Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[cascardo/linux.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <trace/events/kvm.h>
58
59 #include <asm/debugreg.h>
60 #include <asm/msr.h>
61 #include <asm/desc.h>
62 #include <asm/mce.h>
63 #include <linux/kernel_stat.h>
64 #include <asm/fpu/internal.h> /* Ugh! */
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67 #include <asm/irq_remapping.h>
68
69 #define CREATE_TRACE_POINTS
70 #include "trace.h"
71
72 #define MAX_IO_MSRS 256
73 #define KVM_MAX_MCE_BANKS 32
74 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
75
76 #define emul_to_vcpu(ctxt) \
77         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
78
79 /* EFER defaults:
80  * - enable syscall per default because its emulated by KVM
81  * - enable LME and LMA per default on 64 bit KVM
82  */
83 #ifdef CONFIG_X86_64
84 static
85 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
86 #else
87 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
88 #endif
89
90 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
91 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
92
93 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
94 static void process_nmi(struct kvm_vcpu *vcpu);
95 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
96
97 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
98 EXPORT_SYMBOL_GPL(kvm_x86_ops);
99
100 static bool __read_mostly ignore_msrs = 0;
101 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
102
103 unsigned int min_timer_period_us = 500;
104 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
105
106 static bool __read_mostly kvmclock_periodic_sync = true;
107 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
108
109 bool __read_mostly kvm_has_tsc_control;
110 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
111 u32  __read_mostly kvm_max_guest_tsc_khz;
112 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
113 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
114 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
115 u64  __read_mostly kvm_max_tsc_scaling_ratio;
116 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
117 static u64 __read_mostly kvm_default_tsc_scaling_ratio;
118
119 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
120 static u32 __read_mostly tsc_tolerance_ppm = 250;
121 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
122
123 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
124 unsigned int __read_mostly lapic_timer_advance_ns = 0;
125 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
126
127 static bool __read_mostly vector_hashing = true;
128 module_param(vector_hashing, bool, S_IRUGO);
129
130 static bool __read_mostly backwards_tsc_observed = false;
131
132 #define KVM_NR_SHARED_MSRS 16
133
134 struct kvm_shared_msrs_global {
135         int nr;
136         u32 msrs[KVM_NR_SHARED_MSRS];
137 };
138
139 struct kvm_shared_msrs {
140         struct user_return_notifier urn;
141         bool registered;
142         struct kvm_shared_msr_values {
143                 u64 host;
144                 u64 curr;
145         } values[KVM_NR_SHARED_MSRS];
146 };
147
148 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
149 static struct kvm_shared_msrs __percpu *shared_msrs;
150
151 struct kvm_stats_debugfs_item debugfs_entries[] = {
152         { "pf_fixed", VCPU_STAT(pf_fixed) },
153         { "pf_guest", VCPU_STAT(pf_guest) },
154         { "tlb_flush", VCPU_STAT(tlb_flush) },
155         { "invlpg", VCPU_STAT(invlpg) },
156         { "exits", VCPU_STAT(exits) },
157         { "io_exits", VCPU_STAT(io_exits) },
158         { "mmio_exits", VCPU_STAT(mmio_exits) },
159         { "signal_exits", VCPU_STAT(signal_exits) },
160         { "irq_window", VCPU_STAT(irq_window_exits) },
161         { "nmi_window", VCPU_STAT(nmi_window_exits) },
162         { "halt_exits", VCPU_STAT(halt_exits) },
163         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
164         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
165         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
166         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
167         { "hypercalls", VCPU_STAT(hypercalls) },
168         { "request_irq", VCPU_STAT(request_irq_exits) },
169         { "irq_exits", VCPU_STAT(irq_exits) },
170         { "host_state_reload", VCPU_STAT(host_state_reload) },
171         { "efer_reload", VCPU_STAT(efer_reload) },
172         { "fpu_reload", VCPU_STAT(fpu_reload) },
173         { "insn_emulation", VCPU_STAT(insn_emulation) },
174         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
175         { "irq_injections", VCPU_STAT(irq_injections) },
176         { "nmi_injections", VCPU_STAT(nmi_injections) },
177         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
178         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
179         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
180         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
181         { "mmu_flooded", VM_STAT(mmu_flooded) },
182         { "mmu_recycled", VM_STAT(mmu_recycled) },
183         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
184         { "mmu_unsync", VM_STAT(mmu_unsync) },
185         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
186         { "largepages", VM_STAT(lpages) },
187         { NULL }
188 };
189
190 u64 __read_mostly host_xcr0;
191
192 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
193
194 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
195 {
196         int i;
197         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
198                 vcpu->arch.apf.gfns[i] = ~0;
199 }
200
201 static void kvm_on_user_return(struct user_return_notifier *urn)
202 {
203         unsigned slot;
204         struct kvm_shared_msrs *locals
205                 = container_of(urn, struct kvm_shared_msrs, urn);
206         struct kvm_shared_msr_values *values;
207
208         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
209                 values = &locals->values[slot];
210                 if (values->host != values->curr) {
211                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
212                         values->curr = values->host;
213                 }
214         }
215         locals->registered = false;
216         user_return_notifier_unregister(urn);
217 }
218
219 static void shared_msr_update(unsigned slot, u32 msr)
220 {
221         u64 value;
222         unsigned int cpu = smp_processor_id();
223         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
224
225         /* only read, and nobody should modify it at this time,
226          * so don't need lock */
227         if (slot >= shared_msrs_global.nr) {
228                 printk(KERN_ERR "kvm: invalid MSR slot!");
229                 return;
230         }
231         rdmsrl_safe(msr, &value);
232         smsr->values[slot].host = value;
233         smsr->values[slot].curr = value;
234 }
235
236 void kvm_define_shared_msr(unsigned slot, u32 msr)
237 {
238         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
239         shared_msrs_global.msrs[slot] = msr;
240         if (slot >= shared_msrs_global.nr)
241                 shared_msrs_global.nr = slot + 1;
242 }
243 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
244
245 static void kvm_shared_msr_cpu_online(void)
246 {
247         unsigned i;
248
249         for (i = 0; i < shared_msrs_global.nr; ++i)
250                 shared_msr_update(i, shared_msrs_global.msrs[i]);
251 }
252
253 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
254 {
255         unsigned int cpu = smp_processor_id();
256         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
257         int err;
258
259         if (((value ^ smsr->values[slot].curr) & mask) == 0)
260                 return 0;
261         smsr->values[slot].curr = value;
262         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
263         if (err)
264                 return 1;
265
266         if (!smsr->registered) {
267                 smsr->urn.on_user_return = kvm_on_user_return;
268                 user_return_notifier_register(&smsr->urn);
269                 smsr->registered = true;
270         }
271         return 0;
272 }
273 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
274
275 static void drop_user_return_notifiers(void)
276 {
277         unsigned int cpu = smp_processor_id();
278         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
279
280         if (smsr->registered)
281                 kvm_on_user_return(&smsr->urn);
282 }
283
284 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
285 {
286         return vcpu->arch.apic_base;
287 }
288 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
289
290 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
291 {
292         u64 old_state = vcpu->arch.apic_base &
293                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
294         u64 new_state = msr_info->data &
295                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
296         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
297                 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
298
299         if (!msr_info->host_initiated &&
300             ((msr_info->data & reserved_bits) != 0 ||
301              new_state == X2APIC_ENABLE ||
302              (new_state == MSR_IA32_APICBASE_ENABLE &&
303               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
304              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
305               old_state == 0)))
306                 return 1;
307
308         kvm_lapic_set_base(vcpu, msr_info->data);
309         return 0;
310 }
311 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
312
313 asmlinkage __visible void kvm_spurious_fault(void)
314 {
315         /* Fault while not rebooting.  We want the trace. */
316         BUG();
317 }
318 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
319
320 #define EXCPT_BENIGN            0
321 #define EXCPT_CONTRIBUTORY      1
322 #define EXCPT_PF                2
323
324 static int exception_class(int vector)
325 {
326         switch (vector) {
327         case PF_VECTOR:
328                 return EXCPT_PF;
329         case DE_VECTOR:
330         case TS_VECTOR:
331         case NP_VECTOR:
332         case SS_VECTOR:
333         case GP_VECTOR:
334                 return EXCPT_CONTRIBUTORY;
335         default:
336                 break;
337         }
338         return EXCPT_BENIGN;
339 }
340
341 #define EXCPT_FAULT             0
342 #define EXCPT_TRAP              1
343 #define EXCPT_ABORT             2
344 #define EXCPT_INTERRUPT         3
345
346 static int exception_type(int vector)
347 {
348         unsigned int mask;
349
350         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
351                 return EXCPT_INTERRUPT;
352
353         mask = 1 << vector;
354
355         /* #DB is trap, as instruction watchpoints are handled elsewhere */
356         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
357                 return EXCPT_TRAP;
358
359         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
360                 return EXCPT_ABORT;
361
362         /* Reserved exceptions will result in fault */
363         return EXCPT_FAULT;
364 }
365
366 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
367                 unsigned nr, bool has_error, u32 error_code,
368                 bool reinject)
369 {
370         u32 prev_nr;
371         int class1, class2;
372
373         kvm_make_request(KVM_REQ_EVENT, vcpu);
374
375         if (!vcpu->arch.exception.pending) {
376         queue:
377                 if (has_error && !is_protmode(vcpu))
378                         has_error = false;
379                 vcpu->arch.exception.pending = true;
380                 vcpu->arch.exception.has_error_code = has_error;
381                 vcpu->arch.exception.nr = nr;
382                 vcpu->arch.exception.error_code = error_code;
383                 vcpu->arch.exception.reinject = reinject;
384                 return;
385         }
386
387         /* to check exception */
388         prev_nr = vcpu->arch.exception.nr;
389         if (prev_nr == DF_VECTOR) {
390                 /* triple fault -> shutdown */
391                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
392                 return;
393         }
394         class1 = exception_class(prev_nr);
395         class2 = exception_class(nr);
396         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
397                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
398                 /* generate double fault per SDM Table 5-5 */
399                 vcpu->arch.exception.pending = true;
400                 vcpu->arch.exception.has_error_code = true;
401                 vcpu->arch.exception.nr = DF_VECTOR;
402                 vcpu->arch.exception.error_code = 0;
403         } else
404                 /* replace previous exception with a new one in a hope
405                    that instruction re-execution will regenerate lost
406                    exception */
407                 goto queue;
408 }
409
410 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
411 {
412         kvm_multiple_exception(vcpu, nr, false, 0, false);
413 }
414 EXPORT_SYMBOL_GPL(kvm_queue_exception);
415
416 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
417 {
418         kvm_multiple_exception(vcpu, nr, false, 0, true);
419 }
420 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
421
422 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
423 {
424         if (err)
425                 kvm_inject_gp(vcpu, 0);
426         else
427                 kvm_x86_ops->skip_emulated_instruction(vcpu);
428 }
429 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
430
431 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
432 {
433         ++vcpu->stat.pf_guest;
434         vcpu->arch.cr2 = fault->address;
435         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
436 }
437 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
438
439 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
440 {
441         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
442                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
443         else
444                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
445
446         return fault->nested_page_fault;
447 }
448
449 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
450 {
451         atomic_inc(&vcpu->arch.nmi_queued);
452         kvm_make_request(KVM_REQ_NMI, vcpu);
453 }
454 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
455
456 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
457 {
458         kvm_multiple_exception(vcpu, nr, true, error_code, false);
459 }
460 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
461
462 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
463 {
464         kvm_multiple_exception(vcpu, nr, true, error_code, true);
465 }
466 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
467
468 /*
469  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
470  * a #GP and return false.
471  */
472 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
473 {
474         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
475                 return true;
476         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
477         return false;
478 }
479 EXPORT_SYMBOL_GPL(kvm_require_cpl);
480
481 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
482 {
483         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
484                 return true;
485
486         kvm_queue_exception(vcpu, UD_VECTOR);
487         return false;
488 }
489 EXPORT_SYMBOL_GPL(kvm_require_dr);
490
491 /*
492  * This function will be used to read from the physical memory of the currently
493  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
494  * can read from guest physical or from the guest's guest physical memory.
495  */
496 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
497                             gfn_t ngfn, void *data, int offset, int len,
498                             u32 access)
499 {
500         struct x86_exception exception;
501         gfn_t real_gfn;
502         gpa_t ngpa;
503
504         ngpa     = gfn_to_gpa(ngfn);
505         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
506         if (real_gfn == UNMAPPED_GVA)
507                 return -EFAULT;
508
509         real_gfn = gpa_to_gfn(real_gfn);
510
511         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
512 }
513 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
514
515 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
516                                void *data, int offset, int len, u32 access)
517 {
518         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
519                                        data, offset, len, access);
520 }
521
522 /*
523  * Load the pae pdptrs.  Return true is they are all valid.
524  */
525 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
526 {
527         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
528         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
529         int i;
530         int ret;
531         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
532
533         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
534                                       offset * sizeof(u64), sizeof(pdpte),
535                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
536         if (ret < 0) {
537                 ret = 0;
538                 goto out;
539         }
540         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
541                 if (is_present_gpte(pdpte[i]) &&
542                     (pdpte[i] &
543                      vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
544                         ret = 0;
545                         goto out;
546                 }
547         }
548         ret = 1;
549
550         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
551         __set_bit(VCPU_EXREG_PDPTR,
552                   (unsigned long *)&vcpu->arch.regs_avail);
553         __set_bit(VCPU_EXREG_PDPTR,
554                   (unsigned long *)&vcpu->arch.regs_dirty);
555 out:
556
557         return ret;
558 }
559 EXPORT_SYMBOL_GPL(load_pdptrs);
560
561 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
562 {
563         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
564         bool changed = true;
565         int offset;
566         gfn_t gfn;
567         int r;
568
569         if (is_long_mode(vcpu) || !is_pae(vcpu))
570                 return false;
571
572         if (!test_bit(VCPU_EXREG_PDPTR,
573                       (unsigned long *)&vcpu->arch.regs_avail))
574                 return true;
575
576         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
577         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
578         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
579                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
580         if (r < 0)
581                 goto out;
582         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
583 out:
584
585         return changed;
586 }
587
588 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
589 {
590         unsigned long old_cr0 = kvm_read_cr0(vcpu);
591         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
592
593         cr0 |= X86_CR0_ET;
594
595 #ifdef CONFIG_X86_64
596         if (cr0 & 0xffffffff00000000UL)
597                 return 1;
598 #endif
599
600         cr0 &= ~CR0_RESERVED_BITS;
601
602         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
603                 return 1;
604
605         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
606                 return 1;
607
608         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
609 #ifdef CONFIG_X86_64
610                 if ((vcpu->arch.efer & EFER_LME)) {
611                         int cs_db, cs_l;
612
613                         if (!is_pae(vcpu))
614                                 return 1;
615                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
616                         if (cs_l)
617                                 return 1;
618                 } else
619 #endif
620                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
621                                                  kvm_read_cr3(vcpu)))
622                         return 1;
623         }
624
625         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
626                 return 1;
627
628         kvm_x86_ops->set_cr0(vcpu, cr0);
629
630         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
631                 kvm_clear_async_pf_completion_queue(vcpu);
632                 kvm_async_pf_hash_reset(vcpu);
633         }
634
635         if ((cr0 ^ old_cr0) & update_bits)
636                 kvm_mmu_reset_context(vcpu);
637
638         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
639             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
640             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
641                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
642
643         return 0;
644 }
645 EXPORT_SYMBOL_GPL(kvm_set_cr0);
646
647 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
648 {
649         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
650 }
651 EXPORT_SYMBOL_GPL(kvm_lmsw);
652
653 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
654 {
655         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
656                         !vcpu->guest_xcr0_loaded) {
657                 /* kvm_set_xcr() also depends on this */
658                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
659                 vcpu->guest_xcr0_loaded = 1;
660         }
661 }
662
663 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
664 {
665         if (vcpu->guest_xcr0_loaded) {
666                 if (vcpu->arch.xcr0 != host_xcr0)
667                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
668                 vcpu->guest_xcr0_loaded = 0;
669         }
670 }
671
672 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
673 {
674         u64 xcr0 = xcr;
675         u64 old_xcr0 = vcpu->arch.xcr0;
676         u64 valid_bits;
677
678         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
679         if (index != XCR_XFEATURE_ENABLED_MASK)
680                 return 1;
681         if (!(xcr0 & XFEATURE_MASK_FP))
682                 return 1;
683         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
684                 return 1;
685
686         /*
687          * Do not allow the guest to set bits that we do not support
688          * saving.  However, xcr0 bit 0 is always set, even if the
689          * emulated CPU does not support XSAVE (see fx_init).
690          */
691         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
692         if (xcr0 & ~valid_bits)
693                 return 1;
694
695         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
696             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
697                 return 1;
698
699         if (xcr0 & XFEATURE_MASK_AVX512) {
700                 if (!(xcr0 & XFEATURE_MASK_YMM))
701                         return 1;
702                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
703                         return 1;
704         }
705         vcpu->arch.xcr0 = xcr0;
706
707         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
708                 kvm_update_cpuid(vcpu);
709         return 0;
710 }
711
712 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
713 {
714         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
715             __kvm_set_xcr(vcpu, index, xcr)) {
716                 kvm_inject_gp(vcpu, 0);
717                 return 1;
718         }
719         return 0;
720 }
721 EXPORT_SYMBOL_GPL(kvm_set_xcr);
722
723 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
724 {
725         unsigned long old_cr4 = kvm_read_cr4(vcpu);
726         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
727                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
728
729         if (cr4 & CR4_RESERVED_BITS)
730                 return 1;
731
732         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
733                 return 1;
734
735         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
736                 return 1;
737
738         if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
739                 return 1;
740
741         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
742                 return 1;
743
744         if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
745                 return 1;
746
747         if (is_long_mode(vcpu)) {
748                 if (!(cr4 & X86_CR4_PAE))
749                         return 1;
750         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
751                    && ((cr4 ^ old_cr4) & pdptr_bits)
752                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
753                                    kvm_read_cr3(vcpu)))
754                 return 1;
755
756         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
757                 if (!guest_cpuid_has_pcid(vcpu))
758                         return 1;
759
760                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
761                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
762                         return 1;
763         }
764
765         if (kvm_x86_ops->set_cr4(vcpu, cr4))
766                 return 1;
767
768         if (((cr4 ^ old_cr4) & pdptr_bits) ||
769             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
770                 kvm_mmu_reset_context(vcpu);
771
772         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
773                 kvm_update_cpuid(vcpu);
774
775         return 0;
776 }
777 EXPORT_SYMBOL_GPL(kvm_set_cr4);
778
779 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
780 {
781 #ifdef CONFIG_X86_64
782         cr3 &= ~CR3_PCID_INVD;
783 #endif
784
785         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
786                 kvm_mmu_sync_roots(vcpu);
787                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
788                 return 0;
789         }
790
791         if (is_long_mode(vcpu)) {
792                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
793                         return 1;
794         } else if (is_pae(vcpu) && is_paging(vcpu) &&
795                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
796                 return 1;
797
798         vcpu->arch.cr3 = cr3;
799         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
800         kvm_mmu_new_cr3(vcpu);
801         return 0;
802 }
803 EXPORT_SYMBOL_GPL(kvm_set_cr3);
804
805 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
806 {
807         if (cr8 & CR8_RESERVED_BITS)
808                 return 1;
809         if (lapic_in_kernel(vcpu))
810                 kvm_lapic_set_tpr(vcpu, cr8);
811         else
812                 vcpu->arch.cr8 = cr8;
813         return 0;
814 }
815 EXPORT_SYMBOL_GPL(kvm_set_cr8);
816
817 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
818 {
819         if (lapic_in_kernel(vcpu))
820                 return kvm_lapic_get_cr8(vcpu);
821         else
822                 return vcpu->arch.cr8;
823 }
824 EXPORT_SYMBOL_GPL(kvm_get_cr8);
825
826 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
827 {
828         int i;
829
830         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
831                 for (i = 0; i < KVM_NR_DB_REGS; i++)
832                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
833                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
834         }
835 }
836
837 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
838 {
839         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
840                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
841 }
842
843 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
844 {
845         unsigned long dr7;
846
847         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
848                 dr7 = vcpu->arch.guest_debug_dr7;
849         else
850                 dr7 = vcpu->arch.dr7;
851         kvm_x86_ops->set_dr7(vcpu, dr7);
852         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
853         if (dr7 & DR7_BP_EN_MASK)
854                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
855 }
856
857 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
858 {
859         u64 fixed = DR6_FIXED_1;
860
861         if (!guest_cpuid_has_rtm(vcpu))
862                 fixed |= DR6_RTM;
863         return fixed;
864 }
865
866 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
867 {
868         switch (dr) {
869         case 0 ... 3:
870                 vcpu->arch.db[dr] = val;
871                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
872                         vcpu->arch.eff_db[dr] = val;
873                 break;
874         case 4:
875                 /* fall through */
876         case 6:
877                 if (val & 0xffffffff00000000ULL)
878                         return -1; /* #GP */
879                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
880                 kvm_update_dr6(vcpu);
881                 break;
882         case 5:
883                 /* fall through */
884         default: /* 7 */
885                 if (val & 0xffffffff00000000ULL)
886                         return -1; /* #GP */
887                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
888                 kvm_update_dr7(vcpu);
889                 break;
890         }
891
892         return 0;
893 }
894
895 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
896 {
897         if (__kvm_set_dr(vcpu, dr, val)) {
898                 kvm_inject_gp(vcpu, 0);
899                 return 1;
900         }
901         return 0;
902 }
903 EXPORT_SYMBOL_GPL(kvm_set_dr);
904
905 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
906 {
907         switch (dr) {
908         case 0 ... 3:
909                 *val = vcpu->arch.db[dr];
910                 break;
911         case 4:
912                 /* fall through */
913         case 6:
914                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
915                         *val = vcpu->arch.dr6;
916                 else
917                         *val = kvm_x86_ops->get_dr6(vcpu);
918                 break;
919         case 5:
920                 /* fall through */
921         default: /* 7 */
922                 *val = vcpu->arch.dr7;
923                 break;
924         }
925         return 0;
926 }
927 EXPORT_SYMBOL_GPL(kvm_get_dr);
928
929 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
930 {
931         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
932         u64 data;
933         int err;
934
935         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
936         if (err)
937                 return err;
938         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
939         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
940         return err;
941 }
942 EXPORT_SYMBOL_GPL(kvm_rdpmc);
943
944 /*
945  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
946  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
947  *
948  * This list is modified at module load time to reflect the
949  * capabilities of the host cpu. This capabilities test skips MSRs that are
950  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
951  * may depend on host virtualization features rather than host cpu features.
