arch/tile: adopt prepare_exit_to_usermode() model from x86
[cascardo/linux.git] / arch / tile / kernel / process.c
1 /*
2  * Copyright 2010 Tilera Corporation. All Rights Reserved.
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful, but
9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  *   NON INFRINGEMENT.  See the GNU General Public License for
12  *   more details.
13  */
14
15 #include <linux/sched.h>
16 #include <linux/preempt.h>
17 #include <linux/module.h>
18 #include <linux/fs.h>
19 #include <linux/kprobes.h>
20 #include <linux/elfcore.h>
21 #include <linux/tick.h>
22 #include <linux/init.h>
23 #include <linux/mm.h>
24 #include <linux/compat.h>
25 #include <linux/hardirq.h>
26 #include <linux/syscalls.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/signal.h>
30 #include <linux/delay.h>
31 #include <linux/context_tracking.h>
32 #include <asm/stack.h>
33 #include <asm/switch_to.h>
34 #include <asm/homecache.h>
35 #include <asm/syscalls.h>
36 #include <asm/traps.h>
37 #include <asm/setup.h>
38 #include <asm/uaccess.h>
39 #ifdef CONFIG_HARDWALL
40 #include <asm/hardwall.h>
41 #endif
42 #include <arch/chip.h>
43 #include <arch/abi.h>
44 #include <arch/sim_def.h>
45
46 /*
47  * Use the (x86) "idle=poll" option to prefer low latency when leaving the
48  * idle loop over low power while in the idle loop, e.g. if we have
49  * one thread per core and we want to get threads out of futex waits fast.
50  */
51 static int __init idle_setup(char *str)
52 {
53         if (!str)
54                 return -EINVAL;
55
56         if (!strcmp(str, "poll")) {
57                 pr_info("using polling idle threads\n");
58                 cpu_idle_poll_ctrl(true);
59                 return 0;
60         } else if (!strcmp(str, "halt")) {
61                 return 0;
62         }
63         return -1;
64 }
65 early_param("idle", idle_setup);
66
67 void arch_cpu_idle(void)
68 {
69         __this_cpu_write(irq_stat.idle_timestamp, jiffies);
70         _cpu_idle();
71 }
72
73 /*
74  * Release a thread_info structure
75  */
76 void arch_release_thread_info(struct thread_info *info)
77 {
78         struct single_step_state *step_state = info->step_state;
79
80         if (step_state) {
81
82                 /*
83                  * FIXME: we don't munmap step_state->buffer
84                  * because the mm_struct for this process (info->task->mm)
85                  * has already been zeroed in exit_mm().  Keeping a
86                  * reference to it here seems like a bad move, so this
87                  * means we can't munmap() the buffer, and therefore if we
88                  * ptrace multiple threads in a process, we will slowly
89                  * leak user memory.  (Note that as soon as the last
90                  * thread in a process dies, we will reclaim all user
91                  * memory including single-step buffers in the usual way.)
92                  * We should either assign a kernel VA to this buffer
93                  * somehow, or we should associate the buffer(s) with the
94                  * mm itself so we can clean them up that way.
95                  */
96                 kfree(step_state);
97         }
98 }
99
100 static void save_arch_state(struct thread_struct *t);
101
102 int copy_thread(unsigned long clone_flags, unsigned long sp,
103                 unsigned long arg, struct task_struct *p)
104 {
105         struct pt_regs *childregs = task_pt_regs(p);
106         unsigned long ksp;
107         unsigned long *callee_regs;
108
109         /*
110          * Set up the stack and stack pointer appropriately for the
111          * new child to find itself woken up in __switch_to().
112          * The callee-saved registers must be on the stack to be read;
113          * the new task will then jump to assembly support to handle
114          * calling schedule_tail(), etc., and (for userspace tasks)
115          * returning to the context set up in the pt_regs.
