 #define COMPAT_TASK_SIZE        (1UL << 31)
167 #define TASK_SIZE               ((current_thread_info()->status & TS_COMPAT) ?\
168                                  COMPAT_TASK_SIZE : TASK_SIZE_MAX)
169 #else
170 #define TASK_SIZE               TASK_SIZE_MAX
171 #endif
172
173 #define VDSO_BASE       ((unsigned long)current->active_mm->context.vdso_base)
174 #define VDSO_SYM(x)     (VDSO_BASE + (unsigned long)(x))
175
176 #define STACK_TOP               TASK_SIZE
177
178 /* STACK_TOP_MAX is used temporarily in execve and should not check COMPAT. */
179 #define STACK_TOP_MAX           TASK_SIZE_MAX
180
181 /*
182  * This decides where the kernel will search for a free chunk of vm
183  * space during mmap's, if it is using bottom-up mapping.
184  */
185 #define TASK_UNMAPPED_BASE      (PAGE_ALIGN(TASK_SIZE / 3))
186
187 #define HAVE_ARCH_PICK_MMAP_LAYOUT
188
189 #define INIT_THREAD {                                                   \
190         .ksp = (unsigned long)init_stack + THREAD_SIZE - STACK_TOP_DELTA, \
191         .interrupt_mask = -1ULL                                         \
192 }
193
194 /* Kernel stack top for the task that first boots on this cpu. */
195 DECLARE_PER_CPU(unsigned long, boot_sp);
196
197 /* PC to boot from on this cpu. */
198 DECLARE_PER_CPU(unsigned long, boot_pc);
199
200 /* Do necessary setup to start up a newly executed thread. */
201 static inline void start_thread(struct pt_regs *regs,
202                                 unsigned long pc, unsigned long usp)
203 {
204         regs->pc = pc;
205         regs->sp = usp;
206         single_step_execve();
207 }
208
209 /* Free all resources held by a thread. */
210 static inline void release_thread(struct task_struct *dead_task)
211 {
212         /* Nothing for now */
213 }
214
215 extern void prepare_exit_to_usermode(struct pt_regs *regs, u32 flags);
216
217
218 /*
219  * Return saved (kernel) PC of a blocked thread.
220  * Only used in a printk() in kernel/sched/core.c, so don't work too hard.
221  */
222 #define thread_saved_pc(t)   ((t)->thread.pc)
223
224 unsigned long get_wchan(struct task_struct *p);
225
226 /* Return initial ksp value for given task. */
227 #define task_ksp0(task) \
228         ((unsigned long)(task)->stack + THREAD_SIZE - STACK_TOP_DELTA)
229
230 /* Return some info about the user process TASK. */
231 #define task_pt_regs(task) \
232         ((struct pt_regs *)(task_ksp0(task) - KSTK_PTREGS_GAP) - 1)
233 #define current_pt_regs()                                   \
234         ((struct pt_regs *)((stack_pointer | (THREAD_SIZE - 1)) - \
235                             STACK_TOP_DELTA - (KSTK_PTREGS_GAP - 1)) - 1)
236 #define task_sp(task)   (task_pt_regs(task)->sp)
237 #define task_pc(task)   (task_pt_regs(task)->pc)
238 /* Aliases for pc and sp (used in fs/proc/array.c) */
239 #define KSTK_EIP(task)  task_pc(task)
240 #define KSTK_ESP(task)  task_sp(task)
241
242 /* Fine-grained unaligned JIT support */
243 #define GET_UNALIGN_CTL(tsk, adr)       get_unalign_ctl((tsk), (adr))
244 #define SET_UNALIGN_CTL(tsk, val)       set_unalign_ctl((tsk), (val))
245
246 extern int get_unalign_ctl(struct task_struct *tsk, unsigned long adr);
247 extern int set_unalign_ctl(struct task_struct *tsk, unsigned int val);
248
249 /* Standard format for printing registers and other word-size data. */
250 #ifdef __tilegx__
251 # define REGFMT "0x%016lx"
252 #else
253 # define REGFMT "0x%08lx"
254 #endif
255
256 /*
257  * Do some slow action (e.g. read a slow SPR).
258  * Note that this must also have compiler-barrier semantics since
259  * it may be used in a busy loop reading memory.