952  */
953
954 static u32 msrs_to_save[] = {
955         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
956         MSR_STAR,
957 #ifdef CONFIG_X86_64
958         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
959 #endif
960         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
961         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
962 };
963
964 static unsigned num_msrs_to_save;
965
966 static u32 emulated_msrs[] = {
967         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
968         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
969         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
970         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
971         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
972         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
973         HV_X64_MSR_RESET,
974         HV_X64_MSR_VP_INDEX,
975         HV_X64_MSR_VP_RUNTIME,
976         HV_X64_MSR_SCONTROL,
977         HV_X64_MSR_STIMER0_CONFIG,
978         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
979         MSR_KVM_PV_EOI_EN,
980
981         MSR_IA32_TSC_ADJUST,
982         MSR_IA32_TSCDEADLINE,
983         MSR_IA32_MISC_ENABLE,
984         MSR_IA32_MCG_STATUS,
985         MSR_IA32_MCG_CTL,
986         MSR_IA32_SMBASE,
987 };
988
989 static unsigned num_emulated_msrs;
990
991 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
992 {
993         if (efer & efer_reserved_bits)
994                 return false;
995
996         if (efer & EFER_FFXSR) {
997                 struct kvm_cpuid_entry2 *feat;
998
999                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1000                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
1001                         return false;
1002         }
1003
1004         if (efer & EFER_SVME) {
1005                 struct kvm_cpuid_entry2 *feat;
1006
1007                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1008                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1009                         return false;
1010         }
1011
1012         return true;
1013 }
1014 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1015
1016 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1017 {
1018         u64 old_efer = vcpu->arch.efer;
1019
1020         if (!kvm_valid_efer(vcpu, efer))
1021                 return 1;
1022
1023         if (is_paging(vcpu)
1024             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1025                 return 1;
1026
1027         efer &= ~EFER_LMA;
1028         efer |= vcpu->arch.efer & EFER_LMA;
1029
1030         kvm_x86_ops->set_efer(vcpu, efer);
1031
1032         /* Update reserved bits */
1033         if ((efer ^ old_efer) & EFER_NX)
1034                 kvm_mmu_reset_context(vcpu);
1035
1036         return 0;
1037 }
1038
1039 void kvm_enable_efer_bits(u64 mask)
1040 {
1041        efer_reserved_bits &= ~mask;
1042 }
1043 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1044
1045 /*
1046  * Writes msr value into into the appropriate "register".
1047  * Returns 0 on success, non-0 otherwise.
1048  * Assumes vcpu_load() was already called.
1049  */
1050 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1051 {
1052         switch (msr->index) {
1053         case MSR_FS_BASE:
1054         case MSR_GS_BASE:
1055         case MSR_KERNEL_GS_BASE:
1056         case MSR_CSTAR:
1057         case MSR_LSTAR:
1058                 if (is_noncanonical_address(msr->data))
1059                         return 1;
1060                 break;
1061         case MSR_IA32_SYSENTER_EIP:
1062         case MSR_IA32_SYSENTER_ESP:
1063                 /*
1064                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1065                  * non-canonical address is written on Intel but not on
1066                  * AMD (which ignores the top 32-bits, because it does
1067                  * not implement 64-bit SYSENTER).
1068                  *
1069                  * 64-bit code should hence be able to write a non-canonical
1070                  * value on AMD.  Making the address canonical ensures that
1071                  * vmentry does not fail on Intel after writing a non-canonical
1072                  * value, and that something deterministic happens if the guest
1073                  * invokes 64-bit SYSENTER.
1074                  */
1075                 msr->data = get_canonical(msr->data);
1076         }
1077         return kvm_x86_ops->set_msr(vcpu, msr);
1078 }
1079 EXPORT_SYMBOL_GPL(kvm_set_msr);
1080
1081 /*
1082  * Adapt set_msr() to msr_io()'s calling convention
1083  */
1084 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1085 {
1086         struct msr_data msr;
1087         int r;
1088
1089         msr.index = index;
1090         msr.host_initiated = true;
1091         r = kvm_get_msr(vcpu, &msr);
1092         if (r)
1093                 return r;
1094
1095         *data = msr.data;
1096         return 0;
1097 }
1098
1099 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1100 {
1101         struct msr_data msr;
1102
1103         msr.data = *data;
1104         msr.index = index;
1105         msr.host_initiated = true;
1106         return kvm_set_msr(vcpu, &msr);
1107 }
1108
1109 #ifdef CONFIG_X86_64
1110 struct pvclock_gtod_data {
1111         seqcount_t      seq;
1112
1113         struct { /* extract of a clocksource struct */
1114                 int vclock_mode;
1115                 cycle_t cycle_last;
1116                 cycle_t mask;
1117                 u32     mult;
1118                 u32     shift;
1119         } clock;
1120
1121         u64             boot_ns;
1122         u64             nsec_base;
1123 };
1124
1125 static struct pvclock_gtod_data pvclock_gtod_data;
1126
1127 static void update_pvclock_gtod(struct timekeeper *tk)
1128 {
1129         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1130         u64 boot_ns;
1131
1132         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1133
1134         write_seqcount_begin(&vdata->seq);
1135
1136         /* copy pvclock gtod data */
1137         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1138         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1139         vdata->clock.mask               = tk->tkr_mono.mask;
1140         vdata->clock.mult               = tk->tkr_mono.mult;
1141         vdata->clock.shift              = tk->tkr_mono.shift;
1142
1143         vdata->boot_ns                  = boot_ns;
1144         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1145
1146         write_seqcount_end(&vdata->seq);
1147 }
1148 #endif
1149
1150 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1151 {
1152         /*
1153          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1154          * vcpu_enter_guest.  This function is only called from
1155          * the physical CPU that is running vcpu.
1156          */
1157         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1158 }
1159
1160 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1161 {
1162         int version;
1163         int r;
1164         struct pvclock_wall_clock wc;
1165         struct timespec boot;
1166
1167         if (!wall_clock)
1168                 return;
1169
1170         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1171         if (r)
1172                 return;
1173
1174         if (version & 1)
1175                 ++version;  /* first time write, random junk */
1176
1177         ++version;
1178
1179         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1180                 return;
1181
1182         /*
1183          * The guest calculates current wall clock time by adding
1184          * system time (updated by kvm_guest_time_update below) to the
1185          * wall clock specified here.  guest system time equals host
1186          * system time for us, thus we must fill in host boot time here.
1187          */
1188         getboottime(&boot);
1189
1190         if (kvm->arch.kvmclock_offset) {
1191                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1192                 boot = timespec_sub(boot, ts);
1193         }
1194         wc.sec = boot.tv_sec;
1195         wc.nsec = boot.tv_nsec;
1196         wc.version = version;
1197
1198         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1199
1200         version++;
1201         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1202 }
1203
1204 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1205 {
1206         do_shl32_div32(dividend, divisor);
1207         return dividend;
1208 }
1209
1210 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1211                                s8 *pshift, u32 *pmultiplier)
1212 {
1213         uint64_t scaled64;
1214         int32_t  shift = 0;
1215         uint64_t tps64;
1216         uint32_t tps32;
1217
1218         tps64 = base_hz;
1219         scaled64 = scaled_hz;
1220         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1221                 tps64 >>= 1;
1222                 shift--;
1223         }
1224
1225         tps32 = (uint32_t)tps64;
1226         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1227                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1228                         scaled64 >>= 1;
1229                 else
1230                         tps32 <<= 1;
1231                 shift++;
1232         }
1233
1234         *pshift = shift;
1235         *pmultiplier = div_frac(scaled64, tps32);
1236
1237         pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1238                  __func__, base_hz, scaled_hz, shift, *pmultiplier);
1239 }
1240
1241 #ifdef CONFIG_X86_64
1242 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1243 #endif
1244
1245 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1246 static unsigned long max_tsc_khz;
1247
1248 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1249 {
1250         u64 v = (u64)khz * (1000000 + ppm);
1251         do_div(v, 1000000);
1252         return v;
1253 }
1254
1255 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1256 {
1257         u64 ratio;
1258
1259         /* Guest TSC same frequency as host TSC? */
1260         if (!scale) {
1261                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1262                 return 0;
1263         }
1264
1265         /* TSC scaling supported? */
1266         if (!kvm_has_tsc_control) {
1267                 if (user_tsc_khz > tsc_khz) {
1268                         vcpu->arch.tsc_catchup = 1;
1269                         vcpu->arch.tsc_always_catchup = 1;
1270                         return 0;
1271                 } else {
1272                         WARN(1, "user requested TSC rate below hardware speed\n");
1273                         return -1;
1274                 }
1275         }
1276
1277         /* TSC scaling required  - calculate ratio */
1278         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1279                                 user_tsc_khz, tsc_khz);
1280
1281         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1282                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1283                           user_tsc_khz);
1284                 return -1;
1285         }
1286
1287         vcpu->arch.tsc_scaling_ratio = ratio;
1288         return 0;
1289 }
1290
1291 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1292 {
1293         u32 thresh_lo, thresh_hi;
1294         int use_scaling = 0;
1295
1296         /* tsc_khz can be zero if TSC calibration fails */
1297         if (user_tsc_khz == 0) {
1298                 /* set tsc_scaling_ratio to a safe value */
1299                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1300                 return -1;
1301         }
1302
1303         /* Compute a scale to convert nanoseconds in TSC cycles */
1304         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1305                            &vcpu->arch.virtual_tsc_shift,
1306                            &vcpu->arch.virtual_tsc_mult);
1307         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1308
1309         /*
1310          * Compute the variation in TSC rate which is acceptable
1311          * within the range of tolerance and decide if the
1312          * rate being applied is within that bounds of the hardware
1313          * rate.  If so, no scaling or compensation need be done.
1314          */
1315         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1316         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1317         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1318                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1319                 use_scaling = 1;
1320         }
1321         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1322 }
1323
1324 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1325 {
1326         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1327                                       vcpu->arch.virtual_tsc_mult,
1328                                       vcpu->arch.virtual_tsc_shift);
1329         tsc += vcpu->arch.this_tsc_write;
1330         return tsc;
1331 }
1332
1333 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1334 {
1335 #ifdef CONFIG_X86_64
1336         bool vcpus_matched;
1337         struct kvm_arch *ka = &vcpu->kvm->arch;
1338         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1339
1340         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1341                          atomic_read(&vcpu->kvm->online_vcpus));
1342
1343         /*
1344          * Once the masterclock is enabled, always perform request in
1345          * order to update it.
1346          *
1347          * In order to enable masterclock, the host clocksource must be TSC
1348          * and the vcpus need to have matched TSCs.  When that happens,
1349          * perform request to enable masterclock.
1350          */
1351         if (ka->use_master_clock ||
1352             (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1353                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1354
1355         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1356                             atomic_read(&vcpu->kvm->online_vcpus),
1357                             ka->use_master_clock, gtod->clock.vclock_mode);
1358 #endif
1359 }
1360
1361 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1362 {
1363         u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1364         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1365 }
1366
1367 /*
1368  * Multiply tsc by a fixed point number represented by ratio.
1369  *
1370  * The most significant 64-N bits (mult) of ratio represent the
1371  * integral part of the fixed point number; the remaining N bits
1372  * (frac) represent the fractional part, ie. ratio represents a fixed
1373  * point number (mult + frac * 2^(-N)).
1374  *
1375  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1376  */
1377 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1378 {
1379         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1380 }
1381
1382 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1383 {
1384         u64 _tsc = tsc;
1385         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1386
1387         if (ratio != kvm_default_tsc_scaling_ratio)
1388                 _tsc = __scale_tsc(ratio, tsc);
1389
1390         return _tsc;
1391 }
1392 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1393
1394 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1395 {
1396         u64 tsc;
1397
1398         tsc = kvm_scale_tsc(vcpu, rdtsc());
1399
1400         return target_tsc - tsc;
1401 }
1402
1403 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1404 {
1405         return kvm_x86_ops->read_l1_tsc(vcpu, kvm_scale_tsc(vcpu, host_tsc));
1406 }
1407 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1408
1409 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1410 {
1411         struct kvm *kvm = vcpu->kvm;
1412         u64 offset, ns, elapsed;
1413         unsigned long flags;
1414         s64 usdiff;
1415         bool matched;
1416         bool already_matched;
1417         u64 data = msr->data;
1418
1419         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1420         offset = kvm_compute_tsc_offset(vcpu, data);
1421         ns = get_kernel_ns();
1422         elapsed = ns - kvm->arch.last_tsc_nsec;
1423
1424         if (vcpu->arch.virtual_tsc_khz) {
1425                 int faulted = 0;
1426
1427                 /* n.b - signed multiplication and division required */
1428                 usdiff = data - kvm->arch.last_tsc_write;
1429 #ifdef CONFIG_X86_64
1430                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1431 #else
1432                 /* do_div() only does unsigned */
1433                 asm("1: idivl %[divisor]\n"
1434                     "2: xor %%edx, %%edx\n"
1435                     "   movl $0, %[faulted]\n"
1436                     "3:\n"
1437                     ".section .fixup,\"ax\"\n"
1438                     "4: movl $1, %[faulted]\n"
1439                     "   jmp  3b\n"
1440                     ".previous\n"
1441
1442                 _ASM_EXTABLE(1b, 4b)
1443
1444                 : "=A"(usdiff), [faulted] "=r" (faulted)
1445                 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1446
1447 #endif
1448                 do_div(elapsed, 1000);
1449                 usdiff -= elapsed;
1450                 if (usdiff < 0)
1451                         usdiff = -usdiff;
1452
1453                 /* idivl overflow => difference is larger than USEC_PER_SEC */
1454                 if (faulted)
1455                         usdiff = USEC_PER_SEC;
1456         } else
1457                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1458
1459         /*
1460          * Special case: TSC write with a small delta (1 second) of virtual
1461          * cycle time against real time is interpreted as an attempt to
1462          * synchronize the CPU.
1463          *
1464          * For a reliable TSC, we can match TSC offsets, and for an unstable
1465          * TSC, we add elapsed time in this computation.  We could let the
1466          * compensation code attempt to catch up if we fall behind, but
1467          * it's better to try to match offsets from the beginning.
1468          */
1469         if (usdiff < USEC_PER_SEC &&
1470             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1471                 if (!check_tsc_unstable()) {
1472                         offset = kvm->arch.cur_tsc_offset;
1473                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1474                 } else {
1475                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1476                         data += delta;
1477                         offset = kvm_compute_tsc_offset(vcpu, data);
1478                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1479                 }
1480                 matched = true;
1481                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1482         } else {
1483                 /*
1484                  * We split periods of matched TSC writes into generations.
1485                  * For each generation, we track the original measured
1486                  * nanosecond time, offset, and write, so if TSCs are in
1487                  * sync, we can match exact offset, and if not, we can match
1488                  * exact software computation in compute_guest_tsc()
1489                  *
1490                  * These values are tracked in kvm->arch.cur_xxx variables.
1491                  */
1492                 kvm->arch.cur_tsc_generation++;
1493                 kvm->arch.cur_tsc_nsec = ns;
1494                 kvm->arch.cur_tsc_write = data;
1495                 kvm->arch.cur_tsc_offset = offset;
1496                 matched = false;
1497                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1498                          kvm->arch.cur_tsc_generation, data);
1499         }
1500
1501         /*
1502          * We also track th most recent recorded KHZ, write and time to
1503          * allow the matching interval to be extended at each write.
1504          */
1505         kvm->arch.last_tsc_nsec = ns;
1506         kvm->arch.last_tsc_write = data;
1507         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1508
1509         vcpu->arch.last_guest_tsc = data;
1510
1511         /* Keep track of which generation this VCPU has synchronized to */
1512         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1513         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1514         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1515
1516         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1517                 update_ia32_tsc_adjust_msr(vcpu, offset);
1518         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1519         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1520
1521         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1522         if (!matched) {
1523                 kvm->arch.nr_vcpus_matched_tsc = 0;
1524         } else if (!already_matched) {
1525                 kvm->arch.nr_vcpus_matched_tsc++;
1526         }
1527
1528         kvm_track_tsc_matching(vcpu);
1529         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1530 }
1531
1532 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1533
1534 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1535                                            s64 adjustment)
1536 {
1537         kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1538 }
1539
1540 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1541 {
1542         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1543                 WARN_ON(adjustment < 0);
1544         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1545         kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1546 }
1547
1548 #ifdef CONFIG_X86_64
1549
1550 static cycle_t read_tsc(void)
1551 {
1552         cycle_t ret = (cycle_t)rdtsc_ordered();
1553         u64 last = pvclock_gtod_data.clock.cycle_last;
1554
1555         if (likely(ret >= last))
1556                 return ret;
1557
1558         /*
1559          * GCC likes to generate cmov here, but this branch is extremely
1560          * predictable (it's just a function of time and the likely is
1561          * very likely) and there's a data dependence, so force GCC
1562          * to generate a branch instead.  I don't barrier() because
1563          * we don't actually need a barrier, and if this function
1564          * ever gets inlined it will generate worse code.
1565          */
1566         asm volatile ("");
1567         return last;
1568 }
1569
1570 static inline u64 vgettsc(cycle_t *cycle_now)
1571 {
1572         long v;
1573         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1574
1575         *cycle_now = read_tsc();
1576
1577         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1578         return v * gtod->clock.mult;
1579 }
1580
1581 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1582 {
1583         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1584         unsigned long seq;
1585         int mode;
1586         u64 ns;
1587
1588         do {
1589                 seq = read_seqcount_begin(&gtod->seq);
1590                 mode = gtod->clock.vclock_mode;
1591                 ns = gtod->nsec_base;
1592                 ns += vgettsc(cycle_now);
1593                 ns >>= gtod->clock.shift;
1594                 ns += gtod->boot_ns;
1595         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1596         *t = ns;
1597
1598         return mode;
1599 }
1600
1601 /* returns true if host is using tsc clocksource */
1602 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1603 {
1604         /* checked again under seqlock below */
1605         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1606                 return false;
1607
1608         return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1609 }
1610 #endif
1611
1612 /*
1613  *
1614  * Assuming a stable TSC across physical CPUS, and a stable TSC
1615  * across virtual CPUs, the following condition is possible.
1616  * Each numbered line represents an event visible to both
1617  * CPUs at the next numbered event.
1618  *
1619  * "timespecX" represents host monotonic time. "tscX" represents
1620  * RDTSC value.
1621  *
1622  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1623  *
1624  * 1.  read timespec0,tsc0
1625  * 2.                                   | timespec1 = timespec0 + N
1626  *                                      | tsc1 = tsc0 + M
1627  * 3. transition to guest               | transition to guest
1628  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1629  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1630  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1631  *
1632  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1633  *
1634  *      - ret0 < ret1
1635  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1636  *              ...
1637  *      - 0 < N - M => M < N
1638  *
1639  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1640  * always the case (the difference between two distinct xtime instances
1641  * might be smaller then the difference between corresponding TSC reads,
1642  * when updating guest vcpus pvclock areas).
1643  *
1644  * To avoid that problem, do not allow visibility of distinct
1645  * system_timestamp/tsc_timestamp values simultaneously: use a master
1646  * copy of host monotonic time values. Update that master copy
1647  * in lockstep.
1648  *
1649  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1650  *
1651  */
1652
1653 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1654 {
1655 #ifdef CONFIG_X86_64
1656         struct kvm_arch *ka = &kvm->arch;
1657         int vclock_mode;
1658         bool host_tsc_clocksource, vcpus_matched;
1659
1660         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1661                         atomic_read(&kvm->online_vcpus));
1662
1663         /*
1664          * If the host uses TSC clock, then passthrough TSC as stable
1665          * to the guest.
1666          */
1667         host_tsc_clocksource = kvm_get_time_and_clockread(
1668                                         &ka->master_kernel_ns,
1669                                         &ka->master_cycle_now);
1670
1671         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1672                                 && !backwards_tsc_observed
1673                                 && !ka->boot_vcpu_runs_old_kvmclock;
1674
1675         if (ka->use_master_clock)
1676                 atomic_set(&kvm_guest_has_master_clock, 1);
1677
1678         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1679         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1680                                         vcpus_matched);
1681 #endif
1682 }
1683
1684 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1685 {
1686         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1687 }
1688
1689 static void kvm_gen_update_masterclock(struct kvm *kvm)
1690 {
1691 #ifdef CONFIG_X86_64
1692         int i;
1693         struct kvm_vcpu *vcpu;
1694         struct kvm_arch *ka = &kvm->arch;
1695
1696         spin_lock(&ka->pvclock_gtod_sync_lock);
1697         kvm_make_mclock_inprogress_request(kvm);
1698         /* no guest entries from this point */
1699         pvclock_update_vm_gtod_copy(kvm);
1700
1701         kvm_for_each_vcpu(i, vcpu, kvm)
1702                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1703
1704         /* guest entries allowed */
1705         kvm_for_each_vcpu(i, vcpu, kvm)
1706                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1707
1708         spin_unlock(&ka->pvclock_gtod_sync_lock);
1709 #endif
1710 }
1711
1712 static int kvm_guest_time_update(struct kvm_vcpu *v)
1713 {
1714         unsigned long flags, tgt_tsc_khz;
1715         struct kvm_vcpu_arch *vcpu = &v->arch;
1716         struct kvm_arch *ka = &v->kvm->arch;
1717         s64 kernel_ns;
1718         u64 tsc_timestamp, host_tsc;
1719         struct pvclock_vcpu_time_info guest_hv_clock;
1720         u8 pvclock_flags;
1721         bool use_master_clock;
1722
1723         kernel_ns = 0;
1724         host_tsc = 0;
1725
1726         /*
1727          * If the host uses TSC clock, then passthrough TSC as stable
1728          * to the guest.