116          */
117         ksp = (unsigned long) childregs;
118         ksp -= C_ABI_SAVE_AREA_SIZE;   /* interrupt-entry save area */
119         ((long *)ksp)[0] = ((long *)ksp)[1] = 0;
120         ksp -= CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long);
121         callee_regs = (unsigned long *)ksp;
122         ksp -= C_ABI_SAVE_AREA_SIZE;   /* __switch_to() save area */
123         ((long *)ksp)[0] = ((long *)ksp)[1] = 0;
124         p->thread.ksp = ksp;
125
126         /* Record the pid of the task that created this one. */
127         p->thread.creator_pid = current->pid;
128
129         if (unlikely(p->flags & PF_KTHREAD)) {
130                 /* kernel thread */
131                 memset(childregs, 0, sizeof(struct pt_regs));
132                 memset(&callee_regs[2], 0,
133                        (CALLEE_SAVED_REGS_COUNT - 2) * sizeof(unsigned long));
134                 callee_regs[0] = sp;   /* r30 = function */
135                 callee_regs[1] = arg;  /* r31 = arg */
136                 p->thread.pc = (unsigned long) ret_from_kernel_thread;
137                 return 0;
138         }
139
140         /*
141          * Start new thread in ret_from_fork so it schedules properly
142          * and then return from interrupt like the parent.
143          */
144         p->thread.pc = (unsigned long) ret_from_fork;
145
146         /*
147          * Do not clone step state from the parent; each thread
148          * must make its own lazily.
149          */
150         task_thread_info(p)->step_state = NULL;
151
152 #ifdef __tilegx__
153         /*
154          * Do not clone unalign jit fixup from the parent; each thread
155          * must allocate its own on demand.
156          */
157         task_thread_info(p)->unalign_jit_base = NULL;
158 #endif
159
160         /*
161          * Copy the registers onto the kernel stack so the
162          * return-from-interrupt code will reload it into registers.
163          */
164         *childregs = *current_pt_regs();
165         childregs->regs[0] = 0;         /* return value is zero */
166         if (sp)
167                 childregs->sp = sp;  /* override with new user stack pointer */
168         memcpy(callee_regs, &childregs->regs[CALLEE_SAVED_FIRST_REG],
169                CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long));
170
171         /* Save user stack top pointer so we can ID the stack vm area later. */
172         p->thread.usp0 = childregs->sp;
173
174         /*
175          * If CLONE_SETTLS is set, set "tp" in the new task to "r4",
176          * which is passed in as arg #5 to sys_clone().
177          */
178         if (clone_flags & CLONE_SETTLS)
179                 childregs->tp = childregs->regs[4];
180
181
182 #if CHIP_HAS_TILE_DMA()
183         /*
184          * No DMA in the new thread.  We model this on the fact that
185          * fork() clears the pending signals, alarms, and aio for the child.
186          */
187         memset(&p->thread.tile_dma_state, 0, sizeof(struct tile_dma_state));
188         memset(&p->thread.dma_async_tlb, 0, sizeof(struct async_tlb));
189 #endif
190
191         /* New thread has its miscellaneous processor state bits clear. */
192         p->thread.proc_status = 0;
193
194 #ifdef CONFIG_HARDWALL
195         /* New thread does not own any networks. */
196         memset(&p->thread.hardwall[0], 0,
197                sizeof(struct hardwall_task) * HARDWALL_TYPES);
198 #endif
199
200
201         /*
202          * Start the new thread with the current architecture state
203          * (user interrupt masks, etc.).
204          */
205         save_arch_state(&p->thread);
206
207         return 0;
208 }
209
210 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
211 {
212         task_thread_info(tsk)->align_ctl = val;
213         return 0;
214 }
215
216 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
217 {
218         return put_user(task_thread_info(tsk)->align_ctl,
219                         (unsigned int __user *)adr);
220 }
221
222 static struct task_struct corrupt_current = { .comm = "<corrupt>" };
223
224 /*
225  * Return "current" if it looks plausible, or else a pointer to a dummy.
226  * This can be helpful if we are just trying to emit a clean panic.