260  */
261 static inline void cpu_relax(void)
262 {
263         __insn_mfspr(SPR_PASS);
264         barrier();
265 }
266
267 #define cpu_relax_lowlatency() cpu_relax()
268
269 /* Info on this processor (see fs/proc/cpuinfo.c) */
270 struct seq_operations;
271 extern const struct seq_operations cpuinfo_op;
272
273 /* Provide information about the chip model. */
274 extern char chip_model[64];
275
276 /* Data on which physical memory controller corresponds to which NUMA node. */
277 extern int node_controller[];
278
279 /* Does the heap allocator return hash-for-home pages by default? */
280 extern int hash_default;
281
282 /* Should kernel stack pages be hash-for-home? */
283 extern int kstack_hash;
284
285 /* Does MAP_ANONYMOUS return hash-for-home pages by default? */
286 #define uheap_hash hash_default
287
288
289 /* Are we using huge pages in the TLB for kernel data? */
290 extern int kdata_huge;
291
292 /* Support standard Linux prefetching. */
293 #define ARCH_HAS_PREFETCH
294 #define prefetch(x) __builtin_prefetch(x)
295 #define PREFETCH_STRIDE CHIP_L2_LINE_SIZE()
296
297 /* Bring a value into the L1D, faulting the TLB if necessary. */
298 #ifdef __tilegx__
299 #define prefetch_L1(x) __insn_prefetch_l1_fault((void *)(x))
300 #else
301 #define prefetch_L1(x) __insn_prefetch_L1((void *)(x))
302 #endif
303
304 #else /* __ASSEMBLY__ */
305
306 /* Do some slow action (e.g. read a slow SPR). */
307 #define CPU_RELAX       mfspr zero, SPR_PASS
308
309 #endif /* !__ASSEMBLY__ */
310
311 /* Assembly code assumes that the PL is in the low bits. */
312 #if SPR_EX_CONTEXT_1_1__PL_SHIFT != 0
313 # error Fix assembly assumptions about PL
314 #endif
315
316 /* We sometimes use these macros for EX_CONTEXT_0_1 as well. */
317 #if SPR_EX_CONTEXT_1_1__PL_SHIFT != SPR_EX_CONTEXT_0_1__PL_SHIFT || \
318     SPR_EX_CONTEXT_1_1__PL_RMASK != SPR_EX_CONTEXT_0_1__PL_RMASK || \
319     SPR_EX_CONTEXT_1_1__ICS_SHIFT != SPR_EX_CONTEXT_0_1__ICS_SHIFT || \
320     SPR_EX_CONTEXT_1_1__ICS_RMASK != SPR_EX_CONTEXT_0_1__ICS_RMASK
321 # error Fix assumptions that EX1 macros work for both PL0 and PL1
322 #endif
323
324 /* Allow pulling apart and recombining the PL and ICS bits in EX_CONTEXT. */
325 #define EX1_PL(ex1) \
326   (((ex1) >> SPR_EX_CONTEXT_1_1__PL_SHIFT) & SPR_EX_CONTEXT_1_1__PL_RMASK)
327 #define EX1_ICS(ex1) \
328   (((ex1) >> SPR_EX_CONTEXT_1_1__ICS_SHIFT) & SPR_EX_CONTEXT_1_1__ICS_RMASK)
329 #define PL_ICS_EX1(pl, ics) \
330   (((pl) << SPR_EX_CONTEXT_1_1__PL_SHIFT) | \
331    ((ics) << SPR_EX_CONTEXT_1_1__ICS_SHIFT))
332
333 /*
334  * Provide symbolic constants for PLs.
335  */
336 #define USER_PL 0
337 #if CONFIG_KERNEL_PL == 2
338 #define GUEST_PL 1
339 #endif
340 #define KERNEL_PL CONFIG_KERNEL_PL
341
342 /* SYSTEM_SAVE_K_0 holds the current cpu number ORed with ksp0. */
343 #ifdef __tilegx__
344 #define CPU_SHIFT 48
345 #if CHIP_VA_WIDTH() > CPU_SHIFT
346 # error Too many VA bits!
347 #endif
348 #define MAX_CPU_ID ((1 << (64 - CPU_SHIFT)) - 1)
349 #define raw_smp_processor_id() \
350         ((int)(__insn_mfspr(SPR_SYSTEM_SAVE_K_0) >> CPU_SHIFT))
351 #define get_current_ksp0() \
352         ((unsigned long)(((long)__insn_mfspr(SPR_SYSTEM_SAVE_K_0) << \
353                           (64 - CPU_SHIFT)) >> (64 - CPU_SHIFT)))
354 #define next_current_ksp0(task) ({ \
355         unsigned long __ksp0 = task_ksp0(task) & ((1UL << CPU_SHIFT) - 1); \
356         unsigned long __cpu = (long)raw_smp_processor_id() << CPU_SHIFT; \
357         __ksp0 | __cpu; \
358 })
359 #else
360 #define LOG2_NR_CPU_IDS 6
361 #define MAX_CPU_ID ((1 << LOG2_NR_CPU_IDS) - 1)
362 #define raw_smp_processor_id() \
363         ((int)__insn_mfspr(SPR_SYSTEM_SAVE_K_0) & MAX_CPU_ID)
364 #define get_current_ksp0() \
365         (__insn_mfspr(SPR_SYSTEM_SAVE_K_0) & ~MAX_CPU_ID)
366 #define next_current_ksp0(task) ({ \
367         unsigned long __ksp0 = task_ksp0(task); \
368         int __cpu = raw_smp_processor_id(); \
369         BUG_ON(__ksp0 & MAX_CPU_ID); \
370         __ksp0 | __cpu; \
371 })
372 #endif
373 #if CONFIG_NR_CPUS > (MAX_CPU_ID + 1)
374 # error Too many cpus!
375 #endif
376
377 #endif /* _ASM_TILE_PROCESSOR_H */