1729          */
1730         spin_lock(&ka->pvclock_gtod_sync_lock);
1731         use_master_clock = ka->use_master_clock;
1732         if (use_master_clock) {
1733                 host_tsc = ka->master_cycle_now;
1734                 kernel_ns = ka->master_kernel_ns;
1735         }
1736         spin_unlock(&ka->pvclock_gtod_sync_lock);
1737
1738         /* Keep irq disabled to prevent changes to the clock */
1739         local_irq_save(flags);
1740         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1741         if (unlikely(tgt_tsc_khz == 0)) {
1742                 local_irq_restore(flags);
1743                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1744                 return 1;
1745         }
1746         if (!use_master_clock) {
1747                 host_tsc = rdtsc();
1748                 kernel_ns = get_kernel_ns();
1749         }
1750
1751         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1752
1753         /*
1754          * We may have to catch up the TSC to match elapsed wall clock
1755          * time for two reasons, even if kvmclock is used.
1756          *   1) CPU could have been running below the maximum TSC rate
1757          *   2) Broken TSC compensation resets the base at each VCPU
1758          *      entry to avoid unknown leaps of TSC even when running
1759          *      again on the same CPU.  This may cause apparent elapsed
1760          *      time to disappear, and the guest to stand still or run
1761          *      very slowly.
1762          */
1763         if (vcpu->tsc_catchup) {
1764                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1765                 if (tsc > tsc_timestamp) {
1766                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1767                         tsc_timestamp = tsc;
1768                 }
1769         }
1770
1771         local_irq_restore(flags);
1772
1773         if (!vcpu->pv_time_enabled)
1774                 return 0;
1775
1776         if (kvm_has_tsc_control)
1777                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1778
1779         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1780                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1781                                    &vcpu->hv_clock.tsc_shift,
1782                                    &vcpu->hv_clock.tsc_to_system_mul);
1783                 vcpu->hw_tsc_khz = tgt_tsc_khz;
1784         }
1785
1786         /* With all the info we got, fill in the values */
1787         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1788         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1789         vcpu->last_guest_tsc = tsc_timestamp;
1790
1791         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1792                 &guest_hv_clock, sizeof(guest_hv_clock))))
1793                 return 0;
1794
1795         /* This VCPU is paused, but it's legal for a guest to read another
1796          * VCPU's kvmclock, so we really have to follow the specification where
1797          * it says that version is odd if data is being modified, and even after
1798          * it is consistent.
1799          *
1800          * Version field updates must be kept separate.  This is because
1801          * kvm_write_guest_cached might use a "rep movs" instruction, and
1802          * writes within a string instruction are weakly ordered.  So there
1803          * are three writes overall.
1804          *
1805          * As a small optimization, only write the version field in the first
1806          * and third write.  The vcpu->pv_time cache is still valid, because the
1807          * version field is the first in the struct.
1808          */
1809         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1810
1811         vcpu->hv_clock.version = guest_hv_clock.version + 1;
1812         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1813                                 &vcpu->hv_clock,
1814                                 sizeof(vcpu->hv_clock.version));
1815
1816         smp_wmb();
1817
1818         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1819         pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1820
1821         if (vcpu->pvclock_set_guest_stopped_request) {
1822                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1823                 vcpu->pvclock_set_guest_stopped_request = false;
1824         }
1825
1826         /* If the host uses TSC clocksource, then it is stable */
1827         if (use_master_clock)
1828                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1829
1830         vcpu->hv_clock.flags = pvclock_flags;
1831
1832         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1833
1834         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1835                                 &vcpu->hv_clock,
1836                                 sizeof(vcpu->hv_clock));
1837
1838         smp_wmb();
1839
1840         vcpu->hv_clock.version++;
1841         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1842                                 &vcpu->hv_clock,
1843                                 sizeof(vcpu->hv_clock.version));
1844         return 0;
1845 }
1846
1847 /*
1848  * kvmclock updates which are isolated to a given vcpu, such as
1849  * vcpu->cpu migration, should not allow system_timestamp from
1850  * the rest of the vcpus to remain static. Otherwise ntp frequency
1851  * correction applies to one vcpu's system_timestamp but not
1852  * the others.
1853  *
1854  * So in those cases, request a kvmclock update for all vcpus.
1855  * We need to rate-limit these requests though, as they can
1856  * considerably slow guests that have a large number of vcpus.
1857  * The time for a remote vcpu to update its kvmclock is bound
1858  * by the delay we use to rate-limit the updates.
1859  */
1860
1861 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1862
1863 static void kvmclock_update_fn(struct work_struct *work)
1864 {
1865         int i;
1866         struct delayed_work *dwork = to_delayed_work(work);
1867         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1868                                            kvmclock_update_work);
1869         struct kvm *kvm = container_of(ka, struct kvm, arch);
1870         struct kvm_vcpu *vcpu;
1871
1872         kvm_for_each_vcpu(i, vcpu, kvm) {
1873                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1874                 kvm_vcpu_kick(vcpu);
1875         }
1876 }
1877
1878 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1879 {
1880         struct kvm *kvm = v->kvm;
1881
1882         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1883         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1884                                         KVMCLOCK_UPDATE_DELAY);
1885 }
1886
1887 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1888
1889 static void kvmclock_sync_fn(struct work_struct *work)
1890 {
1891         struct delayed_work *dwork = to_delayed_work(work);
1892         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1893                                            kvmclock_sync_work);
1894         struct kvm *kvm = container_of(ka, struct kvm, arch);
1895
1896         if (!kvmclock_periodic_sync)
1897                 return;
1898
1899         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1900         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1901                                         KVMCLOCK_SYNC_PERIOD);
1902 }
1903
1904 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1905 {
1906         u64 mcg_cap = vcpu->arch.mcg_cap;
1907         unsigned bank_num = mcg_cap & 0xff;
1908
1909         switch (msr) {
1910         case MSR_IA32_MCG_STATUS:
1911                 vcpu->arch.mcg_status = data;
1912                 break;
1913         case MSR_IA32_MCG_CTL:
1914                 if (!(mcg_cap & MCG_CTL_P))
1915                         return 1;
1916                 if (data != 0 && data != ~(u64)0)
1917                         return -1;
1918                 vcpu->arch.mcg_ctl = data;
1919                 break;
1920         default:
1921                 if (msr >= MSR_IA32_MC0_CTL &&
1922                     msr < MSR_IA32_MCx_CTL(bank_num)) {
1923                         u32 offset = msr - MSR_IA32_MC0_CTL;
1924                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1925                          * some Linux kernels though clear bit 10 in bank 4 to
1926                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1927                          * this to avoid an uncatched #GP in the guest
1928                          */
1929                         if ((offset & 0x3) == 0 &&
1930                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1931                                 return -1;
1932                         vcpu->arch.mce_banks[offset] = data;
1933                         break;
1934                 }
1935                 return 1;
1936         }
1937         return 0;
1938 }
1939
1940 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1941 {
1942         struct kvm *kvm = vcpu->kvm;
1943         int lm = is_long_mode(vcpu);
1944         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1945                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1946         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1947                 : kvm->arch.xen_hvm_config.blob_size_32;
1948         u32 page_num = data & ~PAGE_MASK;
1949         u64 page_addr = data & PAGE_MASK;
1950         u8 *page;
1951         int r;
1952
1953         r = -E2BIG;
1954         if (page_num >= blob_size)
1955                 goto out;
1956         r = -ENOMEM;
1957         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1958         if (IS_ERR(page)) {
1959                 r = PTR_ERR(page);
1960                 goto out;
1961         }
1962         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
1963                 goto out_free;
1964         r = 0;
1965 out_free:
1966         kfree(page);
1967 out:
1968         return r;
1969 }
1970
1971 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1972 {
1973         gpa_t gpa = data & ~0x3f;
1974
1975         /* Bits 2:5 are reserved, Should be zero */
1976         if (data & 0x3c)
1977                 return 1;
1978
1979         vcpu->arch.apf.msr_val = data;
1980
1981         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1982                 kvm_clear_async_pf_completion_queue(vcpu);
1983                 kvm_async_pf_hash_reset(vcpu);
1984                 return 0;
1985         }
1986
1987         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1988                                         sizeof(u32)))
1989                 return 1;
1990
1991         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1992         kvm_async_pf_wakeup_all(vcpu);
1993         return 0;
1994 }
1995
1996 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1997 {
1998         vcpu->arch.pv_time_enabled = false;
1999 }
2000
2001 static void record_steal_time(struct kvm_vcpu *vcpu)
2002 {
2003         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2004                 return;
2005
2006         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2007                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2008                 return;
2009
2010         if (vcpu->arch.st.steal.version & 1)
2011                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2012
2013         vcpu->arch.st.steal.version += 1;
2014
2015         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2016                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2017
2018         smp_wmb();
2019
2020         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2021                 vcpu->arch.st.last_steal;
2022         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2023
2024         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2025                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2026
2027         smp_wmb();
2028
2029         vcpu->arch.st.steal.version += 1;
2030
2031         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2032                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2033 }
2034
2035 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2036 {
2037         bool pr = false;
2038         u32 msr = msr_info->index;
2039         u64 data = msr_info->data;
2040
2041         switch (msr) {
2042         case MSR_AMD64_NB_CFG:
2043         case MSR_IA32_UCODE_REV:
2044         case MSR_IA32_UCODE_WRITE:
2045         case MSR_VM_HSAVE_PA:
2046         case MSR_AMD64_PATCH_LOADER:
2047         case MSR_AMD64_BU_CFG2:
2048                 break;
2049
2050         case MSR_EFER:
2051                 return set_efer(vcpu, data);
2052         case MSR_K7_HWCR:
2053                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2054                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2055                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2056                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2057                 if (data != 0) {
2058                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2059                                     data);
2060                         return 1;
2061                 }
2062                 break;
2063         case MSR_FAM10H_MMIO_CONF_BASE:
2064                 if (data != 0) {
2065                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2066                                     "0x%llx\n", data);
2067                         return 1;
2068                 }
2069                 break;
2070         case MSR_IA32_DEBUGCTLMSR:
2071                 if (!data) {
2072                         /* We support the non-activated case already */
2073                         break;
2074                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2075                         /* Values other than LBR and BTF are vendor-specific,
2076                            thus reserved and should throw a #GP */
2077                         return 1;
2078                 }
2079                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2080                             __func__, data);
2081                 break;
2082         case 0x200 ... 0x2ff:
2083                 return kvm_mtrr_set_msr(vcpu, msr, data);
2084         case MSR_IA32_APICBASE:
2085                 return kvm_set_apic_base(vcpu, msr_info);
2086         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2087                 return kvm_x2apic_msr_write(vcpu, msr, data);
2088         case MSR_IA32_TSCDEADLINE:
2089                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2090                 break;
2091         case MSR_IA32_TSC_ADJUST:
2092                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2093                         if (!msr_info->host_initiated) {
2094                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2095                                 adjust_tsc_offset_guest(vcpu, adj);
2096                         }
2097                         vcpu->arch.ia32_tsc_adjust_msr = data;
2098                 }
2099                 break;
2100         case MSR_IA32_MISC_ENABLE:
2101                 vcpu->arch.ia32_misc_enable_msr = data;
2102                 break;
2103         case MSR_IA32_SMBASE:
2104                 if (!msr_info->host_initiated)
2105                         return 1;
2106                 vcpu->arch.smbase = data;
2107                 break;
2108         case MSR_KVM_WALL_CLOCK_NEW:
2109         case MSR_KVM_WALL_CLOCK:
2110                 vcpu->kvm->arch.wall_clock = data;
2111                 kvm_write_wall_clock(vcpu->kvm, data);
2112                 break;
2113         case MSR_KVM_SYSTEM_TIME_NEW:
2114         case MSR_KVM_SYSTEM_TIME: {
2115                 u64 gpa_offset;
2116                 struct kvm_arch *ka = &vcpu->kvm->arch;
2117
2118                 kvmclock_reset(vcpu);
2119
2120                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2121                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2122
2123                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2124                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2125                                         &vcpu->requests);
2126
2127                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2128                 }
2129
2130                 vcpu->arch.time = data;
2131                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2132
2133                 /* we verify if the enable bit is set... */
2134                 if (!(data & 1))
2135                         break;
2136
2137                 gpa_offset = data & ~(PAGE_MASK | 1);
2138
2139                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2140                      &vcpu->arch.pv_time, data & ~1ULL,
2141                      sizeof(struct pvclock_vcpu_time_info)))
2142                         vcpu->arch.pv_time_enabled = false;
2143                 else
2144                         vcpu->arch.pv_time_enabled = true;
2145
2146                 break;
2147         }
2148         case MSR_KVM_ASYNC_PF_EN:
2149                 if (kvm_pv_enable_async_pf(vcpu, data))
2150                         return 1;
2151                 break;
2152         case MSR_KVM_STEAL_TIME:
2153
2154                 if (unlikely(!sched_info_on()))
2155                         return 1;
2156
2157                 if (data & KVM_STEAL_RESERVED_MASK)
2158                         return 1;
2159
2160                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2161                                                 data & KVM_STEAL_VALID_BITS,
2162                                                 sizeof(struct kvm_steal_time)))
2163                         return 1;
2164
2165                 vcpu->arch.st.msr_val = data;
2166
2167                 if (!(data & KVM_MSR_ENABLED))
2168                         break;
2169
2170                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2171
2172                 break;
2173         case MSR_KVM_PV_EOI_EN:
2174                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2175                         return 1;
2176                 break;
2177
2178         case MSR_IA32_MCG_CTL:
2179         case MSR_IA32_MCG_STATUS:
2180         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2181                 return set_msr_mce(vcpu, msr, data);
2182
2183         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2184         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2185                 pr = true; /* fall through */
2186         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2187         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2188                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2189                         return kvm_pmu_set_msr(vcpu, msr_info);
2190
2191                 if (pr || data != 0)
2192                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2193                                     "0x%x data 0x%llx\n", msr, data);
2194                 break;
2195         case MSR_K7_CLK_CTL:
2196                 /*
2197                  * Ignore all writes to this no longer documented MSR.
2198                  * Writes are only relevant for old K7 processors,
2199                  * all pre-dating SVM, but a recommended workaround from
2200                  * AMD for these chips. It is possible to specify the
2201                  * affected processor models on the command line, hence
2202                  * the need to ignore the workaround.
2203                  */
2204                 break;
2205         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2206         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2207         case HV_X64_MSR_CRASH_CTL:
2208         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2209                 return kvm_hv_set_msr_common(vcpu, msr, data,
2210                                              msr_info->host_initiated);
2211         case MSR_IA32_BBL_CR_CTL3:
2212                 /* Drop writes to this legacy MSR -- see rdmsr
2213                  * counterpart for further detail.
2214                  */
2215                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2216                 break;
2217         case MSR_AMD64_OSVW_ID_LENGTH:
2218                 if (!guest_cpuid_has_osvw(vcpu))
2219                         return 1;
2220                 vcpu->arch.osvw.length = data;
2221                 break;
2222         case MSR_AMD64_OSVW_STATUS:
2223                 if (!guest_cpuid_has_osvw(vcpu))
2224                         return 1;
2225                 vcpu->arch.osvw.status = data;
2226                 break;
2227         default:
2228                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2229                         return xen_hvm_config(vcpu, data);
2230                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2231                         return kvm_pmu_set_msr(vcpu, msr_info);
2232                 if (!ignore_msrs) {
2233                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2234                                     msr, data);
2235                         return 1;
2236                 } else {
2237                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2238                                     msr, data);
2239                         break;
2240                 }
2241         }
2242         return 0;
2243 }
2244 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2245
2246
2247 /*
2248  * Reads an msr value (of 'msr_index') into 'pdata'.
2249  * Returns 0 on success, non-0 otherwise.
2250  * Assumes vcpu_load() was already called.
2251  */
2252 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2253 {
2254         return kvm_x86_ops->get_msr(vcpu, msr);
2255 }
2256 EXPORT_SYMBOL_GPL(kvm_get_msr);
2257
2258 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2259 {
2260         u64 data;
2261         u64 mcg_cap = vcpu->arch.mcg_cap;
2262         unsigned bank_num = mcg_cap & 0xff;
2263
2264         switch (msr) {
2265         case MSR_IA32_P5_MC_ADDR:
2266         case MSR_IA32_P5_MC_TYPE:
2267                 data = 0;
2268                 break;
2269         case MSR_IA32_MCG_CAP:
2270                 data = vcpu->arch.mcg_cap;
2271                 break;
2272         case MSR_IA32_MCG_CTL:
2273                 if (!(mcg_cap & MCG_CTL_P))
2274                         return 1;
2275                 data = vcpu->arch.mcg_ctl;
2276                 break;
2277         case MSR_IA32_MCG_STATUS:
2278                 data = vcpu->arch.mcg_status;
2279                 break;
2280         default:
2281                 if (msr >= MSR_IA32_MC0_CTL &&
2282                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2283                         u32 offset = msr - MSR_IA32_MC0_CTL;
2284                         data = vcpu->arch.mce_banks[offset];
2285                         break;
2286                 }
2287                 return 1;
2288         }
2289         *pdata = data;
2290         return 0;
2291 }
2292
2293 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2294 {
2295         switch (msr_info->index) {
2296         case MSR_IA32_PLATFORM_ID:
2297         case MSR_IA32_EBL_CR_POWERON:
2298         case MSR_IA32_DEBUGCTLMSR:
2299         case MSR_IA32_LASTBRANCHFROMIP:
2300         case MSR_IA32_LASTBRANCHTOIP:
2301         case MSR_IA32_LASTINTFROMIP:
2302         case MSR_IA32_LASTINTTOIP:
2303         case MSR_K8_SYSCFG:
2304         case MSR_K8_TSEG_ADDR:
2305         case MSR_K8_TSEG_MASK:
2306         case MSR_K7_HWCR:
2307         case MSR_VM_HSAVE_PA:
2308         case MSR_K8_INT_PENDING_MSG:
2309         case MSR_AMD64_NB_CFG:
2310         case MSR_FAM10H_MMIO_CONF_BASE:
2311         case MSR_AMD64_BU_CFG2:
2312         case MSR_IA32_PERF_CTL:
2313                 msr_info->data = 0;
2314                 break;
2315         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2316         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2317         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2318         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2319                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2320                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2321                 msr_info->data = 0;
2322                 break;
2323         case MSR_IA32_UCODE_REV:
2324                 msr_info->data = 0x100000000ULL;
2325                 break;
2326         case MSR_MTRRcap:
2327         case 0x200 ... 0x2ff:
2328                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2329         case 0xcd: /* fsb frequency */
2330                 msr_info->data = 3;
2331                 break;
2332                 /*
2333                  * MSR_EBC_FREQUENCY_ID
2334                  * Conservative value valid for even the basic CPU models.
2335                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2336                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2337                  * and 266MHz for model 3, or 4. Set Core Clock
2338                  * Frequency to System Bus Frequency Ratio to 1 (bits
2339                  * 31:24) even though these are only valid for CPU
2340                  * models > 2, however guests may end up dividing or
2341                  * multiplying by zero otherwise.
2342                  */
2343         case MSR_EBC_FREQUENCY_ID:
2344                 msr_info->data = 1 << 24;
2345                 break;
2346         case MSR_IA32_APICBASE:
2347                 msr_info->data = kvm_get_apic_base(vcpu);
2348                 break;
2349         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2350                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2351                 break;
2352         case MSR_IA32_TSCDEADLINE:
2353                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2354                 break;
2355         case MSR_IA32_TSC_ADJUST:
2356                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2357                 break;
2358         case MSR_IA32_MISC_ENABLE:
2359                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2360                 break;
2361         case MSR_IA32_SMBASE:
2362                 if (!msr_info->host_initiated)
2363                         return 1;
2364                 msr_info->data = vcpu->arch.smbase;
2365                 break;
2366         case MSR_IA32_PERF_STATUS:
2367                 /* TSC increment by tick */
2368                 msr_info->data = 1000ULL;
2369                 /* CPU multiplier */
2370                 msr_info->data |= (((uint64_t)4ULL) << 40);
2371                 break;
2372         case MSR_EFER:
2373                 msr_info->data = vcpu->arch.efer;
2374                 break;
2375         case MSR_KVM_WALL_CLOCK:
2376         case MSR_KVM_WALL_CLOCK_NEW:
2377                 msr_info->data = vcpu->kvm->arch.wall_clock;
2378                 break;
2379         case MSR_KVM_SYSTEM_TIME:
2380         case MSR_KVM_SYSTEM_TIME_NEW:
2381                 msr_info->data = vcpu->arch.time;
2382                 break;
2383         case MSR_KVM_ASYNC_PF_EN:
2384                 msr_info->data = vcpu->arch.apf.msr_val;
2385                 break;
2386         case MSR_KVM_STEAL_TIME:
2387                 msr_info->data = vcpu->arch.st.msr_val;
2388                 break;
2389         case MSR_KVM_PV_EOI_EN:
2390                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2391                 break;
2392         case MSR_IA32_P5_MC_ADDR:
2393         case MSR_IA32_P5_MC_TYPE:
2394         case MSR_IA32_MCG_CAP:
2395         case MSR_IA32_MCG_CTL:
2396         case MSR_IA32_MCG_STATUS:
2397         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2398                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2399         case MSR_K7_CLK_CTL:
2400                 /*
2401                  * Provide expected ramp-up count for K7. All other
2402                  * are set to zero, indicating minimum divisors for
2403                  * every field.