227  */
228 struct task_struct *validate_current(void)
229 {
230         struct task_struct *tsk = current;
231         if (unlikely((unsigned long)tsk < PAGE_OFFSET ||
232                      (high_memory && (void *)tsk > high_memory) ||
233                      ((unsigned long)tsk & (__alignof__(*tsk) - 1)) != 0)) {
234                 pr_err("Corrupt 'current' %p (sp %#lx)\n", tsk, stack_pointer);
235                 tsk = &corrupt_current;
236         }
237         return tsk;
238 }
239
240 /* Take and return the pointer to the previous task, for schedule_tail(). */
241 struct task_struct *sim_notify_fork(struct task_struct *prev)
242 {
243         struct task_struct *tsk = current;
244         __insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK_PARENT |
245                      (tsk->thread.creator_pid << _SIM_CONTROL_OPERATOR_BITS));
246         __insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK |
247                      (tsk->pid << _SIM_CONTROL_OPERATOR_BITS));
248         return prev;
249 }
250
251 int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
252 {
253         struct pt_regs *ptregs = task_pt_regs(tsk);
254         elf_core_copy_regs(regs, ptregs);
255         return 1;
256 }
257
258 #if CHIP_HAS_TILE_DMA()
259
260 /* Allow user processes to access the DMA SPRs */
261 void grant_dma_mpls(void)
262 {
263 #if CONFIG_KERNEL_PL == 2
264         __insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1);
265         __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1);
266 #else
267         __insn_mtspr(SPR_MPL_DMA_CPL_SET_0, 1);
268         __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_0, 1);
269 #endif
270 }
271
272 /* Forbid user processes from accessing the DMA SPRs */
273 void restrict_dma_mpls(void)
274 {
275 #if CONFIG_KERNEL_PL == 2
276         __insn_mtspr(SPR_MPL_DMA_CPL_SET_2, 1);
277         __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_2, 1);
278 #else
279         __insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1);
280         __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1);
281 #endif
282 }
283
284 /* Pause the DMA engine, then save off its state registers. */
285 static void save_tile_dma_state(struct tile_dma_state *dma)
286 {
287         unsigned long state = __insn_mfspr(SPR_DMA_USER_STATUS);
288         unsigned long post_suspend_state;
289
290         /* If we're running, suspend the engine. */
291         if ((state & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK)
292                 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
293
294         /*
295          * Wait for the engine to idle, then save regs.  Note that we
296          * want to record the "running" bit from before suspension,
297          * and the "done" bit from after, so that we can properly
298          * distinguish a case where the user suspended the engine from
299          * the case where the kernel suspended as part of the context
300          * swap.
301          */
302         do {
303                 post_suspend_state = __insn_mfspr(SPR_DMA_USER_STATUS);
304         } while (post_suspend_state & SPR_DMA_STATUS__BUSY_MASK);
305
306         dma->src = __insn_mfspr(SPR_DMA_SRC_ADDR);
307         dma->src_chunk = __insn_mfspr(SPR_DMA_SRC_CHUNK_ADDR);
308         dma->dest = __insn_mfspr(SPR_DMA_DST_ADDR);
309         dma->dest_chunk = __insn_mfspr(SPR_DMA_DST_CHUNK_ADDR);
310         dma->strides = __insn_mfspr(SPR_DMA_STRIDE);
311         dma->chunk_size = __insn_mfspr(SPR_DMA_CHUNK_SIZE);
312         dma->byte = __insn_mfspr(SPR_DMA_BYTE);
313         dma->status = (state & SPR_DMA_STATUS__RUNNING_MASK) |
314                 (post_suspend_state & SPR_DMA_STATUS__DONE_MASK);
315 }
316
317 /* Restart a DMA that was running before we were context-switched out. */
318 static void restore_tile_dma_state(struct thread_struct *t)
319 {
320         const struct tile_dma_state *dma = &t->tile_dma_state;
321
322         /*
323          * The only way to restore the done bit is to run a zero
324          * length transaction.
325          */
326         if ((dma->status & SPR_DMA_STATUS__DONE_MASK) &&
327             !(__insn_mfspr(SPR_DMA_USER_STATUS) & SPR_DMA_STATUS__DONE_MASK)) {
328                 __insn_mtspr(SPR_DMA_BYTE, 0);
329                 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
330                 while (__insn_mfspr(SPR_DMA_USER_STATUS) &
331                        SPR_DMA_STATUS__BUSY_MASK)
332                         ;
333         }
334
335         __insn_mtspr(SPR_DMA_SRC_ADDR, dma->src);
336         __insn_mtspr(SPR_DMA_SRC_CHUNK_ADDR, dma->src_chunk);
337         __insn_mtspr(SPR_DMA_DST_ADDR, dma->dest);
338         __insn_mtspr(SPR_DMA_DST_CHUNK_ADDR, dma->dest_chunk);
339         __insn_mtspr(SPR_DMA_STRIDE, dma->strides);
340         __insn_mtspr(SPR_DMA_CHUNK_SIZE, dma->chunk_size);
341         __insn_mtspr(SPR_DMA_BYTE, dma->byte);
342
343         /*
344          * Restart the engine if we were running and not done.
345          * Clear a pending async DMA fault that we were waiting on return
346          * to user space to execute, since we expect the DMA engine
347          * to regenerate those faults for us now.  Note that we don't
348          * try to clear the TIF_ASYNC_TLB flag, since it's relatively
349          * harmless if set, and it covers both DMA and the SN processor.
350          */
351         if ((dma->status & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK) {
352                 t->dma_async_tlb.fault_num = 0;
353                 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
354         }
355 }
356
357 #endif
358
359 static void save_arch_state(struct thread_struct *t)
360 {
361 #if CHIP_HAS_SPLIT_INTR_MASK()
362         t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0_0) |
363                 ((u64)__insn_mfspr(SPR_INTERRUPT_MASK_0_1) << 32);
364 #else
365         t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0);
366 #endif
367         t->ex_context[0] = __insn_mfspr(SPR_EX_CONTEXT_0_0);
368         t->ex_context[1] = __insn_mfspr(SPR_EX_CONTEXT_0_1);
369         t->system_save[0] = __insn_mfspr(SPR_SYSTEM_SAVE_0_0);
370         t->system_save[1] = __insn_mfspr(SPR_SYSTEM_SAVE_0_1);
371         t->system_save[2] = __insn_mfspr(SPR_SYSTEM_SAVE_0_2);
372         t->system_save[3] = __insn_mfspr(SPR_SYSTEM_SAVE_0_3);
373         t->intctrl_0 = __insn_mfspr(SPR_INTCTRL_0_STATUS);
374         t->proc_status = __insn_mfspr(SPR_PROC_STATUS);
375 #if !CHIP_HAS_FIXED_INTVEC_BASE()
376         t->interrupt_vector_base = __insn_mfspr(SPR_INTERRUPT_VECTOR_BASE_0);
377 #endif
378         t->tile_rtf_hwm = __insn_mfspr(SPR_TILE_RTF_HWM);
379 #if CHIP_HAS_DSTREAM_PF()
380         t->dstream_pf = __insn_mfspr(SPR_DSTREAM_PF);
381 #endif
382 }
383
384 static void restore_arch_state(const struct thread_struct *t)
385 {
386 #if CHIP_HAS_SPLIT_INTR_MASK()
387         __insn_mtspr(SPR_INTERRUPT_MASK_0_0, (u32) t->interrupt_mask);
388         __insn_mtspr(SPR_INTERRUPT_MASK_0_1, t->interrupt_mask >> 32);
389 #else
390         __insn_mtspr(SPR_INTERRUPT_MASK_0, t->interrupt_mask);
391 #endif
392         __insn_mtspr(SPR_EX_CONTEXT_0_0, t->ex_context[0]);
393         __insn_mtspr(SPR_EX_CONTEXT_0_1, t->ex_context[1]);
394         __insn_mtspr(SPR_SYSTEM_SAVE_0_0, t->system_save[0]);