2404                  *
2405                  * This prevents guest kernels on AMD host with CPU
2406                  * type 6, model 8 and higher from exploding due to
2407                  * the rdmsr failing.
2408                  */
2409                 msr_info->data = 0x20000000;
2410                 break;
2411         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2412         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2413         case HV_X64_MSR_CRASH_CTL:
2414         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2415                 return kvm_hv_get_msr_common(vcpu,
2416                                              msr_info->index, &msr_info->data);
2417                 break;
2418         case MSR_IA32_BBL_CR_CTL3:
2419                 /* This legacy MSR exists but isn't fully documented in current
2420                  * silicon.  It is however accessed by winxp in very narrow
2421                  * scenarios where it sets bit #19, itself documented as
2422                  * a "reserved" bit.  Best effort attempt to source coherent
2423                  * read data here should the balance of the register be
2424                  * interpreted by the guest:
2425                  *
2426                  * L2 cache control register 3: 64GB range, 256KB size,
2427                  * enabled, latency 0x1, configured
2428                  */
2429                 msr_info->data = 0xbe702111;
2430                 break;
2431         case MSR_AMD64_OSVW_ID_LENGTH:
2432                 if (!guest_cpuid_has_osvw(vcpu))
2433                         return 1;
2434                 msr_info->data = vcpu->arch.osvw.length;
2435                 break;
2436         case MSR_AMD64_OSVW_STATUS:
2437                 if (!guest_cpuid_has_osvw(vcpu))
2438                         return 1;
2439                 msr_info->data = vcpu->arch.osvw.status;
2440                 break;
2441         default:
2442                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2443                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2444                 if (!ignore_msrs) {
2445                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2446                         return 1;
2447                 } else {
2448                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2449                         msr_info->data = 0;
2450                 }
2451                 break;
2452         }
2453         return 0;
2454 }
2455 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2456
2457 /*
2458  * Read or write a bunch of msrs. All parameters are kernel addresses.
2459  *
2460  * @return number of msrs set successfully.
2461  */
2462 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2463                     struct kvm_msr_entry *entries,
2464                     int (*do_msr)(struct kvm_vcpu *vcpu,
2465                                   unsigned index, u64 *data))
2466 {
2467         int i, idx;
2468
2469         idx = srcu_read_lock(&vcpu->kvm->srcu);
2470         for (i = 0; i < msrs->nmsrs; ++i)
2471                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2472                         break;
2473         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2474
2475         return i;
2476 }
2477
2478 /*
2479  * Read or write a bunch of msrs. Parameters are user addresses.
2480  *
2481  * @return number of msrs set successfully.
2482  */
2483 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2484                   int (*do_msr)(struct kvm_vcpu *vcpu,
2485                                 unsigned index, u64 *data),
2486                   int writeback)
2487 {
2488         struct kvm_msrs msrs;
2489         struct kvm_msr_entry *entries;
2490         int r, n;
2491         unsigned size;
2492
2493         r = -EFAULT;
2494         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2495                 goto out;
2496
2497         r = -E2BIG;
2498         if (msrs.nmsrs >= MAX_IO_MSRS)
2499                 goto out;
2500
2501         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2502         entries = memdup_user(user_msrs->entries, size);
2503         if (IS_ERR(entries)) {
2504                 r = PTR_ERR(entries);
2505                 goto out;
2506         }
2507
2508         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2509         if (r < 0)
2510                 goto out_free;
2511
2512         r = -EFAULT;
2513         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2514                 goto out_free;
2515
2516         r = n;
2517
2518 out_free:
2519         kfree(entries);
2520 out:
2521         return r;
2522 }
2523
2524 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2525 {
2526         int r;
2527
2528         switch (ext) {
2529         case KVM_CAP_IRQCHIP:
2530         case KVM_CAP_HLT:
2531         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2532         case KVM_CAP_SET_TSS_ADDR:
2533         case KVM_CAP_EXT_CPUID:
2534         case KVM_CAP_EXT_EMUL_CPUID:
2535         case KVM_CAP_CLOCKSOURCE:
2536         case KVM_CAP_PIT:
2537         case KVM_CAP_NOP_IO_DELAY:
2538         case KVM_CAP_MP_STATE:
2539         case KVM_CAP_SYNC_MMU:
2540         case KVM_CAP_USER_NMI:
2541         case KVM_CAP_REINJECT_CONTROL:
2542         case KVM_CAP_IRQ_INJECT_STATUS:
2543         case KVM_CAP_IOEVENTFD:
2544         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2545         case KVM_CAP_PIT2:
2546         case KVM_CAP_PIT_STATE2:
2547         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2548         case KVM_CAP_XEN_HVM:
2549         case KVM_CAP_ADJUST_CLOCK:
2550         case KVM_CAP_VCPU_EVENTS:
2551         case KVM_CAP_HYPERV:
2552         case KVM_CAP_HYPERV_VAPIC:
2553         case KVM_CAP_HYPERV_SPIN:
2554         case KVM_CAP_HYPERV_SYNIC:
2555         case KVM_CAP_PCI_SEGMENT:
2556         case KVM_CAP_DEBUGREGS:
2557         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2558         case KVM_CAP_XSAVE:
2559         case KVM_CAP_ASYNC_PF:
2560         case KVM_CAP_GET_TSC_KHZ:
2561         case KVM_CAP_KVMCLOCK_CTRL:
2562         case KVM_CAP_READONLY_MEM:
2563         case KVM_CAP_HYPERV_TIME:
2564         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2565         case KVM_CAP_TSC_DEADLINE_TIMER:
2566         case KVM_CAP_ENABLE_CAP_VM:
2567         case KVM_CAP_DISABLE_QUIRKS:
2568         case KVM_CAP_SET_BOOT_CPU_ID:
2569         case KVM_CAP_SPLIT_IRQCHIP:
2570 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2571         case KVM_CAP_ASSIGN_DEV_IRQ:
2572         case KVM_CAP_PCI_2_3:
2573 #endif
2574                 r = 1;
2575                 break;
2576         case KVM_CAP_X86_SMM:
2577                 /* SMBASE is usually relocated above 1M on modern chipsets,
2578                  * and SMM handlers might indeed rely on 4G segment limits,
2579                  * so do not report SMM to be available if real mode is
2580                  * emulated via vm86 mode.  Still, do not go to great lengths
2581                  * to avoid userspace's usage of the feature, because it is a
2582                  * fringe case that is not enabled except via specific settings
2583                  * of the module parameters.
2584                  */
2585                 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2586                 break;
2587         case KVM_CAP_COALESCED_MMIO:
2588                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2589                 break;
2590         case KVM_CAP_VAPIC:
2591                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2592                 break;
2593         case KVM_CAP_NR_VCPUS:
2594                 r = KVM_SOFT_MAX_VCPUS;
2595                 break;
2596         case KVM_CAP_MAX_VCPUS:
2597                 r = KVM_MAX_VCPUS;
2598                 break;
2599         case KVM_CAP_NR_MEMSLOTS:
2600                 r = KVM_USER_MEM_SLOTS;
2601                 break;
2602         case KVM_CAP_PV_MMU:    /* obsolete */
2603                 r = 0;
2604                 break;
2605 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2606         case KVM_CAP_IOMMU:
2607                 r = iommu_present(&pci_bus_type);
2608                 break;
2609 #endif
2610         case KVM_CAP_MCE:
2611                 r = KVM_MAX_MCE_BANKS;
2612                 break;
2613         case KVM_CAP_XCRS:
2614                 r = boot_cpu_has(X86_FEATURE_XSAVE);
2615                 break;
2616         case KVM_CAP_TSC_CONTROL:
2617                 r = kvm_has_tsc_control;
2618                 break;
2619         default:
2620                 r = 0;
2621                 break;
2622         }
2623         return r;
2624
2625 }
2626
2627 long kvm_arch_dev_ioctl(struct file *filp,
2628                         unsigned int ioctl, unsigned long arg)
2629 {
2630         void __user *argp = (void __user *)arg;
2631         long r;
2632
2633         switch (ioctl) {
2634         case KVM_GET_MSR_INDEX_LIST: {
2635                 struct kvm_msr_list __user *user_msr_list = argp;
2636                 struct kvm_msr_list msr_list;
2637                 unsigned n;
2638
2639                 r = -EFAULT;
2640                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2641                         goto out;
2642                 n = msr_list.nmsrs;
2643                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2644                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2645                         goto out;
2646                 r = -E2BIG;
2647                 if (n < msr_list.nmsrs)
2648                         goto out;
2649                 r = -EFAULT;
2650                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2651                                  num_msrs_to_save * sizeof(u32)))
2652                         goto out;
2653                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2654                                  &emulated_msrs,
2655                                  num_emulated_msrs * sizeof(u32)))
2656                         goto out;
2657                 r = 0;
2658                 break;
2659         }
2660         case KVM_GET_SUPPORTED_CPUID:
2661         case KVM_GET_EMULATED_CPUID: {
2662                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2663                 struct kvm_cpuid2 cpuid;
2664
2665                 r = -EFAULT;
2666                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2667                         goto out;
2668
2669                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2670                                             ioctl);
2671                 if (r)
2672                         goto out;
2673
2674                 r = -EFAULT;
2675                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2676                         goto out;
2677                 r = 0;
2678                 break;
2679         }
2680         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2681                 u64 mce_cap;
2682
2683                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2684                 r = -EFAULT;
2685                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2686                         goto out;
2687                 r = 0;
2688                 break;
2689         }
2690         default:
2691                 r = -EINVAL;
2692         }
2693 out:
2694         return r;
2695 }
2696
2697 static void wbinvd_ipi(void *garbage)
2698 {
2699         wbinvd();
2700 }
2701
2702 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2703 {
2704         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2705 }
2706
2707 static inline void kvm_migrate_timers(struct kvm_vcpu *vcpu)
2708 {
2709         set_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests);
2710 }
2711
2712 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2713 {
2714         /* Address WBINVD may be executed by guest */
2715         if (need_emulate_wbinvd(vcpu)) {
2716                 if (kvm_x86_ops->has_wbinvd_exit())
2717                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2718                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2719                         smp_call_function_single(vcpu->cpu,
2720                                         wbinvd_ipi, NULL, 1);
2721         }
2722
2723         kvm_x86_ops->vcpu_load(vcpu, cpu);
2724
2725         /* Apply any externally detected TSC adjustments (due to suspend) */
2726         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2727                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2728                 vcpu->arch.tsc_offset_adjustment = 0;
2729                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2730         }
2731
2732         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2733                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2734                                 rdtsc() - vcpu->arch.last_host_tsc;
2735                 if (tsc_delta < 0)
2736                         mark_tsc_unstable("KVM discovered backwards TSC");
2737                 if (check_tsc_unstable()) {
2738                         u64 offset = kvm_compute_tsc_offset(vcpu,
2739                                                 vcpu->arch.last_guest_tsc);
2740                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2741                         vcpu->arch.tsc_catchup = 1;
2742                 }
2743                 /*
2744                  * On a host with synchronized TSC, there is no need to update
2745                  * kvmclock on vcpu->cpu migration
2746                  */
2747                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2748                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2749                 if (vcpu->cpu != cpu)
2750                         kvm_migrate_timers(vcpu);
2751                 vcpu->cpu = cpu;
2752         }
2753
2754         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2755 }
2756
2757 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2758 {
2759         kvm_x86_ops->vcpu_put(vcpu);
2760         kvm_put_guest_fpu(vcpu);
2761         vcpu->arch.last_host_tsc = rdtsc();
2762 }
2763
2764 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2765                                     struct kvm_lapic_state *s)
2766 {
2767         if (vcpu->arch.apicv_active)
2768                 kvm_x86_ops->sync_pir_to_irr(vcpu);
2769
2770         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2771
2772         return 0;
2773 }
2774
2775 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2776                                     struct kvm_lapic_state *s)
2777 {
2778         kvm_apic_post_state_restore(vcpu, s);
2779         update_cr8_intercept(vcpu);
2780
2781         return 0;
2782 }
2783
2784 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2785 {
2786         return (!lapic_in_kernel(vcpu) ||
2787                 kvm_apic_accept_pic_intr(vcpu));
2788 }
2789
2790 /*
2791  * if userspace requested an interrupt window, check that the
2792  * interrupt window is open.
2793  *
2794  * No need to exit to userspace if we already have an interrupt queued.
2795  */
2796 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2797 {
2798         return kvm_arch_interrupt_allowed(vcpu) &&
2799                 !kvm_cpu_has_interrupt(vcpu) &&
2800                 !kvm_event_needs_reinjection(vcpu) &&
2801                 kvm_cpu_accept_dm_intr(vcpu);
2802 }
2803
2804 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2805                                     struct kvm_interrupt *irq)
2806 {
2807         if (irq->irq >= KVM_NR_INTERRUPTS)
2808                 return -EINVAL;
2809
2810         if (!irqchip_in_kernel(vcpu->kvm)) {
2811                 kvm_queue_interrupt(vcpu, irq->irq, false);
2812                 kvm_make_request(KVM_REQ_EVENT, vcpu);
2813                 return 0;
2814         }
2815
2816         /*
2817          * With in-kernel LAPIC, we only use this to inject EXTINT, so
2818          * fail for in-kernel 8259.
2819          */
2820         if (pic_in_kernel(vcpu->kvm))
2821                 return -ENXIO;
2822
2823         if (vcpu->arch.pending_external_vector != -1)
2824                 return -EEXIST;
2825
2826         vcpu->arch.pending_external_vector = irq->irq;
2827         kvm_make_request(KVM_REQ_EVENT, vcpu);
2828         return 0;
2829 }
2830
2831 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2832 {
2833         kvm_inject_nmi(vcpu);
2834
2835         return 0;
2836 }
2837
2838 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2839 {
2840         kvm_make_request(KVM_REQ_SMI, vcpu);
2841
2842         return 0;
2843 }
2844
2845 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2846                                            struct kvm_tpr_access_ctl *tac)
2847 {
2848         if (tac->flags)
2849                 return -EINVAL;
2850         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2851         return 0;
2852 }
2853
2854 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2855                                         u64 mcg_cap)
2856 {
2857         int r;
2858         unsigned bank_num = mcg_cap & 0xff, bank;
2859
2860         r = -EINVAL;
2861         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2862                 goto out;
2863         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2864                 goto out;
2865         r = 0;
2866         vcpu->arch.mcg_cap = mcg_cap;
2867         /* Init IA32_MCG_CTL to all 1s */
2868         if (mcg_cap & MCG_CTL_P)
2869                 vcpu->arch.mcg_ctl = ~(u64)0;
2870         /* Init IA32_MCi_CTL to all 1s */
2871         for (bank = 0; bank < bank_num; bank++)
2872                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2873 out:
2874         return r;
2875 }
2876
2877 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2878                                       struct kvm_x86_mce *mce)
2879 {
2880         u64 mcg_cap = vcpu->arch.mcg_cap;
2881         unsigned bank_num = mcg_cap & 0xff;
2882         u64 *banks = vcpu->arch.mce_banks;
2883
2884         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2885                 return -EINVAL;
2886         /*
2887          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2888          * reporting is disabled
2889          */
2890         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2891             vcpu->arch.mcg_ctl != ~(u64)0)
2892                 return 0;
2893         banks += 4 * mce->bank;
2894         /*
2895          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2896          * reporting is disabled for the bank
2897          */
2898         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2899                 return 0;
2900         if (mce->status & MCI_STATUS_UC) {
2901                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2902                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2903                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2904                         return 0;
2905                 }
2906                 if (banks[1] & MCI_STATUS_VAL)
2907                         mce->status |= MCI_STATUS_OVER;
2908                 banks[2] = mce->addr;
2909                 banks[3] = mce->misc;
2910                 vcpu->arch.mcg_status = mce->mcg_status;
2911                 banks[1] = mce->status;
2912                 kvm_queue_exception(vcpu, MC_VECTOR);
2913         } else if (!(banks[1] & MCI_STATUS_VAL)
2914                    || !(banks[1] & MCI_STATUS_UC)) {
2915                 if (banks[1] & MCI_STATUS_VAL)
2916                         mce->status |= MCI_STATUS_OVER;
2917                 banks[2] = mce->addr;
2918                 banks[3] = mce->misc;
2919                 banks[1] = mce->status;
2920         } else
2921                 banks[1] |= MCI_STATUS_OVER;
2922         return 0;
2923 }
2924
2925 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2926                                                struct kvm_vcpu_events *events)
2927 {
2928         process_nmi(vcpu);
2929         events->exception.injected =
2930                 vcpu->arch.exception.pending &&
2931                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2932         events->exception.nr = vcpu->arch.exception.nr;
2933         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2934         events->exception.pad = 0;
2935         events->exception.error_code = vcpu->arch.exception.error_code;
2936
2937         events->interrupt.injected =
2938                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2939         events->interrupt.nr = vcpu->arch.interrupt.nr;
2940         events->interrupt.soft = 0;
2941         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
2942
2943         events->nmi.injected = vcpu->arch.nmi_injected;
2944         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2945         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2946         events->nmi.pad = 0;
2947
2948         events->sipi_vector = 0; /* never valid when reporting to user space */
2949
2950         events->smi.smm = is_smm(vcpu);
2951         events->smi.pending = vcpu->arch.smi_pending;
2952         events->smi.smm_inside_nmi =
2953                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
2954         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
2955
2956         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2957                          | KVM_VCPUEVENT_VALID_SHADOW
2958                          | KVM_VCPUEVENT_VALID_SMM);
2959         memset(&events->reserved, 0, sizeof(events->reserved));
2960 }
2961
2962 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2963                                               struct kvm_vcpu_events *events)
2964 {
2965         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2966                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2967                               | KVM_VCPUEVENT_VALID_SHADOW
2968                               | KVM_VCPUEVENT_VALID_SMM))
2969                 return -EINVAL;
2970
2971         if (events->exception.injected &&
2972             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
2973                 return -EINVAL;
2974
2975         process_nmi(vcpu);
2976         vcpu->arch.exception.pending = events->exception.injected;
2977         vcpu->arch.exception.nr = events->exception.nr;
2978         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2979         vcpu->arch.exception.error_code = events->exception.error_code;
2980
2981         vcpu->arch.interrupt.pending = events->interrupt.injected;
2982         vcpu->arch.interrupt.nr = events->interrupt.nr;
2983         vcpu->arch.interrupt.soft = events->interrupt.soft;
2984         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2985                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2986                                                   events->interrupt.shadow);
2987
2988         vcpu->arch.nmi_injected = events->nmi.injected;
2989         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2990                 vcpu->arch.nmi_pending = events->nmi.pending;
2991         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2992
2993         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2994             lapic_in_kernel(vcpu))
2995                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
2996
2997         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
2998                 if (events->smi.smm)
2999                         vcpu->arch.hflags |= HF_SMM_MASK;
3000                 else
3001                         vcpu->arch.hflags &= ~HF_SMM_MASK;
3002                 vcpu->arch.smi_pending = events->smi.pending;
3003                 if (events->smi.smm_inside_nmi)
3004                         vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3005                 else
3006                         vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3007                 if (lapic_in_kernel(vcpu)) {
3008                         if (events->smi.latched_init)
3009                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3010                         else
3011                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3012                 }
3013         }
3014
3015         kvm_make_request(KVM_REQ_EVENT, vcpu);
3016
3017         return 0;
3018 }
3019
3020 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3021                                              struct kvm_debugregs *dbgregs)
3022 {
3023         unsigned long val;
3024
3025         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3026         kvm_get_dr(vcpu, 6, &val);
3027         dbgregs->dr6 = val;
3028         dbgregs->dr7 = vcpu->arch.dr7;
3029         dbgregs->flags = 0;
3030         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3031 }
3032
3033 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3034                                             struct kvm_debugregs *dbgregs)
3035 {
3036         if (dbgregs->flags)
3037                 return -EINVAL;
3038
3039         if (dbgregs->dr6 & ~0xffffffffull)
3040                 return -EINVAL;
3041         if (dbgregs->dr7 & ~0xffffffffull)
3042                 return -EINVAL;
3043
3044         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3045         kvm_update_dr0123(vcpu);
3046         vcpu->arch.dr6 = dbgregs->dr6;
3047         kvm_update_dr6(vcpu);
3048         vcpu->arch.dr7 = dbgregs->dr7;
3049         kvm_update_dr7(vcpu);
3050
3051         return 0;
3052 }
3053
3054 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3055
3056 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3057 {
3058         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3059         u64 xstate_bv = xsave->header.xfeatures;
3060         u64 valid;
3061
3062         /*
3063          * Copy legacy XSAVE area, to avoid complications with CPUID
3064          * leaves 0 and 1 in the loop below.
3065          */
3066         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3067
3068         /* Set XSTATE_BV */
3069         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3070
3071         /*
3072          * Copy each region from the possibly compacted offset to the
3073          * non-compacted offset.
3074          */
3075         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3076         while (valid) {
3077                 u64 feature = valid & -valid;
3078                 int index = fls64(feature) - 1;
3079                 void *src = get_xsave_addr(xsave, feature);
3080
3081                 if (src) {
3082                         u32 size, offset, ecx, edx;
3083                         cpuid_count(XSTATE_CPUID, index,
3084                                     &size, &offset, &ecx, &edx);
3085                         memcpy(dest + offset, src, size);
3086                 }
3087
3088                 valid -= feature;
3089         }
3090 }
3091
3092 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3093 {
3094         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3095         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3096         u64 valid;
3097
3098         /*
3099          * Copy legacy XSAVE area, to avoid complications with CPUID
3100          * leaves 0 and 1 in the loop below.
3101          */
3102         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3103
3104         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3105         xsave->header.xfeatures = xstate_bv;
3106         if (boot_cpu_has(X86_FEATURE_XSAVES))
3107                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3108
3109         /*
3110          * Copy each region from the non-compacted offset to the
3111          * possibly compacted offset.
3112          */
3113         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3114         while (valid) {
3115                 u64 feature = valid & -valid;
3116                 int index = fls64(feature) - 1;
3117                 void *dest = get_xsave_addr(xsave, feature);
3118
3119                 if (dest) {
3120                         u32 size, offset, ecx, edx;
3121                         cpuid_count(XSTATE_CPUID, index,
3122                                     &size, &offset, &ecx, &edx);
3123                         memcpy(dest, src + offset, size);
3124                 }
3125
3126                 valid -= feature;
3127         }
3128 }
3129
3130 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3131                                          struct kvm_xsave *guest_xsave)
3132 {
3133         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3134                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3135                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3136         } else {
3137                 memcpy(guest_xsave->region,
3138                         &vcpu->arch.guest_fpu.state.fxsave,
3139                         sizeof(struct fxregs_state));
3140                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3141                         XFEATURE_MASK_FPSSE;
3142         }
3143 }
3144
3145 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3146                                         struct kvm_xsave *guest_xsave)
3147 {
3148         u64 xstate_bv =
3149                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3150
3151         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3152                 /*
3153                  * Here we allow setting states that are not present in
3154                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3155                  * with old userspace.
3156                  */
3157                 if (xstate_bv & ~kvm_supported_xcr0())
3158                         return -EINVAL;
3159                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3160         } else {
3161                 if (xstate_bv & ~XFEATURE_MASK_FPSSE)
3162                         return -EINVAL;
3163                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3164                         guest_xsave->region, sizeof(struct fxregs_state));
3165         }
3166         return 0;
3167 }
3168
3169 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3170                                         struct kvm_xcrs *guest_xcrs)
3171 {
3172         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3173                 guest_xcrs->nr_xcrs = 0;
3174                 return;
3175         }
3176
3177         guest_xcrs->nr_xcrs = 1;
3178         guest_xcrs->flags = 0;
3179         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3180         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3181 }
3182
3183 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3184                                        struct kvm_xcrs *guest_xcrs)
3185 {
3186         int i, r = 0;
3187
3188         if (!boot_cpu_has(X86_FEATURE_XSAVE))
3189                 return -EINVAL;
3190
3191         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3192                 return -EINVAL;
3193
3194         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3195                 /* Only support XCR0 currently */
3196                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3197                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3198                                 guest_xcrs->xcrs[i].value);
3199                         break;
3200                 }
3201         if (r)
3202                 r = -EINVAL;
3203         return r;
3204 }
3205
3206 /*
3207  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3208  * stopped by the hypervisor.  This function will be called from the host only.
3209  * EINVAL is returned when the host attempts to set the flag for a guest that
3210  * does not support pv clocks.
3211  */
3212 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3213 {
3214         if (!vcpu->arch.pv_time_enabled)
3215                 return -EINVAL;
3216         vcpu->arch.pvclock_set_guest_stopped_request = true;
3217         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3218         return 0;
3219 }
3220
3221 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3222                                      struct kvm_enable_cap *cap)
3223 {
3224         if (cap->flags)
3225                 return -EINVAL;
3226
3227         switch (cap->cap) {
3228         case KVM_CAP_HYPERV_SYNIC:
3229                 return kvm_hv_activate_synic(vcpu);
3230         default:
3231                 return -EINVAL;
3232         }
3233 }
3234
3235 long kvm_arch_vcpu_ioctl(struct file *filp,
3236                          unsigned int ioctl, unsigned long arg)
3237 {
3238         struct kvm_vcpu *vcpu = filp->private_data;
3239         void __user *argp = (void __user *)arg;
3240         int r;
3241         union {
3242                 struct kvm_lapic_state *lapic;
3243                 struct kvm_xsave *xsave;
3244                 struct kvm_xcrs *xcrs;
3245                 void *buffer;
3246         } u;
3247
3248         u.buffer = NULL;
3249         switch (ioctl) {
3250         case KVM_GET_LAPIC: {
3251                 r = -EINVAL;
3252                 if (!lapic_in_kernel(vcpu))
3253                         goto out;
3254                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3255
3256                 r = -ENOMEM;
3257                 if (!u.lapic)
3258                         goto out;
3259                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3260                 if (r)
3261                         goto out;
3262                 r = -EFAULT;
3263                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3264                         goto out;
3265                 r = 0;
3266                 break;
3267         }
3268         case KVM_SET_LAPIC: {
3269                 r = -EINVAL;
3270                 if (!lapic_in_kernel(vcpu))
3271                         goto out;
3272                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3273                 if (IS_ERR(u.lapic))
3274                         return PTR_ERR(u.lapic);
3275
3276                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3277                 break;
3278         }
3279         case KVM_INTERRUPT: {
3280                 struct kvm_interrupt irq;
3281
3282                 r = -EFAULT;
3283                 if (copy_from_user(&irq, argp, sizeof irq))
3284                         goto out;
3285                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3286                 break;
3287         }
3288         case KVM_NMI: {
3289                 r = kvm_vcpu_ioctl_nmi(vcpu);
3290                 break;
3291         }
3292         case KVM_SMI: {
3293                 r = kvm_vcpu_ioctl_smi(vcpu);
3294                 break;
3295         }
3296         case KVM_SET_CPUID: {
3297                 struct kvm_cpuid __user *cpuid_arg = argp;
3298                 struct kvm_cpuid cpuid;
3299
3300                 r = -EFAULT;
3301                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3302                         goto out;
3303                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3304                 break;
3305         }
3306         case KVM_SET_CPUID2: {
3307                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3308                 struct kvm_cpuid2 cpuid;
3309
3310                 r = -EFAULT;
3311                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3312                         goto out;
3313                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3314                                               cpuid_arg->entries);
3315                 break;
3316         }
3317         case KVM_GET_CPUID2: {
3318                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3319                 struct kvm_cpuid2 cpuid;
3320
3321                 r = -EFAULT;
3322                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3323                         goto out;
3324                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3325                                               cpuid_arg->entries);
3326                 if (r)
3327                         goto out;
3328                 r = -EFAULT;
3329                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3330                         goto out;
3331                 r = 0;
3332                 break;
3333         }
3334         case KVM_GET_MSRS:
3335                 r = msr_io(vcpu, argp, do_get_msr, 1);
3336                 break;
3337         case KVM_SET_MSRS:
3338                 r = msr_io(vcpu, argp, do_set_msr, 0);
3339                 break;
3340         case KVM_TPR_ACCESS_REPORTING: {
3341                 struct kvm_tpr_access_ctl tac;
3342
3343                 r = -EFAULT;
3344                 if (copy_from_user(&tac, argp, sizeof tac))
3345                         goto out;
3346                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3347                 if (r)
3348                         goto out;
3349                 r = -EFAULT;
3350                 if (copy_to_user(argp, &tac, sizeof tac))
3351                         goto out;
3352                 r = 0;
3353                 break;
3354         };
3355         case KVM_SET_VAPIC_ADDR: {
3356                 struct kvm_vapic_addr va;
3357
3358                 r = -EINVAL;
3359                 if (!lapic_in_kernel(vcpu))
3360                         goto out;
3361                 r = -EFAULT;
3362                 if (copy_from_user(&va, argp, sizeof va))
3363                         goto out;
3364                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3365                 break;
3366         }
3367         case KVM_X86_SETUP_MCE: {
3368                 u64 mcg_cap;
3369
3370                 r = -EFAULT;
3371                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3372                         goto out;
3373                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3374                 break;
3375         }
3376         case KVM_X86_SET_MCE: {
3377                 struct kvm_x86_mce mce;
3378
3379                 r = -EFAULT;
3380                 if (copy_from_user(&mce, argp, sizeof mce))
3381                         goto out;
3382                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3383                 break;
3384         }
3385         case KVM_GET_VCPU_EVENTS: {
3386                 struct kvm_vcpu_events events;
3387
3388                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3389
3390                 r = -EFAULT;
3391                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3392                         break;
3393                 r = 0;
3394                 break;
3395         }
3396         case KVM_SET_VCPU_EVENTS: {
3397                 struct kvm_vcpu_events events;
3398
3399                 r = -EFAULT;
3400                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3401                         break;
3402
3403                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3404                 break;
3405         }
3406         case KVM_GET_DEBUGREGS: {
3407                 struct kvm_debugregs dbgregs;
3408
3409                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3410
3411                 r = -EFAULT;
3412                 if (copy_to_user(argp, &dbgregs,
3413                                  sizeof(struct kvm_debugregs)))
3414                         break;
3415                 r = 0;
3416                 break;
3417         }
3418         case KVM_SET_DEBUGREGS: {
3419                 struct kvm_debugregs dbgregs;
3420
3421                 r = -EFAULT;
3422                 if (copy_from_user(&dbgregs, argp,
3423                                    sizeof(struct kvm_debugregs)))
3424                         break;
3425
3426                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3427                 break;
3428         }
3429         case KVM_GET_XSAVE: {
3430                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3431                 r = -ENOMEM;
3432                 if (!u.xsave)
3433                         break;
3434
3435                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3436
3437                 r = -EFAULT;
3438                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3439                         break;
3440                 r = 0;
3441                 break;
3442         }
3443         case KVM_SET_XSAVE: {
3444                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3445                 if (IS_ERR(u.xsave))
3446                         return PTR_ERR(u.xsave);
3447
3448                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3449                 break;
3450         }
3451         case KVM_GET_XCRS: {
3452                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3453                 r = -ENOMEM;
3454                 if (!u.xcrs)
3455                         break;
3456
3457                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3458
3459                 r = -EFAULT;
3460                 if (copy_to_user(argp, u.xcrs,
3461                                  sizeof(struct kvm_xcrs)))
3462                         break;
3463                 r = 0;
3464                 break;
3465         }
3466         case KVM_SET_XCRS: {
3467                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3468                 if (IS_ERR(u.xcrs))
3469                         return PTR_ERR(u.xcrs);
3470
3471                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3472                 break;
3473         }
3474         case KVM_SET_TSC_KHZ: {
3475                 u32 user_tsc_khz;
3476
3477                 r = -EINVAL;
3478                 user_tsc_khz = (u32)arg;
3479
3480                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3481                         goto out;
3482
3483                 if (user_tsc_khz == 0)
3484                         user_tsc_khz = tsc_khz;
3485
3486                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3487                         r = 0;
3488
3489                 goto out;
3490         }
3491         case KVM_GET_TSC_KHZ: {
3492                 r = vcpu->arch.virtual_tsc_khz;
3493                 goto out;
3494         }
3495         case KVM_KVMCLOCK_CTRL: {
3496                 r = kvm_set_guest_paused(vcpu);
3497                 goto out;
3498         }
3499         case KVM_ENABLE_CAP: {
3500                 struct kvm_enable_cap cap;
3501
3502                 r = -EFAULT;
3503                 if (copy_from_user(&cap, argp, sizeof(cap)))
3504                         goto out;
3505                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3506                 break;
3507         }
3508         default:
3509                 r = -EINVAL;
3510         }
3511 out:
3512         kfree(u.buffer);
3513         return r;
3514 }
3515
3516 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3517 {
3518         return VM_FAULT_SIGBUS;
3519 }
3520
3521 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3522 {
3523         int ret;
3524
3525         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3526                 return -EINVAL;
3527         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3528         return ret;
3529 }
3530
3531 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3532                                               u64 ident_addr)
3533 {
3534         kvm->arch.ept_identity_map_addr = ident_addr;
3535         return 0;
3536 }
3537
3538 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3539                                           u32 kvm_nr_mmu_pages)
3540 {
3541         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3542                 return -EINVAL;
3543
3544         mutex_lock(&kvm->slots_lock);
3545
3546         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3547         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3548
3549         mutex_unlock(&kvm->slots_lock);
3550         return 0;
3551 }
3552
3553 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3554 {
3555         return kvm->arch.n_max_mmu_pages;
3556 }
3557
3558 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3559 {
3560         int r;
3561
3562         r = 0;
3563         switch (chip->chip_id) {
3564         case KVM_IRQCHIP_PIC_MASTER:
3565                 memcpy(&chip->chip.pic,
3566                         &pic_irqchip(kvm)->pics[0],
3567                         sizeof(struct kvm_pic_state));
3568                 break;
3569         case KVM_IRQCHIP_PIC_SLAVE:
3570                 memcpy(&chip->chip.pic,
3571                         &pic_irqchip(kvm)->pics[1],
3572                         sizeof(struct kvm_pic_state));
3573                 break;
3574         case KVM_IRQCHIP_IOAPIC:
3575                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3576                 break;
3577         default:
3578                 r = -EINVAL;
3579                 break;
3580         }
3581         return r;
3582 }
3583
3584 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3585 {
3586         int r;
3587
3588         r = 0;
3589         switch (chip->chip_id) {
3590         case KVM_IRQCHIP_PIC_MASTER:
3591                 spin_lock(&pic_irqchip(kvm)->lock);
3592                 memcpy(&pic_irqchip(kvm)->pics[0],
3593                         &chip->chip.pic,
3594                         sizeof(struct kvm_pic_state));
3595                 spin_unlock(&pic_irqchip(kvm)->lock);
3596                 break;
3597         case KVM_IRQCHIP_PIC_SLAVE:
3598                 spin_lock(&pic_irqchip(kvm)->lock);
3599                 memcpy(&pic_irqchip(kvm)->pics[1],
3600                         &chip->chip.pic,
3601                         sizeof(struct kvm_pic_state));
3602                 spin_unlock(&pic_irqchip(kvm)->lock);
3603                 break;
3604         case KVM_IRQCHIP_IOAPIC:
3605                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3606                 break;
3607         default:
3608                 r = -EINVAL;
3609                 break;
3610         }
3611         kvm_pic_update_irq(pic_irqchip(kvm));
3612         return r;
3613 }
3614
3615 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3616 {
3617         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3618
3619         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3620
3621         mutex_lock(&kps->lock);
3622         memcpy(ps, &kps->channels, sizeof(*ps));
3623         mutex_unlock(&kps->lock);
3624         return 0;
3625 }
3626
3627 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3628 {
3629         int i;
3630         struct kvm_pit *pit = kvm->arch.vpit;
3631
3632         mutex_lock(&pit->pit_state.lock);
3633         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3634         for (i = 0; i < 3; i++)
3635                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3636         mutex_unlock(&pit->pit_state.lock);
3637         return 0;
3638 }
3639
3640 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3641 {
3642         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3643         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3644                 sizeof(ps->channels));
3645         ps->flags = kvm->arch.vpit->pit_state.flags;
3646         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3647         memset(&ps->reserved, 0, sizeof(ps->reserved));
3648         return 0;
3649 }
3650
3651 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3652 {
3653         int start = 0;
3654         int i;
3655         u32 prev_legacy, cur_legacy;
3656         struct kvm_pit *pit = kvm->arch.vpit;
3657
3658         mutex_lock(&pit->pit_state.lock);
3659         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3660         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3661         if (!prev_legacy && cur_legacy)
3662                 start = 1;
3663         memcpy(&pit->pit_state.channels, &ps->channels,
3664                sizeof(pit->pit_state.channels));
3665         pit->pit_state.flags = ps->flags;
3666         for (i = 0; i < 3; i++)
3667                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3668                                    start && i == 0);
3669         mutex_unlock(&pit->pit_state.lock);
3670         return 0;
3671 }
3672
3673 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3674                                  struct kvm_reinject_control *control)
3675 {
3676         struct kvm_pit *pit = kvm->arch.vpit;
3677
3678         if (!pit)
3679                 return -ENXIO;
3680
3681         /* pit->pit_state.lock was overloaded to prevent userspace from getting
3682          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3683          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
3684          */
3685         mutex_lock(&pit->pit_state.lock);
3686         kvm_pit_set_reinject(pit, control->pit_reinject);
3687         mutex_unlock(&pit->pit_state.lock);
3688
3689         return 0;
3690 }
3691
3692 /**
3693  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3694  * @kvm: kvm instance
3695  * @log: slot id and address to which we copy the log
3696  *
3697  * Steps 1-4 below provide general overview of dirty page logging. See
3698  * kvm_get_dirty_log_protect() function description for additional details.
3699  *
3700  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3701  * always flush the TLB (step 4) even if previous step failed  and the dirty
3702  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3703  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3704  * writes will be marked dirty for next log read.
3705  *
3706  *   1. Take a snapshot of the bit and clear it if needed.
3707  *   2. Write protect the corresponding page.
3708  *   3. Copy the snapshot to the userspace.
3709  *   4. Flush TLB's if needed.
3710  */
3711 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3712 {
3713         bool is_dirty = false;
3714         int r;
3715
3716         mutex_lock(&kvm->slots_lock);
3717
3718         /*
3719          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3720          */
3721         if (kvm_x86_ops->flush_log_dirty)
3722                 kvm_x86_ops->flush_log_dirty(kvm);
3723
3724         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3725
3726         /*
3727          * All the TLBs can be flushed out of mmu lock, see the comments in
3728          * kvm_mmu_slot_remove_write_access().
3729          */
3730         lockdep_assert_held(&kvm->slots_lock);
3731         if (is_dirty)
3732                 kvm_flush_remote_tlbs(kvm);
3733
3734         mutex_unlock(&kvm->slots_lock);
3735         return r;
3736 }
3737
3738 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3739                         bool line_status)
3740 {
3741         if (!irqchip_in_kernel(kvm))
3742                 return -ENXIO;
3743
3744         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3745                                         irq_event->irq, irq_event->level,
3746                                         line_status);
3747         return 0;
3748 }
3749
3750 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3751                                    struct kvm_enable_cap *cap)
3752 {
3753         int r;
3754
3755         if (cap->flags)
3756                 return -EINVAL;
3757
3758         switch (cap->cap) {
3759         case KVM_CAP_DISABLE_QUIRKS:
3760                 kvm->arch.disabled_quirks = cap->args[0];
3761                 r = 0;
3762                 break;
3763         case KVM_CAP_SPLIT_IRQCHIP: {
3764                 mutex_lock(&kvm->lock);
3765                 r = -EINVAL;
3766                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3767                         goto split_irqchip_unlock;
3768                 r = -EEXIST;
3769                 if (irqchip_in_kernel(kvm))
3770                         goto split_irqchip_unlock;
3771                 if (atomic_read(&kvm->online_vcpus))
3772                         goto split_irqchip_unlock;
3773                 r = kvm_setup_empty_irq_routing(kvm);
3774                 if (r)
3775                         goto split_irqchip_unlock;
3776                 /* Pairs with irqchip_in_kernel. */
3777                 smp_wmb();
3778                 kvm->arch.irqchip_split = true;
3779                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3780                 r = 0;
3781 split_irqchip_unlock:
3782                 mutex_unlock(&kvm->lock);
3783                 break;
3784         }
3785         default:
3786                 r = -EINVAL;
3787                 break;
3788         }
3789         return r;
3790 }
3791
3792 long kvm_arch_vm_ioctl(struct file *filp,
3793                        unsigned int ioctl, unsigned long arg)
3794 {
3795         struct kvm *kvm = filp->private_data;
3796         void __user *argp = (void __user *)arg;
3797         int r = -ENOTTY;
3798         /*
3799          * This union makes it completely explicit to gcc-3.x
3800          * that these two variables' stack usage should be
3801          * combined, not added together.