395         __insn_mtspr(SPR_SYSTEM_SAVE_0_1, t->system_save[1]);
396         __insn_mtspr(SPR_SYSTEM_SAVE_0_2, t->system_save[2]);
397         __insn_mtspr(SPR_SYSTEM_SAVE_0_3, t->system_save[3]);
398         __insn_mtspr(SPR_INTCTRL_0_STATUS, t->intctrl_0);
399         __insn_mtspr(SPR_PROC_STATUS, t->proc_status);
400 #if !CHIP_HAS_FIXED_INTVEC_BASE()
401         __insn_mtspr(SPR_INTERRUPT_VECTOR_BASE_0, t->interrupt_vector_base);
402 #endif
403         __insn_mtspr(SPR_TILE_RTF_HWM, t->tile_rtf_hwm);
404 #if CHIP_HAS_DSTREAM_PF()
405         __insn_mtspr(SPR_DSTREAM_PF, t->dstream_pf);
406 #endif
407 }
408
409
410 void _prepare_arch_switch(struct task_struct *next)
411 {
412 #if CHIP_HAS_TILE_DMA()
413         struct tile_dma_state *dma = &current->thread.tile_dma_state;
414         if (dma->enabled)
415                 save_tile_dma_state(dma);
416 #endif
417 }
418
419
420 struct task_struct *__sched _switch_to(struct task_struct *prev,
421                                        struct task_struct *next)
422 {
423         /* DMA state is already saved; save off other arch state. */
424         save_arch_state(&prev->thread);
425
426 #if CHIP_HAS_TILE_DMA()
427         /*
428          * Restore DMA in new task if desired.
429          * Note that it is only safe to restart here since interrupts
430          * are disabled, so we can't take any DMATLB miss or access
431          * interrupts before we have finished switching stacks.
432          */
433         if (next->thread.tile_dma_state.enabled) {
434                 restore_tile_dma_state(&next->thread);
435                 grant_dma_mpls();
436         } else {
437                 restrict_dma_mpls();
438         }
439 #endif
440
441         /* Restore other arch state. */
442         restore_arch_state(&next->thread);
443
444 #ifdef CONFIG_HARDWALL
445         /* Enable or disable access to the network registers appropriately. */
446         hardwall_switch_tasks(prev, next);
447 #endif
448
449         /* Notify the simulator of task exit. */
450         if (unlikely(prev->state == TASK_DEAD))
451                 __insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_EXIT |
452                              (prev->pid << _SIM_CONTROL_OPERATOR_BITS));
453
454         /*
455          * Switch kernel SP, PC, and callee-saved registers.
456          * In the context of the new task, return the old task pointer
457          * (i.e. the task that actually called __switch_to).
458          * Pass the value to use for SYSTEM_SAVE_K_0 when we reset our sp.
459          */
460         return __switch_to(prev, next, next_current_ksp0(next));
461 }
462
463 /*
464  * This routine is called on return from interrupt if any of the
465  * TIF_ALLWORK_MASK flags are set in thread_info->flags.  It is
466  * entered with interrupts disabled so we don't miss an event that
467  * modified the thread_info flags.  We loop until all the tested flags
468  * are clear.  Note that the function is called on certain conditions
469  * that are not listed in the loop condition here (e.g. SINGLESTEP)
470  * which guarantees we will do those things once, and redo them if any
471  * of the other work items is re-done, but won't continue looping if
472  * all the other work is done.