3802          */
3803         union {
3804                 struct kvm_pit_state ps;
3805                 struct kvm_pit_state2 ps2;
3806                 struct kvm_pit_config pit_config;
3807         } u;
3808
3809         switch (ioctl) {
3810         case KVM_SET_TSS_ADDR:
3811                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3812                 break;
3813         case KVM_SET_IDENTITY_MAP_ADDR: {
3814                 u64 ident_addr;
3815
3816                 r = -EFAULT;
3817                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3818                         goto out;
3819                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3820                 break;
3821         }
3822         case KVM_SET_NR_MMU_PAGES:
3823                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3824                 break;
3825         case KVM_GET_NR_MMU_PAGES:
3826                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3827                 break;
3828         case KVM_CREATE_IRQCHIP: {
3829                 struct kvm_pic *vpic;
3830
3831                 mutex_lock(&kvm->lock);
3832                 r = -EEXIST;
3833                 if (kvm->arch.vpic)
3834                         goto create_irqchip_unlock;
3835                 r = -EINVAL;
3836                 if (atomic_read(&kvm->online_vcpus))
3837                         goto create_irqchip_unlock;
3838                 r = -ENOMEM;
3839                 vpic = kvm_create_pic(kvm);
3840                 if (vpic) {
3841                         r = kvm_ioapic_init(kvm);
3842                         if (r) {
3843                                 mutex_lock(&kvm->slots_lock);
3844                                 kvm_destroy_pic(vpic);
3845                                 mutex_unlock(&kvm->slots_lock);
3846                                 goto create_irqchip_unlock;
3847                         }
3848                 } else
3849                         goto create_irqchip_unlock;
3850                 r = kvm_setup_default_irq_routing(kvm);
3851                 if (r) {
3852                         mutex_lock(&kvm->slots_lock);
3853                         mutex_lock(&kvm->irq_lock);
3854                         kvm_ioapic_destroy(kvm);
3855                         kvm_destroy_pic(vpic);
3856                         mutex_unlock(&kvm->irq_lock);
3857                         mutex_unlock(&kvm->slots_lock);
3858                         goto create_irqchip_unlock;
3859                 }
3860                 /* Write kvm->irq_routing before kvm->arch.vpic.  */
3861                 smp_wmb();
3862                 kvm->arch.vpic = vpic;
3863         create_irqchip_unlock:
3864                 mutex_unlock(&kvm->lock);
3865                 break;
3866         }
3867         case KVM_CREATE_PIT:
3868                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3869                 goto create_pit;
3870         case KVM_CREATE_PIT2:
3871                 r = -EFAULT;
3872                 if (copy_from_user(&u.pit_config, argp,
3873                                    sizeof(struct kvm_pit_config)))
3874                         goto out;
3875         create_pit:
3876                 mutex_lock(&kvm->slots_lock);
3877                 r = -EEXIST;
3878                 if (kvm->arch.vpit)
3879                         goto create_pit_unlock;
3880                 r = -ENOMEM;
3881                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3882                 if (kvm->arch.vpit)
3883                         r = 0;
3884         create_pit_unlock:
3885                 mutex_unlock(&kvm->slots_lock);
3886                 break;
3887         case KVM_GET_IRQCHIP: {
3888                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3889                 struct kvm_irqchip *chip;
3890
3891                 chip = memdup_user(argp, sizeof(*chip));
3892                 if (IS_ERR(chip)) {
3893                         r = PTR_ERR(chip);
3894                         goto out;
3895                 }
3896
3897                 r = -ENXIO;
3898                 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3899                         goto get_irqchip_out;
3900                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3901                 if (r)
3902                         goto get_irqchip_out;
3903                 r = -EFAULT;
3904                 if (copy_to_user(argp, chip, sizeof *chip))
3905                         goto get_irqchip_out;
3906                 r = 0;
3907         get_irqchip_out:
3908                 kfree(chip);
3909                 break;
3910         }
3911         case KVM_SET_IRQCHIP: {
3912                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3913                 struct kvm_irqchip *chip;
3914
3915                 chip = memdup_user(argp, sizeof(*chip));
3916                 if (IS_ERR(chip)) {
3917                         r = PTR_ERR(chip);
3918                         goto out;
3919                 }
3920
3921                 r = -ENXIO;
3922                 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3923                         goto set_irqchip_out;
3924                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3925                 if (r)
3926                         goto set_irqchip_out;
3927                 r = 0;
3928         set_irqchip_out:
3929                 kfree(chip);
3930                 break;
3931         }
3932         case KVM_GET_PIT: {
3933                 r = -EFAULT;
3934                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3935                         goto out;
3936                 r = -ENXIO;
3937                 if (!kvm->arch.vpit)
3938                         goto out;
3939                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3940                 if (r)
3941                         goto out;
3942                 r = -EFAULT;
3943                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3944                         goto out;
3945                 r = 0;
3946                 break;
3947         }
3948         case KVM_SET_PIT: {
3949                 r = -EFAULT;
3950                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3951                         goto out;
3952                 r = -ENXIO;
3953                 if (!kvm->arch.vpit)
3954                         goto out;
3955                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3956                 break;
3957         }
3958         case KVM_GET_PIT2: {
3959                 r = -ENXIO;
3960                 if (!kvm->arch.vpit)
3961                         goto out;
3962                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3963                 if (r)
3964                         goto out;
3965                 r = -EFAULT;
3966                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3967                         goto out;
3968                 r = 0;
3969                 break;
3970         }
3971         case KVM_SET_PIT2: {
3972                 r = -EFAULT;
3973                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3974                         goto out;
3975                 r = -ENXIO;
3976                 if (!kvm->arch.vpit)
3977                         goto out;
3978                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3979                 break;
3980         }
3981         case KVM_REINJECT_CONTROL: {
3982                 struct kvm_reinject_control control;
3983                 r =  -EFAULT;
3984                 if (copy_from_user(&control, argp, sizeof(control)))
3985                         goto out;
3986                 r = kvm_vm_ioctl_reinject(kvm, &control);
3987                 break;
3988         }
3989         case KVM_SET_BOOT_CPU_ID:
3990                 r = 0;
3991                 mutex_lock(&kvm->lock);
3992                 if (atomic_read(&kvm->online_vcpus) != 0)
3993                         r = -EBUSY;
3994                 else
3995                         kvm->arch.bsp_vcpu_id = arg;
3996                 mutex_unlock(&kvm->lock);
3997                 break;
3998         case KVM_XEN_HVM_CONFIG: {
3999                 r = -EFAULT;
4000                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4001                                    sizeof(struct kvm_xen_hvm_config)))
4002                         goto out;
4003                 r = -EINVAL;
4004                 if (kvm->arch.xen_hvm_config.flags)
4005                         goto out;
4006                 r = 0;
4007                 break;
4008         }
4009         case KVM_SET_CLOCK: {
4010                 struct kvm_clock_data user_ns;
4011                 u64 now_ns;
4012                 s64 delta;
4013
4014                 r = -EFAULT;
4015                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4016                         goto out;
4017
4018                 r = -EINVAL;
4019                 if (user_ns.flags)
4020                         goto out;
4021
4022                 r = 0;
4023                 local_irq_disable();
4024                 now_ns = get_kernel_ns();
4025                 delta = user_ns.clock - now_ns;
4026                 local_irq_enable();
4027                 kvm->arch.kvmclock_offset = delta;
4028                 kvm_gen_update_masterclock(kvm);
4029                 break;
4030         }
4031         case KVM_GET_CLOCK: {
4032                 struct kvm_clock_data user_ns;
4033                 u64 now_ns;
4034
4035                 local_irq_disable();
4036                 now_ns = get_kernel_ns();
4037                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
4038                 local_irq_enable();
4039                 user_ns.flags = 0;
4040                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4041
4042                 r = -EFAULT;
4043                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4044                         goto out;
4045                 r = 0;
4046                 break;
4047         }
4048         case KVM_ENABLE_CAP: {
4049                 struct kvm_enable_cap cap;
4050
4051                 r = -EFAULT;
4052                 if (copy_from_user(&cap, argp, sizeof(cap)))
4053                         goto out;
4054                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4055                 break;
4056         }
4057         default:
4058                 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4059         }
4060 out:
4061         return r;
4062 }
4063
4064 static void kvm_init_msr_list(void)
4065 {
4066         u32 dummy[2];
4067         unsigned i, j;
4068
4069         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4070                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4071                         continue;
4072
4073                 /*
4074                  * Even MSRs that are valid in the host may not be exposed
4075                  * to the guests in some cases.
4076                  */
4077                 switch (msrs_to_save[i]) {
4078                 case MSR_IA32_BNDCFGS:
4079                         if (!kvm_x86_ops->mpx_supported())
4080                                 continue;
4081                         break;
4082                 case MSR_TSC_AUX:
4083                         if (!kvm_x86_ops->rdtscp_supported())
4084                                 continue;
4085                         break;
4086                 default:
4087                         break;
4088                 }
4089
4090                 if (j < i)
4091                         msrs_to_save[j] = msrs_to_save[i];
4092                 j++;
4093         }
4094         num_msrs_to_save = j;
4095
4096         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4097                 switch (emulated_msrs[i]) {
4098                 case MSR_IA32_SMBASE:
4099                         if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4100                                 continue;
4101                         break;
4102                 default:
4103                         break;
4104                 }
4105
4106                 if (j < i)
4107                         emulated_msrs[j] = emulated_msrs[i];
4108                 j++;
4109         }
4110         num_emulated_msrs = j;
4111 }
4112
4113 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4114                            const void *v)
4115 {
4116         int handled = 0;
4117         int n;
4118
4119         do {
4120                 n = min(len, 8);
4121                 if (!(lapic_in_kernel(vcpu) &&
4122                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4123                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4124                         break;
4125                 handled += n;
4126                 addr += n;
4127                 len -= n;
4128                 v += n;
4129         } while (len);
4130
4131         return handled;
4132 }
4133
4134 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4135 {
4136         int handled = 0;
4137         int n;
4138
4139         do {
4140                 n = min(len, 8);
4141                 if (!(lapic_in_kernel(vcpu) &&
4142                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4143                                          addr, n, v))
4144                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4145                         break;
4146                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4147                 handled += n;
4148                 addr += n;
4149                 len -= n;
4150                 v += n;
4151         } while (len);
4152
4153         return handled;
4154 }
4155
4156 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4157                         struct kvm_segment *var, int seg)
4158 {
4159         kvm_x86_ops->set_segment(vcpu, var, seg);
4160 }
4161
4162 void kvm_get_segment(struct kvm_vcpu *vcpu,
4163                      struct kvm_segment *var, int seg)
4164 {
4165         kvm_x86_ops->get_segment(vcpu, var, seg);
4166 }
4167
4168 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4169                            struct x86_exception *exception)
4170 {
4171         gpa_t t_gpa;
4172
4173         BUG_ON(!mmu_is_nested(vcpu));
4174
4175         /* NPT walks are always user-walks */
4176         access |= PFERR_USER_MASK;
4177         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4178
4179         return t_gpa;
4180 }
4181
4182 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4183                               struct x86_exception *exception)
4184 {
4185         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4186         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4187 }
4188
4189  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4190                                 struct x86_exception *exception)
4191 {
4192         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4193         access |= PFERR_FETCH_MASK;
4194         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4195 }
4196
4197 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4198                                struct x86_exception *exception)
4199 {
4200         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4201         access |= PFERR_WRITE_MASK;
4202         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4203 }
4204
4205 /* uses this to access any guest's mapped memory without checking CPL */
4206 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4207                                 struct x86_exception *exception)
4208 {
4209         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4210 }
4211
4212 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4213                                       struct kvm_vcpu *vcpu, u32 access,
4214                                       struct x86_exception *exception)
4215 {
4216         void *data = val;
4217         int r = X86EMUL_CONTINUE;
4218
4219         while (bytes) {
4220                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4221                                                             exception);
4222                 unsigned offset = addr & (PAGE_SIZE-1);
4223                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4224                 int ret;
4225
4226                 if (gpa == UNMAPPED_GVA)
4227                         return X86EMUL_PROPAGATE_FAULT;
4228                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4229                                                offset, toread);
4230                 if (ret < 0) {
4231                         r = X86EMUL_IO_NEEDED;
4232                         goto out;
4233                 }
4234
4235                 bytes -= toread;
4236                 data += toread;
4237                 addr += toread;
4238         }
4239 out:
4240         return r;
4241 }
4242
4243 /* used for instruction fetching */
4244 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4245                                 gva_t addr, void *val, unsigned int bytes,
4246                                 struct x86_exception *exception)
4247 {
4248         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4249         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4250         unsigned offset;
4251         int ret;
4252
4253         /* Inline kvm_read_guest_virt_helper for speed.  */
4254         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4255                                                     exception);
4256         if (unlikely(gpa == UNMAPPED_GVA))
4257                 return X86EMUL_PROPAGATE_FAULT;
4258
4259         offset = addr & (PAGE_SIZE-1);
4260         if (WARN_ON(offset + bytes > PAGE_SIZE))
4261                 bytes = (unsigned)PAGE_SIZE - offset;
4262         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4263                                        offset, bytes);
4264         if (unlikely(ret < 0))
4265                 return X86EMUL_IO_NEEDED;
4266
4267         return X86EMUL_CONTINUE;
4268 }
4269
4270 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4271                                gva_t addr, void *val, unsigned int bytes,
4272                                struct x86_exception *exception)
4273 {
4274         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4275         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4276
4277         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4278                                           exception);
4279 }
4280 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4281
4282 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4283                                       gva_t addr, void *val, unsigned int bytes,
4284                                       struct x86_exception *exception)
4285 {
4286         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4287         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4288 }
4289
4290 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4291                 unsigned long addr, void *val, unsigned int bytes)
4292 {
4293         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4294         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4295
4296         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4297 }
4298
4299 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4300                                        gva_t addr, void *val,
4301                                        unsigned int bytes,
4302                                        struct x86_exception *exception)
4303 {
4304         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4305         void *data = val;
4306         int r = X86EMUL_CONTINUE;
4307
4308         while (bytes) {
4309                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4310                                                              PFERR_WRITE_MASK,
4311                                                              exception);
4312                 unsigned offset = addr & (PAGE_SIZE-1);
4313                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4314                 int ret;
4315
4316                 if (gpa == UNMAPPED_GVA)
4317                         return X86EMUL_PROPAGATE_FAULT;
4318                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4319                 if (ret < 0) {
4320                         r = X86EMUL_IO_NEEDED;
4321                         goto out;
4322                 }
4323
4324                 bytes -= towrite;
4325                 data += towrite;
4326                 addr += towrite;
4327         }
4328 out:
4329         return r;
4330 }
4331 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4332
4333 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4334                                 gpa_t *gpa, struct x86_exception *exception,
4335                                 bool write)
4336 {
4337         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4338                 | (write ? PFERR_WRITE_MASK : 0);
4339
4340         /*
4341          * currently PKRU is only applied to ept enabled guest so
4342          * there is no pkey in EPT page table for L1 guest or EPT
4343          * shadow page table for L2 guest.
4344          */
4345         if (vcpu_match_mmio_gva(vcpu, gva)
4346             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4347                                  vcpu->arch.access, 0, access)) {
4348                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4349                                         (gva & (PAGE_SIZE - 1));
4350                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4351                 return 1;
4352         }
4353
4354         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4355
4356         if (*gpa == UNMAPPED_GVA)
4357                 return -1;
4358
4359         /* For APIC access vmexit */
4360         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4361                 return 1;
4362
4363         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4364                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4365                 return 1;
4366         }
4367
4368         return 0;
4369 }
4370
4371 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4372                         const void *val, int bytes)
4373 {
4374         int ret;
4375
4376         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4377         if (ret < 0)
4378                 return 0;
4379         kvm_page_track_write(vcpu, gpa, val, bytes);
4380         return 1;
4381 }
4382
4383 struct read_write_emulator_ops {
4384         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4385                                   int bytes);
4386         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4387                                   void *val, int bytes);
4388         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4389                                int bytes, void *val);
4390         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4391                                     void *val, int bytes);
4392         bool write;
4393 };
4394
4395 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4396 {
4397         if (vcpu->mmio_read_completed) {
4398                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4399                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4400                 vcpu->mmio_read_completed = 0;
4401                 return 1;
4402         }
4403
4404         return 0;
4405 }
4406
4407 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4408                         void *val, int bytes)
4409 {
4410         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4411 }
4412
4413 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4414                          void *val, int bytes)
4415 {
4416         return emulator_write_phys(vcpu, gpa, val, bytes);
4417 }
4418
4419 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4420 {
4421         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4422         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4423 }
4424
4425 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4426                           void *val, int bytes)
4427 {
4428         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4429         return X86EMUL_IO_NEEDED;
4430 }
4431
4432 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4433                            void *val, int bytes)
4434 {
4435         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4436
4437         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4438         return X86EMUL_CONTINUE;
4439 }
4440
4441 static const struct read_write_emulator_ops read_emultor = {
4442         .read_write_prepare = read_prepare,
4443         .read_write_emulate = read_emulate,
4444         .read_write_mmio = vcpu_mmio_read,
4445         .read_write_exit_mmio = read_exit_mmio,
4446 };
4447
4448 static const struct read_write_emulator_ops write_emultor = {
4449         .read_write_emulate = write_emulate,
4450         .read_write_mmio = write_mmio,
4451         .read_write_exit_mmio = write_exit_mmio,
4452         .write = true,
4453 };
4454
4455 static int emulator_read_write_onepage(unsigned long addr, void *val,
4456                                        unsigned int bytes,
4457                                        struct x86_exception *exception,
4458                                        struct kvm_vcpu *vcpu,
4459                                        const struct read_write_emulator_ops *ops)
4460 {
4461         gpa_t gpa;
4462         int handled, ret;
4463         bool write = ops->write;
4464         struct kvm_mmio_fragment *frag;
4465
4466         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4467
4468         if (ret < 0)
4469                 return X86EMUL_PROPAGATE_FAULT;
4470
4471         /* For APIC access vmexit */
4472         if (ret)
4473                 goto mmio;
4474
4475         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4476                 return X86EMUL_CONTINUE;
4477
4478 mmio:
4479         /*
4480          * Is this MMIO handled locally?