473  */
474 void prepare_exit_to_usermode(struct pt_regs *regs, u32 thread_info_flags)
475 {
476         if (WARN_ON(!user_mode(regs)))
477                 return;
478
479         do {
480                 local_irq_enable();
481
482                 if (thread_info_flags & _TIF_NEED_RESCHED)
483                         schedule();
484
485 #if CHIP_HAS_TILE_DMA()
486                 if (thread_info_flags & _TIF_ASYNC_TLB)
487                         do_async_page_fault(regs);
488 #endif
489
490                 if (thread_info_flags & _TIF_SIGPENDING)
491                         do_signal(regs);
492
493                 if (thread_info_flags & _TIF_NOTIFY_RESUME) {
494                         clear_thread_flag(TIF_NOTIFY_RESUME);
495                         tracehook_notify_resume(regs);
496                 }
497
498                 local_irq_disable();
499                 thread_info_flags = READ_ONCE(current_thread_info()->flags);
500
501         } while (thread_info_flags & _TIF_WORK_MASK);
502
503         if (thread_info_flags & _TIF_SINGLESTEP) {
504                 single_step_once(regs);
505 #ifndef __tilegx__
506                 /*
507                  * FIXME: on tilepro, since we enable interrupts in
508                  * this routine, it's possible that we miss a signal
509                  * or other asynchronous event.
510                  */
511                 local_irq_disable();
512 #endif
513         }
514
515         user_enter();
516 }
517
518 unsigned long get_wchan(struct task_struct *p)
519 {
520         struct KBacktraceIterator kbt;
521
522         if (!p || p == current || p->state == TASK_RUNNING)
523                 return 0;
524
525         for (KBacktraceIterator_init(&kbt, p, NULL);
526              !KBacktraceIterator_end(&kbt);
527              KBacktraceIterator_next(&kbt)) {
528                 if (!in_sched_functions(kbt.it.pc))
529                         return kbt.it.pc;
530         }
531
532         return 0;
533 }
534
535 /* Flush thread state. */
536 void flush_thread(void)
537 {
538         /* Nothing */
539 }
540
541 /*
542  * Free current thread data structures etc..
543  */
544 void exit_thread(void)
545 {
546 #ifdef CONFIG_HARDWALL
547         /*
548          * Remove the task from the list of tasks that are associated
549          * with any live hardwalls.  (If the task that is exiting held
550          * the last reference to a hardwall fd, it would already have
551          * been released and deactivated at this point.)
552          */
553         hardwall_deactivate_all(current);
554 #endif
555 }
556
557 void tile_show_regs(struct pt_regs *regs)
558 {
559         int i;
560 #ifdef __tilegx__
561         for (i = 0; i < 17; i++)
562                 pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT" r%-2d: "REGFMT"\n",
563                        i, regs->regs[i], i+18, regs->regs[i+18],
564                        i+36, regs->regs[i+36]);
565         pr_err(" r17: "REGFMT" r35: "REGFMT" tp : "REGFMT"\n",
566                regs->regs[17], regs->regs[35], regs->tp);
567         pr_err(" sp : "REGFMT" lr : "REGFMT"\n", regs->sp, regs->lr);
568 #else
569         for (i = 0; i < 13; i++)
570                 pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT
571                        " r%-2d: "REGFMT" r%-2d: "REGFMT"\n",
572                        i, regs->regs[i], i+14, regs->regs[i+14],
573                        i+27, regs->regs[i+27], i+40, regs->regs[i+40]);
574         pr_err(" r13: "REGFMT" tp : "REGFMT" sp : "REGFMT" lr : "REGFMT"\n",
575                regs->regs[13], regs->tp, regs->sp, regs->lr);
576 #endif
577         pr_err(" pc : "REGFMT" ex1: %ld     faultnum: %ld flags:%s%s%s%s\n",
578                regs->pc, regs->ex1, regs->faultnum,
579                is_compat_task() ? " compat" : "",
580                (regs->flags & PT_FLAGS_DISABLE_IRQ) ? " noirq" : "",
581                !(regs->flags & PT_FLAGS_CALLER_SAVES) ? " nocallersave" : "",
582                (regs->flags & PT_FLAGS_RESTORE_REGS) ? " restoreregs" : "");
583 }
584
585 void show_regs(struct pt_regs *regs)
586 {
587         struct KBacktraceIterator kbt;
588