4481          */
4482         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4483         if (handled == bytes)
4484                 return X86EMUL_CONTINUE;
4485
4486         gpa += handled;
4487         bytes -= handled;
4488         val += handled;
4489
4490         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4491         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4492         frag->gpa = gpa;
4493         frag->data = val;
4494         frag->len = bytes;
4495         return X86EMUL_CONTINUE;
4496 }
4497
4498 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4499                         unsigned long addr,
4500                         void *val, unsigned int bytes,
4501                         struct x86_exception *exception,
4502                         const struct read_write_emulator_ops *ops)
4503 {
4504         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4505         gpa_t gpa;
4506         int rc;
4507
4508         if (ops->read_write_prepare &&
4509                   ops->read_write_prepare(vcpu, val, bytes))
4510                 return X86EMUL_CONTINUE;
4511
4512         vcpu->mmio_nr_fragments = 0;
4513
4514         /* Crossing a page boundary? */
4515         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4516                 int now;
4517
4518                 now = -addr & ~PAGE_MASK;
4519                 rc = emulator_read_write_onepage(addr, val, now, exception,
4520                                                  vcpu, ops);
4521
4522                 if (rc != X86EMUL_CONTINUE)
4523                         return rc;
4524                 addr += now;
4525                 if (ctxt->mode != X86EMUL_MODE_PROT64)
4526                         addr = (u32)addr;
4527                 val += now;
4528                 bytes -= now;
4529         }
4530
4531         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4532                                          vcpu, ops);
4533         if (rc != X86EMUL_CONTINUE)
4534                 return rc;
4535
4536         if (!vcpu->mmio_nr_fragments)
4537                 return rc;
4538
4539         gpa = vcpu->mmio_fragments[0].gpa;
4540
4541         vcpu->mmio_needed = 1;
4542         vcpu->mmio_cur_fragment = 0;
4543
4544         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4545         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4546         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4547         vcpu->run->mmio.phys_addr = gpa;
4548
4549         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4550 }
4551
4552 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4553                                   unsigned long addr,
4554                                   void *val,
4555                                   unsigned int bytes,
4556                                   struct x86_exception *exception)
4557 {
4558         return emulator_read_write(ctxt, addr, val, bytes,
4559                                    exception, &read_emultor);
4560 }
4561
4562 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4563                             unsigned long addr,
4564                             const void *val,
4565                             unsigned int bytes,
4566                             struct x86_exception *exception)
4567 {
4568         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4569                                    exception, &write_emultor);
4570 }
4571
4572 #define CMPXCHG_TYPE(t, ptr, old, new) \
4573         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4574
4575 #ifdef CONFIG_X86_64
4576 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4577 #else
4578 #  define CMPXCHG64(ptr, old, new) \
4579         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4580 #endif
4581
4582 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4583                                      unsigned long addr,
4584                                      const void *old,
4585                                      const void *new,
4586                                      unsigned int bytes,
4587                                      struct x86_exception *exception)
4588 {
4589         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4590         gpa_t gpa;
4591         struct page *page;
4592         char *kaddr;
4593         bool exchanged;
4594
4595         /* guests cmpxchg8b have to be emulated atomically */
4596         if (bytes > 8 || (bytes & (bytes - 1)))
4597                 goto emul_write;
4598
4599         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4600
4601         if (gpa == UNMAPPED_GVA ||
4602             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4603                 goto emul_write;
4604
4605         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4606                 goto emul_write;
4607
4608         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4609         if (is_error_page(page))
4610                 goto emul_write;
4611
4612         kaddr = kmap_atomic(page);
4613         kaddr += offset_in_page(gpa);
4614         switch (bytes) {
4615         case 1:
4616                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4617                 break;
4618         case 2:
4619                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4620                 break;
4621         case 4:
4622                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4623                 break;
4624         case 8:
4625                 exchanged = CMPXCHG64(kaddr, old, new);
4626                 break;
4627         default:
4628                 BUG();
4629         }
4630         kunmap_atomic(kaddr);
4631         kvm_release_page_dirty(page);
4632
4633         if (!exchanged)
4634                 return X86EMUL_CMPXCHG_FAILED;
4635
4636         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4637         kvm_page_track_write(vcpu, gpa, new, bytes);
4638
4639         return X86EMUL_CONTINUE;
4640
4641 emul_write:
4642         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4643
4644         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4645 }
4646
4647 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4648 {
4649         /* TODO: String I/O for in kernel device */
4650         int r;
4651
4652         if (vcpu->arch.pio.in)
4653                 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4654                                     vcpu->arch.pio.size, pd);
4655         else
4656                 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4657                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4658                                      pd);
4659         return r;
4660 }
4661
4662 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4663                                unsigned short port, void *val,
4664                                unsigned int count, bool in)
4665 {
4666         vcpu->arch.pio.port = port;
4667         vcpu->arch.pio.in = in;
4668         vcpu->arch.pio.count  = count;
4669         vcpu->arch.pio.size = size;
4670
4671         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4672                 vcpu->arch.pio.count = 0;
4673                 return 1;
4674         }
4675
4676         vcpu->run->exit_reason = KVM_EXIT_IO;
4677         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4678         vcpu->run->io.size = size;
4679         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4680         vcpu->run->io.count = count;
4681         vcpu->run->io.port = port;
4682
4683         return 0;
4684 }
4685
4686 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4687                                     int size, unsigned short port, void *val,
4688                                     unsigned int count)
4689 {
4690         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4691         int ret;
4692
4693         if (vcpu->arch.pio.count)
4694                 goto data_avail;
4695
4696         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4697         if (ret) {
4698 data_avail:
4699                 memcpy(val, vcpu->arch.pio_data, size * count);
4700                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4701                 vcpu->arch.pio.count = 0;
4702                 return 1;
4703         }
4704
4705         return 0;
4706 }
4707
4708 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4709                                      int size, unsigned short port,
4710                                      const void *val, unsigned int count)
4711 {
4712         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4713
4714         memcpy(vcpu->arch.pio_data, val, size * count);
4715         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4716         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4717 }
4718
4719 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4720 {
4721         return kvm_x86_ops->get_segment_base(vcpu, seg);
4722 }
4723
4724 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4725 {
4726         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4727 }
4728
4729 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4730 {
4731         if (!need_emulate_wbinvd(vcpu))
4732                 return X86EMUL_CONTINUE;
4733
4734         if (kvm_x86_ops->has_wbinvd_exit()) {
4735                 int cpu = get_cpu();
4736
4737                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4738                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4739                                 wbinvd_ipi, NULL, 1);
4740                 put_cpu();
4741                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4742         } else
4743                 wbinvd();
4744         return X86EMUL_CONTINUE;
4745 }
4746
4747 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4748 {
4749         kvm_x86_ops->skip_emulated_instruction(vcpu);
4750         return kvm_emulate_wbinvd_noskip(vcpu);
4751 }
4752 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4753
4754
4755
4756 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4757 {
4758         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4759 }
4760
4761 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4762                            unsigned long *dest)
4763 {
4764         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4765 }
4766
4767 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4768                            unsigned long value)
4769 {
4770
4771         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4772 }
4773
4774 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4775 {
4776         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4777 }
4778
4779 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4780 {
4781         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4782         unsigned long value;
4783
4784         switch (cr) {
4785         case 0:
4786                 value = kvm_read_cr0(vcpu);
4787                 break;
4788         case 2:
4789                 value = vcpu->arch.cr2;
4790                 break;
4791         case 3:
4792                 value = kvm_read_cr3(vcpu);
4793                 break;
4794         case 4:
4795                 value = kvm_read_cr4(vcpu);
4796                 break;
4797         case 8:
4798                 value = kvm_get_cr8(vcpu);
4799                 break;
4800         default:
4801                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4802                 return 0;
4803         }
4804
4805         return value;
4806 }
4807
4808 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4809 {
4810         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4811         int res = 0;
4812
4813         switch (cr) {
4814         case 0:
4815                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4816                 break;
4817         case 2:
4818                 vcpu->arch.cr2 = val;
4819                 break;
4820         case 3:
4821                 res = kvm_set_cr3(vcpu, val);
4822                 break;
4823         case 4:
4824                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4825                 break;
4826         case 8:
4827                 res = kvm_set_cr8(vcpu, val);
4828                 break;
4829         default:
4830                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4831                 res = -1;
4832         }
4833
4834         return res;
4835 }
4836
4837 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4838 {
4839         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4840 }
4841
4842 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4843 {
4844         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4845 }
4846
4847 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4848 {
4849         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4850 }
4851
4852 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4853 {
4854         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4855 }
4856
4857 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4858 {
4859         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4860 }
4861
4862 static unsigned long emulator_get_cached_segment_base(
4863         struct x86_emulate_ctxt *ctxt, int seg)
4864 {
4865         return get_segment_base(emul_to_vcpu(ctxt), seg);
4866 }
4867
4868 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4869                                  struct desc_struct *desc, u32 *base3,
4870                                  int seg)
4871 {
4872         struct kvm_segment var;
4873
4874         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4875         *selector = var.selector;
4876
4877         if (var.unusable) {
4878                 memset(desc, 0, sizeof(*desc));
4879                 return false;
4880         }
4881
4882         if (var.g)
4883                 var.limit >>= 12;
4884         set_desc_limit(desc, var.limit);
4885         set_desc_base(desc, (unsigned long)var.base);
4886 #ifdef CONFIG_X86_64
4887         if (base3)
4888                 *base3 = var.base >> 32;
4889 #endif
4890         desc->type = var.type;
4891         desc->s = var.s;
4892         desc->dpl = var.dpl;
4893         desc->p = var.present;
4894         desc->avl = var.avl;
4895         desc->l = var.l;
4896         desc->d = var.db;
4897         desc->g = var.g;
4898
4899         return true;
4900 }
4901
4902 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4903                                  struct desc_struct *desc, u32 base3,
4904                                  int seg)
4905 {
4906         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4907         struct kvm_segment var;
4908
4909         var.selector = selector;
4910         var.base = get_desc_base(desc);
4911 #ifdef CONFIG_X86_64
4912         var.base |= ((u64)base3) << 32;
4913 #endif
4914         var.limit = get_desc_limit(desc);
4915         if (desc->g)
4916                 var.limit = (var.limit << 12) | 0xfff;
4917         var.type = desc->type;
4918         var.dpl = desc->dpl;
4919         var.db = desc->d;
4920         var.s = desc->s;
4921         var.l = desc->l;
4922         var.g = desc->g;
4923         var.avl = desc->avl;
4924         var.present = desc->p;
4925         var.unusable = !var.present;
4926         var.padding = 0;
4927
4928         kvm_set_segment(vcpu, &var, seg);
4929         return;
4930 }
4931
4932 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4933                             u32 msr_index, u64 *pdata)
4934 {
4935         struct msr_data msr;
4936         int r;
4937
4938         msr.index = msr_index;
4939         msr.host_initiated = false;
4940         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
4941         if (r)
4942                 return r;
4943
4944         *pdata = msr.data;
4945         return 0;
4946 }
4947
4948 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4949                             u32 msr_index, u64 data)
4950 {
4951         struct msr_data msr;
4952
4953         msr.data = data;
4954         msr.index = msr_index;
4955         msr.host_initiated = false;
4956         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4957 }
4958
4959 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
4960 {
4961         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4962
4963         return vcpu->arch.smbase;
4964 }
4965
4966 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
4967 {
4968         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4969
4970         vcpu->arch.smbase = smbase;
4971 }
4972
4973 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4974                               u32 pmc)
4975 {
4976         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
4977 }
4978
4979 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4980                              u32 pmc, u64 *pdata)
4981 {
4982         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
4983 }
4984
4985 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4986 {
4987         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4988 }
4989
4990 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4991 {
4992         preempt_disable();
4993         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4994         /*
4995          * CR0.TS may reference the host fpu state, not the guest fpu state,
4996          * so it may be clear at this point.
4997          */
4998         clts();
4999 }
5000
5001 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5002 {
5003         preempt_enable();
5004 }
5005
5006 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5007                               struct x86_instruction_info *info,
5008                               enum x86_intercept_stage stage)
5009 {
5010         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5011 }
5012
5013 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5014                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5015 {
5016         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5017 }
5018
5019 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5020 {
5021         return kvm_register_read(emul_to_vcpu(ctxt), reg);
5022 }
5023
5024 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5025 {
5026         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5027 }
5028
5029 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5030 {
5031         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5032 }
5033
5034 static const struct x86_emulate_ops emulate_ops = {
5035         .read_gpr            = emulator_read_gpr,
5036         .write_gpr           = emulator_write_gpr,
5037         .read_std            = kvm_read_guest_virt_system,
5038         .write_std           = kvm_write_guest_virt_system,
5039         .read_phys           = kvm_read_guest_phys_system,
5040         .fetch               = kvm_fetch_guest_virt,
5041         .read_emulated       = emulator_read_emulated,
5042         .write_emulated      = emulator_write_emulated,
5043         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5044         .invlpg              = emulator_invlpg,
5045         .pio_in_emulated     = emulator_pio_in_emulated,
5046         .pio_out_emulated    = emulator_pio_out_emulated,
5047         .get_segment         = emulator_get_segment,
5048         .set_segment         = emulator_set_segment,
5049         .get_cached_segment_base = emulator_get_cached_segment_base,
5050         .get_gdt             = emulator_get_gdt,
5051         .get_idt             = emulator_get_idt,
5052         .set_gdt             = emulator_set_gdt,
5053         .set_idt             = emulator_set_idt,
5054         .get_cr              = emulator_get_cr,
5055         .set_cr              = emulator_set_cr,
5056         .cpl                 = emulator_get_cpl,
5057         .get_dr              = emulator_get_dr,
5058         .set_dr              = emulator_set_dr,
5059         .get_smbase          = emulator_get_smbase,
5060         .set_smbase          = emulator_set_smbase,
5061         .set_msr             = emulator_set_msr,
5062         .get_msr             = emulator_get_msr,
5063         .check_pmc           = emulator_check_pmc,
5064         .read_pmc            = emulator_read_pmc,
5065         .halt                = emulator_halt,
5066         .wbinvd              = emulator_wbinvd,
5067         .fix_hypercall       = emulator_fix_hypercall,
5068         .get_fpu             = emulator_get_fpu,
5069         .put_fpu             = emulator_put_fpu,
5070         .intercept           = emulator_intercept,
5071         .get_cpuid           = emulator_get_cpuid,
5072         .set_nmi_mask        = emulator_set_nmi_mask,
5073 };
5074
5075 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5076 {
5077         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5078         /*
5079          * an sti; sti; sequence only disable interrupts for the first
5080          * instruction. So, if the last instruction, be it emulated or
5081          * not, left the system with the INT_STI flag enabled, it
5082          * means that the last instruction is an sti. We should not
5083          * leave the flag on in this case. The same goes for mov ss
5084          */
5085         if (int_shadow & mask)
5086                 mask = 0;
5087         if (unlikely(int_shadow || mask)) {
5088                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5089                 if (!mask)
5090                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5091         }
5092 }
5093
5094 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5095 {
5096         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5097         if (ctxt->exception.vector == PF_VECTOR)
5098                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5099
5100         if (ctxt->exception.error_code_valid)
5101                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5102                                       ctxt->exception.error_code);
5103         else
5104                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5105         return false;
5106 }
5107
5108 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5109 {
5110         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5111         int cs_db, cs_l;
5112
5113         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5114
5115         ctxt->eflags = kvm_get_rflags(vcpu);
5116         ctxt->eip = kvm_rip_read(vcpu);
5117         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5118                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5119                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5120                      cs_db                              ? X86EMUL_MODE_PROT32 :
5121                                                           X86EMUL_MODE_PROT16;
5122         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5123         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5124         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5125         ctxt->emul_flags = vcpu->arch.hflags;
5126
5127         init_decode_cache(ctxt);
5128         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5129 }
5130
5131 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5132 {
5133         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5134         int ret;
5135
5136         init_emulate_ctxt(vcpu);
5137
5138         ctxt->op_bytes = 2;
5139         ctxt->ad_bytes = 2;
5140         ctxt->_eip = ctxt->eip + inc_eip;
5141         ret = emulate_int_real(ctxt, irq);
5142
5143         if (ret != X86EMUL_CONTINUE)
5144                 return EMULATE_FAIL;
5145
5146         ctxt->eip = ctxt->_eip;
5147         kvm_rip_write(vcpu, ctxt->eip);
5148         kvm_set_rflags(vcpu, ctxt->eflags);
5149
5150         if (irq == NMI_VECTOR)
5151                 vcpu->arch.nmi_pending = 0;
5152         else
5153                 vcpu->arch.interrupt.pending = false;
5154
5155         return EMULATE_DONE;
5156 }
5157 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5158
5159 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5160 {
5161         int r = EMULATE_DONE;
5162
5163         ++vcpu->stat.insn_emulation_fail;
5164         trace_kvm_emulate_insn_failed(vcpu);
5165         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5166                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5167                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5168                 vcpu->run->internal.ndata = 0;
5169                 r = EMULATE_FAIL;
5170         }
5171         kvm_queue_exception(vcpu, UD_VECTOR);
5172
5173         return r;
5174 }
5175
5176 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5177                                   bool write_fault_to_shadow_pgtable,
5178                                   int emulation_type)
5179 {
5180         gpa_t gpa = cr2;
5181         kvm_pfn_t pfn;
5182
5183         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5184                 return false;
5185
5186         if (!vcpu->arch.mmu.direct_map) {
5187                 /*
5188                  * Write permission should be allowed since only
5189                  * write access need to be emulated.
5190                  */
5191                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5192
5193                 /*
5194                  * If the mapping is invalid in guest, let cpu retry
5195                  * it to generate fault.
5196                  */
5197                 if (gpa == UNMAPPED_GVA)
5198                         return true;
5199         }
5200
5201         /*
5202          * Do not retry the unhandleable instruction if it faults on the
5203          * readonly host memory, otherwise it will goto a infinite loop:
5204          * retry instruction -> write #PF -> emulation fail -> retry
5205          * instruction -> ...
5206          */
5207         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5208
5209         /*
5210          * If the instruction failed on the error pfn, it can not be fixed,
5211          * report the error to userspace.
5212          */
5213         if (is_error_noslot_pfn(pfn))
5214                 return false;
5215
5216         kvm_release_pfn_clean(pfn);
5217
5218         /* The instructions are well-emulated on direct mmu. */
5219         if (vcpu->arch.mmu.direct_map) {
5220                 unsigned int indirect_shadow_pages;
5221
5222                 spin_lock(&vcpu->kvm->mmu_lock);
5223                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5224                 spin_unlock(&vcpu->kvm->mmu_lock);
5225
5226                 if (indirect_shadow_pages)
5227                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5228
5229                 return true;
5230         }
5231
5232         /*
5233          * if emulation was due to access to shadowed page table
5234          * and it failed try to unshadow page and re-enter the
5235          * guest to let CPU execute the instruction.
5236          */
5237         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5238
5239         /*
5240          * If the access faults on its page table, it can not
5241          * be fixed by unprotecting shadow page and it should
5242          * be reported to userspace.
5243          */
5244         return !write_fault_to_shadow_pgtable;
5245 }
5246
5247 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5248                               unsigned long cr2,  int emulation_type)
5249 {
5250         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5251         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5252
5253         last_retry_eip = vcpu->arch.last_retry_eip;
5254         last_retry_addr = vcpu->arch.last_retry_addr;
5255
5256         /*
5257          * If the emulation is caused by #PF and it is non-page_table
5258          * writing instruction, it means the VM-EXIT is caused by shadow
5259          * page protected, we can zap the shadow page and retry this
5260          * instruction directly.
5261          *
5262          * Note: if the guest uses a non-page-table modifying instruction
5263          * on the PDE that points to the instruction, then we will unmap
5264          * the instruction and go to an infinite loop. So, we cache the
5265          * last retried eip and the last fault address, if we meet the eip
5266          * and the address again, we can break out of the potential infinite
5267          * loop.
5268          */
5269         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5270
5271         if (!(emulation_type & EMULTYPE_RETRY))
5272                 return false;
5273
5274         if (x86_page_table_writing_insn(ctxt))
5275                 return false;
5276
5277         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5278                 return false;
5279
5280         vcpu->arch.last_retry_eip = ctxt->eip;
5281         vcpu->arch.last_retry_addr = cr2;
5282
5283         if (!vcpu->arch.mmu.direct_map)
5284                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5285
5286         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5287
5288         return true;
5289 }
5290
5291 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5292 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5293
5294 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5295 {
5296         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5297                 /* This is a good place to trace that we are exiting SMM.  */
5298                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5299
5300                 if (unlikely(vcpu->arch.smi_pending)) {
5301                         kvm_make_request(KVM_REQ_SMI, vcpu);
5302                         vcpu->arch.smi_pending = 0;
5303                 } else {
5304                         /* Process a latched INIT, if any.  */
5305                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5306                 }
5307         }
5308
5309         kvm_mmu_reset_context(vcpu);
5310 }
5311
5312 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5313 {
5314         unsigned changed = vcpu->arch.hflags ^ emul_flags;
5315
5316         vcpu->arch.hflags = emul_flags;
5317
5318         if (changed & HF_SMM_MASK)
5319                 kvm_smm_changed(vcpu);
5320 }
5321
5322 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5323                                 unsigned long *db)
5324 {
5325         u32 dr6 = 0;
5326         int i;
5327         u32 enable, rwlen;
5328
5329         enable = dr7;
5330         rwlen = dr7 >> 16;
5331         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5332                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5333                         dr6 |= (1 << i);
5334         return dr6;
5335 }
5336
5337 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5338 {
5339         struct kvm_run *kvm_run = vcpu->run;
5340
5341         /*
5342          * rflags is the old, "raw" value of the flags.  The new value has
5343          * not been saved yet.
5344          *
5345          * This is correct even for TF set by the guest, because "the
5346          * processor will not generate this exception after the instruction
5347          * that sets the TF flag".
5348          */
5349         if (unlikely(rflags & X86_EFLAGS_TF)) {
5350                 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5351                         kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5352                                                   DR6_RTM;
5353                         kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5354                         kvm_run->debug.arch.exception = DB_VECTOR;
5355                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5356                         *r = EMULATE_USER_EXIT;
5357                 } else {
5358                         vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5359                         /*
5360                          * "Certain debug exceptions may clear bit 0-3.  The
5361                          * remaining contents of the DR6 register are never
5362                          * cleared by the processor".
5363                          */
5364                         vcpu->arch.dr6 &= ~15;
5365                         vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5366                         kvm_queue_exception(vcpu, DB_VECTOR);
5367                 }
5368         }
5369 }
5370
5371 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5372 {
5373         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5374             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5375                 struct kvm_run *kvm_run = vcpu->run;
5376                 unsigned long eip = kvm_get_linear_rip(vcpu);
5377                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5378                                            vcpu->arch.guest_debug_dr7,
5379                                            vcpu->arch.eff_db);
5380
5381                 if (dr6 != 0) {
5382                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5383                         kvm_run->debug.arch.pc = eip;
5384                         kvm_run->debug.arch.exception = DB_VECTOR;
5385                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5386                         *r = EMULATE_USER_EXIT;
5387                         return true;
5388                 }
5389         }
5390
5391         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5392             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5393                 unsigned long eip = kvm_get_linear_rip(vcpu);
5394                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5395                                            vcpu->arch.dr7,
5396                                            vcpu->arch.db);
5397
5398                 if (dr6 != 0) {
5399                         vcpu->arch.dr6 &= ~15;
5400                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5401                         kvm_queue_exception(vcpu, DB_VECTOR);
5402                         *r = EMULATE_DONE;
5403                         return true;
5404                 }
5405         }
5406
5407         return false;
5408 }
5409
5410 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5411                             unsigned long cr2,
5412                             int emulation_type,
5413                             void *insn,
5414                             int insn_len)
5415 {
5416         int r;
5417         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5418         bool writeback = true;
5419         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5420
5421         /*
5422          * Clear write_fault_to_shadow_pgtable here to ensure it is
5423          * never reused.
5424          */
5425         vcpu->arch.write_fault_to_shadow_pgtable = false;
5426         kvm_clear_exception_queue(vcpu);
5427
5428         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5429                 init_emulate_ctxt(vcpu);
5430
5431                 /*
5432                  * We will reenter on the same instruction since
5433                  * we do not set complete_userspace_io.  This does not
5434                  * handle watchpoints yet, those would be handled in
5435                  * the emulate_ops.
5436                  */
5437                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5438                         return r;
5439
5440                 ctxt->interruptibility = 0;
5441                 ctxt->have_exception = false;
5442                 ctxt->exception.vector = -1;
5443                 ctxt->perm_ok = false;
5444
5445                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5446
5447                 r = x86_decode_insn(ctxt, insn, insn_len);
5448
5449                 trace_kvm_emulate_insn_start(vcpu);
5450                 ++vcpu->stat.insn_emulation;
5451                 if (r != EMULATION_OK)  {
5452                         if (emulation_type & EMULTYPE_TRAP_UD)
5453                                 return EMULATE_FAIL;
5454                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5455                                                 emulation_type))
5456                                 return EMULATE_DONE;
5457                         if (emulation_type & EMULTYPE_SKIP)
5458                                 return EMULATE_FAIL;
5459                         return handle_emulation_failure(vcpu);
5460                 }
5461         }
5462
5463         if (emulation_type & EMULTYPE_SKIP) {
5464                 kvm_rip_write(vcpu, ctxt->_eip);
5465                 if (ctxt->eflags & X86_EFLAGS_RF)
5466                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5467                 return EMULATE_DONE;
5468         }
5469
5470         if (retry_instruction(ctxt, cr2, emulation_type))
5471                 return EMULATE_DONE;
5472
5473         /* this is needed for vmware backdoor interface to work since it
5474            changes registers values  during IO operation */
5475         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5476                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5477                 emulator_invalidate_register_cache(ctxt);
5478         }
5479
5480 restart:
5481         r = x86_emulate_insn(ctxt);
5482
5483         if (r == EMULATION_INTERCEPTED)
5484                 return EMULATE_DONE;
5485
5486         if (r == EMULATION_FAILED) {
5487                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5488                                         emulation_type))
5489                         return EMULATE_DONE;
5490
5491                 return handle_emulation_failure(vcpu);
5492         }
5493
5494         if (ctxt->have_exception) {
5495                 r = EMULATE_DONE;
5496                 if (inject_emulated_exception(vcpu))
5497                         return r;
5498         } else if (vcpu->arch.pio.count) {
5499                 if (!vcpu->arch.pio.in) {
5500                         /* FIXME: return into emulator if single-stepping.  */
5501                         vcpu->arch.pio.count = 0;
5502                 } else {
5503                         writeback = false;
5504                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5505                 }
5506                 r = EMULATE_USER_EXIT;
5507         } else if (vcpu->mmio_needed) {
5508                 if (!vcpu->mmio_is_write)
5509                         writeback = false;
5510                 r = EMULATE_USER_EXIT;
5511                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5512         } else if (r == EMULATION_RESTART)
5513                 goto restart;
5514         else
5515                 r = EMULATE_DONE;
5516
5517         if (writeback) {
5518                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5519                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5520                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5521                 if (vcpu->arch.hflags != ctxt->emul_flags)
5522                         kvm_set_hflags(vcpu, ctxt->emul_flags);
5523                 kvm_rip_write(vcpu, ctxt->eip);
5524                 if (r == EMULATE_DONE)
5525                         kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5526                 if (!ctxt->have_exception ||
5527                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5528                         __kvm_set_rflags(vcpu, ctxt->eflags);
5529
5530                 /*
5531                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5532                  * do nothing, and it will be requested again as soon as
5533                  * the shadow expires.  But we still need to check here,
5534                  * because POPF has no interrupt shadow.