589         show_regs_print_info(KERN_DEFAULT);
590         tile_show_regs(regs);
591
592         KBacktraceIterator_init(&kbt, NULL, regs);
593         tile_show_stack(&kbt);
594 }
595
596 /* To ensure stack dump on tiles occurs one by one. */
597 static DEFINE_SPINLOCK(backtrace_lock);
598 /* To ensure no backtrace occurs before all of the stack dump are done. */
599 static atomic_t backtrace_cpus;
600 /* The cpu mask to avoid reentrance. */
601 static struct cpumask backtrace_mask;
602
603 void do_nmi_dump_stack(struct pt_regs *regs)
604 {
605         int is_idle = is_idle_task(current) && !in_interrupt();
606         int cpu;
607
608         nmi_enter();
609         cpu = smp_processor_id();
610         if (WARN_ON_ONCE(!cpumask_test_and_clear_cpu(cpu, &backtrace_mask)))
611                 goto done;
612
613         spin_lock(&backtrace_lock);
614         if (is_idle)
615                 pr_info("CPU: %d idle\n", cpu);
616         else
617                 show_regs(regs);
618         spin_unlock(&backtrace_lock);
619         atomic_dec(&backtrace_cpus);
620 done:
621         nmi_exit();
622 }
623
624 #ifdef __tilegx__
625 void arch_trigger_all_cpu_backtrace(bool self)
626 {
627         struct cpumask mask;
628         HV_Coord tile;
629         unsigned int timeout;
630         int cpu;
631         int ongoing;
632         HV_NMI_Info info[NR_CPUS];
633
634         ongoing = atomic_cmpxchg(&backtrace_cpus, 0, num_online_cpus() - 1);
635         if (ongoing != 0) {
636                 pr_err("Trying to do all-cpu backtrace.\n");
637                 pr_err("But another all-cpu backtrace is ongoing (%d cpus left)\n",
638                        ongoing);
639                 if (self) {
640                         pr_err("Reporting the stack on this cpu only.\n");
641                         dump_stack();
642                 }
643                 return;
644         }
645
646         cpumask_copy(&mask, cpu_online_mask);
647         cpumask_clear_cpu(smp_processor_id(), &mask);
648         cpumask_copy(&backtrace_mask, &mask);
649
650         /* Backtrace for myself first. */
651         if (self)
652                 dump_stack();
653
654         /* Tentatively dump stack on remote tiles via NMI. */
655         timeout = 100;
656         while (!cpumask_empty(&mask) && timeout) {
657                 for_each_cpu(cpu, &mask) {
658                         tile.x = cpu_x(cpu);
659                         tile.y = cpu_y(cpu);
660                         info[cpu] = hv_send_nmi(tile, TILE_NMI_DUMP_STACK, 0);
661                         if (info[cpu].result == HV_NMI_RESULT_OK)
662                                 cpumask_clear_cpu(cpu, &mask);
663                 }
664
665                 mdelay(10);
666                 timeout--;
667         }
668
669         /* Warn about cpus stuck in ICS and decrement their counts here. */
670         if (!cpumask_empty(&mask)) {
671                 for_each_cpu(cpu, &mask) {
672                         switch (info[cpu].result) {
673                         case HV_NMI_RESULT_FAIL_ICS:
674                                 pr_warn("Skipping stack dump of cpu %d in ICS at pc %#llx\n",
675                                         cpu, info[cpu].pc);
676                                 break;
677                         case HV_NMI_RESULT_FAIL_HV:
678                                 pr_warn("Skipping stack dump of cpu %d in hypervisor\n",
679                                         cpu);
680                                 break;
681                         case HV_ENOSYS:
682                                 pr_warn("Hypervisor too old to allow remote stack dumps.\n");
683                                 goto skip_for_each;
684                         default:  /* should not happen */
685                                 pr_warn("Skipping stack dump of cpu %d [%d,%#llx]\n",
686                                         cpu, info[cpu].result, info[cpu].pc);
687                                 break;
688                         }
689                 }
690 skip_for_each:
691                 atomic_sub(cpumask_weight(&mask), &backtrace_cpus);
692         }
693 }
694 #endif /* __tilegx_ */