5535                  */
5536                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5537                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5538         } else
5539                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5540
5541         return r;
5542 }
5543 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5544
5545 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5546 {
5547         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5548         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5549                                             size, port, &val, 1);
5550         /* do not return to emulator after return from userspace */
5551         vcpu->arch.pio.count = 0;
5552         return ret;
5553 }
5554 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5555
5556 static int kvmclock_cpu_down_prep(unsigned int cpu)
5557 {
5558         __this_cpu_write(cpu_tsc_khz, 0);
5559         return 0;
5560 }
5561
5562 static void tsc_khz_changed(void *data)
5563 {
5564         struct cpufreq_freqs *freq = data;
5565         unsigned long khz = 0;
5566
5567         if (data)
5568                 khz = freq->new;
5569         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5570                 khz = cpufreq_quick_get(raw_smp_processor_id());
5571         if (!khz)
5572                 khz = tsc_khz;
5573         __this_cpu_write(cpu_tsc_khz, khz);
5574 }
5575
5576 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5577                                      void *data)
5578 {
5579         struct cpufreq_freqs *freq = data;
5580         struct kvm *kvm;
5581         struct kvm_vcpu *vcpu;
5582         int i, send_ipi = 0;
5583
5584         /*
5585          * We allow guests to temporarily run on slowing clocks,
5586          * provided we notify them after, or to run on accelerating
5587          * clocks, provided we notify them before.  Thus time never
5588          * goes backwards.
5589          *
5590          * However, we have a problem.  We can't atomically update
5591          * the frequency of a given CPU from this function; it is
5592          * merely a notifier, which can be called from any CPU.
5593          * Changing the TSC frequency at arbitrary points in time
5594          * requires a recomputation of local variables related to
5595          * the TSC for each VCPU.  We must flag these local variables
5596          * to be updated and be sure the update takes place with the
5597          * new frequency before any guests proceed.
5598          *
5599          * Unfortunately, the combination of hotplug CPU and frequency
5600          * change creates an intractable locking scenario; the order
5601          * of when these callouts happen is undefined with respect to
5602          * CPU hotplug, and they can race with each other.  As such,
5603          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5604          * undefined; you can actually have a CPU frequency change take
5605          * place in between the computation of X and the setting of the
5606          * variable.  To protect against this problem, all updates of
5607          * the per_cpu tsc_khz variable are done in an interrupt
5608          * protected IPI, and all callers wishing to update the value
5609          * must wait for a synchronous IPI to complete (which is trivial
5610          * if the caller is on the CPU already).  This establishes the
5611          * necessary total order on variable updates.
5612          *
5613          * Note that because a guest time update may take place
5614          * anytime after the setting of the VCPU's request bit, the
5615          * correct TSC value must be set before the request.  However,
5616          * to ensure the update actually makes it to any guest which
5617          * starts running in hardware virtualization between the set
5618          * and the acquisition of the spinlock, we must also ping the
5619          * CPU after setting the request bit.
5620          *
5621          */
5622
5623         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5624                 return 0;
5625         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5626                 return 0;
5627
5628         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5629
5630         spin_lock(&kvm_lock);
5631         list_for_each_entry(kvm, &vm_list, vm_list) {
5632                 kvm_for_each_vcpu(i, vcpu, kvm) {
5633                         if (vcpu->cpu != freq->cpu)
5634                                 continue;
5635                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5636                         if (vcpu->cpu != smp_processor_id())
5637                                 send_ipi = 1;
5638                 }
5639         }
5640         spin_unlock(&kvm_lock);
5641
5642         if (freq->old < freq->new && send_ipi) {
5643                 /*
5644                  * We upscale the frequency.  Must make the guest
5645                  * doesn't see old kvmclock values while running with
5646                  * the new frequency, otherwise we risk the guest sees
5647                  * time go backwards.
5648                  *
5649                  * In case we update the frequency for another cpu
5650                  * (which might be in guest context) send an interrupt
5651                  * to kick the cpu out of guest context.  Next time
5652                  * guest context is entered kvmclock will be updated,
5653                  * so the guest will not see stale values.
5654                  */
5655                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5656         }
5657         return 0;
5658 }
5659
5660 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5661         .notifier_call  = kvmclock_cpufreq_notifier
5662 };
5663
5664 static int kvmclock_cpu_online(unsigned int cpu)
5665 {
5666         tsc_khz_changed(NULL);
5667         return 0;
5668 }
5669
5670 static void kvm_timer_init(void)
5671 {
5672         int cpu;
5673
5674         max_tsc_khz = tsc_khz;
5675
5676         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5677 #ifdef CONFIG_CPU_FREQ
5678                 struct cpufreq_policy policy;
5679                 memset(&policy, 0, sizeof(policy));
5680                 cpu = get_cpu();
5681                 cpufreq_get_policy(&policy, cpu);
5682                 if (policy.cpuinfo.max_freq)
5683                         max_tsc_khz = policy.cpuinfo.max_freq;
5684                 put_cpu();
5685 #endif
5686                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5687                                           CPUFREQ_TRANSITION_NOTIFIER);
5688         }
5689         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5690
5691         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "AP_X86_KVM_CLK_ONLINE",
5692                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
5693 }
5694
5695 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5696
5697 int kvm_is_in_guest(void)
5698 {
5699         return __this_cpu_read(current_vcpu) != NULL;
5700 }
5701
5702 static int kvm_is_user_mode(void)
5703 {
5704         int user_mode = 3;
5705
5706         if (__this_cpu_read(current_vcpu))
5707                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5708
5709         return user_mode != 0;
5710 }
5711
5712 static unsigned long kvm_get_guest_ip(void)
5713 {
5714         unsigned long ip = 0;
5715
5716         if (__this_cpu_read(current_vcpu))
5717                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5718
5719         return ip;
5720 }
5721
5722 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5723         .is_in_guest            = kvm_is_in_guest,
5724         .is_user_mode           = kvm_is_user_mode,
5725         .get_guest_ip           = kvm_get_guest_ip,
5726 };
5727
5728 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5729 {
5730         __this_cpu_write(current_vcpu, vcpu);
5731 }
5732 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5733
5734 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5735 {
5736         __this_cpu_write(current_vcpu, NULL);
5737 }
5738 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5739
5740 static void kvm_set_mmio_spte_mask(void)
5741 {
5742         u64 mask;
5743         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5744
5745         /*
5746          * Set the reserved bits and the present bit of an paging-structure
5747          * entry to generate page fault with PFER.RSV = 1.
5748          */
5749          /* Mask the reserved physical address bits. */
5750         mask = rsvd_bits(maxphyaddr, 51);
5751
5752         /* Bit 62 is always reserved for 32bit host. */
5753         mask |= 0x3ull << 62;
5754
5755         /* Set the present bit. */
5756         mask |= 1ull;
5757
5758 #ifdef CONFIG_X86_64
5759         /*
5760          * If reserved bit is not supported, clear the present bit to disable
5761          * mmio page fault.
5762          */
5763         if (maxphyaddr == 52)
5764                 mask &= ~1ull;
5765 #endif
5766
5767         kvm_mmu_set_mmio_spte_mask(mask);
5768 }
5769
5770 #ifdef CONFIG_X86_64
5771 static void pvclock_gtod_update_fn(struct work_struct *work)
5772 {
5773         struct kvm *kvm;
5774
5775         struct kvm_vcpu *vcpu;
5776         int i;
5777
5778         spin_lock(&kvm_lock);
5779         list_for_each_entry(kvm, &vm_list, vm_list)
5780                 kvm_for_each_vcpu(i, vcpu, kvm)
5781                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5782         atomic_set(&kvm_guest_has_master_clock, 0);
5783         spin_unlock(&kvm_lock);
5784 }
5785
5786 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5787
5788 /*
5789  * Notification about pvclock gtod data update.
5790  */
5791 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5792                                void *priv)
5793 {
5794         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5795         struct timekeeper *tk = priv;
5796
5797         update_pvclock_gtod(tk);
5798
5799         /* disable master clock if host does not trust, or does not
5800          * use, TSC clocksource
5801          */
5802         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5803             atomic_read(&kvm_guest_has_master_clock) != 0)
5804                 queue_work(system_long_wq, &pvclock_gtod_work);
5805
5806         return 0;
5807 }
5808
5809 static struct notifier_block pvclock_gtod_notifier = {
5810         .notifier_call = pvclock_gtod_notify,
5811 };
5812 #endif
5813
5814 int kvm_arch_init(void *opaque)
5815 {
5816         int r;
5817         struct kvm_x86_ops *ops = opaque;
5818
5819         if (kvm_x86_ops) {
5820                 printk(KERN_ERR "kvm: already loaded the other module\n");
5821                 r = -EEXIST;
5822                 goto out;
5823         }
5824
5825         if (!ops->cpu_has_kvm_support()) {
5826                 printk(KERN_ERR "kvm: no hardware support\n");
5827                 r = -EOPNOTSUPP;
5828                 goto out;
5829         }
5830         if (ops->disabled_by_bios()) {
5831                 printk(KERN_ERR "kvm: disabled by bios\n");
5832                 r = -EOPNOTSUPP;
5833                 goto out;
5834         }
5835
5836         r = -ENOMEM;
5837         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5838         if (!shared_msrs) {
5839                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5840                 goto out;
5841         }
5842
5843         r = kvm_mmu_module_init();
5844         if (r)
5845                 goto out_free_percpu;
5846
5847         kvm_set_mmio_spte_mask();
5848
5849         kvm_x86_ops = ops;
5850
5851         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5852                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5853
5854         kvm_timer_init();
5855
5856         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5857
5858         if (boot_cpu_has(X86_FEATURE_XSAVE))
5859                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5860
5861         kvm_lapic_init();
5862 #ifdef CONFIG_X86_64
5863         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5864 #endif
5865
5866         return 0;
5867
5868 out_free_percpu:
5869         free_percpu(shared_msrs);
5870 out:
5871         return r;
5872 }
5873
5874 void kvm_arch_exit(void)
5875 {
5876         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5877
5878         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5879                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5880                                             CPUFREQ_TRANSITION_NOTIFIER);
5881         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
5882 #ifdef CONFIG_X86_64
5883         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5884 #endif
5885         kvm_x86_ops = NULL;
5886         kvm_mmu_module_exit();
5887         free_percpu(shared_msrs);
5888 }
5889
5890 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5891 {
5892         ++vcpu->stat.halt_exits;
5893         if (lapic_in_kernel(vcpu)) {
5894                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5895                 return 1;
5896         } else {
5897                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5898                 return 0;
5899         }
5900 }
5901 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5902
5903 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5904 {
5905         kvm_x86_ops->skip_emulated_instruction(vcpu);
5906         return kvm_vcpu_halt(vcpu);
5907 }
5908 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5909
5910 /*
5911  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5912  *
5913  * @apicid - apicid of vcpu to be kicked.
5914  */
5915 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5916 {
5917         struct kvm_lapic_irq lapic_irq;
5918
5919         lapic_irq.shorthand = 0;
5920         lapic_irq.dest_mode = 0;
5921         lapic_irq.dest_id = apicid;
5922         lapic_irq.msi_redir_hint = false;
5923
5924         lapic_irq.delivery_mode = APIC_DM_REMRD;
5925         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5926 }
5927
5928 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
5929 {
5930         vcpu->arch.apicv_active = false;
5931         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
5932 }
5933
5934 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5935 {
5936         unsigned long nr, a0, a1, a2, a3, ret;
5937         int op_64_bit, r = 1;
5938
5939         kvm_x86_ops->skip_emulated_instruction(vcpu);
5940
5941         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5942                 return kvm_hv_hypercall(vcpu);
5943
5944         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5945         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5946         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5947         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5948         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5949
5950         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5951
5952         op_64_bit = is_64_bit_mode(vcpu);
5953         if (!op_64_bit) {
5954                 nr &= 0xFFFFFFFF;
5955                 a0 &= 0xFFFFFFFF;
5956                 a1 &= 0xFFFFFFFF;
5957                 a2 &= 0xFFFFFFFF;
5958                 a3 &= 0xFFFFFFFF;
5959         }
5960
5961         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5962                 ret = -KVM_EPERM;
5963                 goto out;
5964         }
5965
5966         switch (nr) {
5967         case KVM_HC_VAPIC_POLL_IRQ:
5968                 ret = 0;
5969                 break;
5970         case KVM_HC_KICK_CPU:
5971                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5972                 ret = 0;
5973                 break;
5974         default:
5975                 ret = -KVM_ENOSYS;
5976                 break;
5977         }
5978 out:
5979         if (!op_64_bit)
5980                 ret = (u32)ret;
5981         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5982         ++vcpu->stat.hypercalls;
5983         return r;
5984 }
5985 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5986
5987 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5988 {
5989         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5990         char instruction[3];
5991         unsigned long rip = kvm_rip_read(vcpu);
5992
5993         kvm_x86_ops->patch_hypercall(vcpu, instruction);
5994
5995         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5996 }
5997
5998 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5999 {
6000         return vcpu->run->request_interrupt_window &&
6001                 likely(!pic_in_kernel(vcpu->kvm));
6002 }
6003
6004 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6005 {
6006         struct kvm_run *kvm_run = vcpu->run;
6007
6008         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6009         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6010         kvm_run->cr8 = kvm_get_cr8(vcpu);
6011         kvm_run->apic_base = kvm_get_apic_base(vcpu);
6012         kvm_run->ready_for_interrupt_injection =
6013                 pic_in_kernel(vcpu->kvm) ||
6014                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6015 }
6016
6017 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6018 {
6019         int max_irr, tpr;
6020
6021         if (!kvm_x86_ops->update_cr8_intercept)
6022                 return;
6023
6024         if (!lapic_in_kernel(vcpu))
6025                 return;
6026
6027         if (vcpu->arch.apicv_active)
6028                 return;
6029
6030         if (!vcpu->arch.apic->vapic_addr)
6031                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6032         else
6033                 max_irr = -1;
6034
6035         if (max_irr != -1)
6036                 max_irr >>= 4;
6037
6038         tpr = kvm_lapic_get_cr8(vcpu);
6039
6040         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6041 }
6042
6043 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6044 {
6045         int r;
6046
6047         /* try to reinject previous events if any */
6048         if (vcpu->arch.exception.pending) {
6049                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6050                                         vcpu->arch.exception.has_error_code,
6051                                         vcpu->arch.exception.error_code);
6052
6053                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6054                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6055                                              X86_EFLAGS_RF);
6056
6057                 if (vcpu->arch.exception.nr == DB_VECTOR &&
6058                     (vcpu->arch.dr7 & DR7_GD)) {
6059                         vcpu->arch.dr7 &= ~DR7_GD;
6060                         kvm_update_dr7(vcpu);
6061                 }
6062
6063                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6064                                           vcpu->arch.exception.has_error_code,
6065                                           vcpu->arch.exception.error_code,
6066                                           vcpu->arch.exception.reinject);
6067                 return 0;
6068         }
6069
6070         if (vcpu->arch.nmi_injected) {
6071                 kvm_x86_ops->set_nmi(vcpu);
6072                 return 0;
6073         }
6074
6075         if (vcpu->arch.interrupt.pending) {
6076                 kvm_x86_ops->set_irq(vcpu);
6077                 return 0;
6078         }
6079
6080         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6081                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6082                 if (r != 0)
6083                         return r;
6084         }
6085
6086         /* try to inject new event if pending */
6087         if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6088                 --vcpu->arch.nmi_pending;
6089                 vcpu->arch.nmi_injected = true;
6090                 kvm_x86_ops->set_nmi(vcpu);
6091         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6092                 /*
6093                  * Because interrupts can be injected asynchronously, we are
6094                  * calling check_nested_events again here to avoid a race condition.
6095                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6096                  * proposal and current concerns.  Perhaps we should be setting
6097                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6098                  */
6099                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6100                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6101                         if (r != 0)
6102                                 return r;
6103                 }
6104                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6105                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6106                                             false);
6107                         kvm_x86_ops->set_irq(vcpu);
6108                 }
6109         }
6110         return 0;
6111 }
6112
6113 static void process_nmi(struct kvm_vcpu *vcpu)
6114 {
6115         unsigned limit = 2;
6116
6117         /*
6118          * x86 is limited to one NMI running, and one NMI pending after it.
6119          * If an NMI is already in progress, limit further NMIs to just one.
6120          * Otherwise, allow two (and we'll inject the first one immediately).
6121          */
6122         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6123                 limit = 1;
6124
6125         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6126         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6127         kvm_make_request(KVM_REQ_EVENT, vcpu);
6128 }
6129
6130 #define put_smstate(type, buf, offset, val)                       \
6131         *(type *)((buf) + (offset) - 0x7e00) = val
6132
6133 static u32 process_smi_get_segment_flags(struct kvm_segment *seg)
6134 {
6135         u32 flags = 0;
6136         flags |= seg->g       << 23;
6137         flags |= seg->db      << 22;
6138         flags |= seg->l       << 21;
6139         flags |= seg->avl     << 20;
6140         flags |= seg->present << 15;
6141         flags |= seg->dpl     << 13;
6142         flags |= seg->s       << 12;
6143         flags |= seg->type    << 8;
6144         return flags;
6145 }
6146
6147 static void process_smi_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6148 {
6149         struct kvm_segment seg;
6150         int offset;
6151
6152         kvm_get_segment(vcpu, &seg, n);
6153         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6154
6155         if (n < 3)
6156                 offset = 0x7f84 + n * 12;
6157         else
6158                 offset = 0x7f2c + (n - 3) * 12;
6159
6160         put_smstate(u32, buf, offset + 8, seg.base);
6161         put_smstate(u32, buf, offset + 4, seg.limit);
6162         put_smstate(u32, buf, offset, process_smi_get_segment_flags(&seg));
6163 }
6164
6165 #ifdef CONFIG_X86_64
6166 static void process_smi_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6167 {
6168         struct kvm_segment seg;
6169         int offset;
6170         u16 flags;
6171
6172         kvm_get_segment(vcpu, &seg, n);
6173         offset = 0x7e00 + n * 16;
6174
6175         flags = process_smi_get_segment_flags(&seg) >> 8;
6176         put_smstate(u16, buf, offset, seg.selector);
6177         put_smstate(u16, buf, offset + 2, flags);
6178         put_smstate(u32, buf, offset + 4, seg.limit);
6179         put_smstate(u64, buf, offset + 8, seg.base);
6180 }
6181 #endif
6182
6183 static void process_smi_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6184 {
6185         struct desc_ptr dt;
6186         struct kvm_segment seg;
6187         unsigned long val;
6188         int i;
6189
6190         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6191         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6192         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6193         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6194
6195         for (i = 0; i < 8; i++)
6196                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6197
6198         kvm_get_dr(vcpu, 6, &val);
6199         put_smstate(u32, buf, 0x7fcc, (u32)val);
6200         kvm_get_dr(vcpu, 7, &val);
6201         put_smstate(u32, buf, 0x7fc8, (u32)val);
6202
6203         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6204         put_smstate(u32, buf, 0x7fc4, seg.selector);
6205         put_smstate(u32, buf, 0x7f64, seg.base);
6206         put_smstate(u32, buf, 0x7f60, seg.limit);
6207         put_smstate(u32, buf, 0x7f5c, process_smi_get_segment_flags(&seg));
6208
6209         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6210         put_smstate(u32, buf, 0x7fc0, seg.selector);
6211         put_smstate(u32, buf, 0x7f80, seg.base);
6212         put_smstate(u32, buf, 0x7f7c, seg.limit);
6213         put_smstate(u32, buf, 0x7f78, process_smi_get_segment_flags(&seg));
6214
6215         kvm_x86_ops->get_gdt(vcpu, &dt);
6216         put_smstate(u32, buf, 0x7f74, dt.address);
6217         put_smstate(u32, buf, 0x7f70, dt.size);
6218
6219         kvm_x86_ops->get_idt(vcpu, &dt);
6220         put_smstate(u32, buf, 0x7f58, dt.address);
6221         put_smstate(u32, buf, 0x7f54, dt.size);
6222
6223         for (i = 0; i < 6; i++)
6224                 process_smi_save_seg_32(vcpu, buf, i);
6225
6226         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6227
6228         /* revision id */
6229         put_smstate(u32, buf, 0x7efc, 0x00020000);
6230         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6231 }
6232
6233 static void process_smi_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6234 {
6235 #ifdef CONFIG_X86_64
6236         struct desc_ptr dt;
6237         struct kvm_segment seg;
6238         unsigned long val;
6239         int i;
6240
6241         for (i = 0; i < 16; i++)
6242                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6243
6244         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6245         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6246
6247         kvm_get_dr(vcpu, 6, &val);
6248         put_smstate(u64, buf, 0x7f68, val);
6249         kvm_get_dr(vcpu, 7, &val);
6250         put_smstate(u64, buf, 0x7f60, val);
6251
6252         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6253         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6254         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6255
6256         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6257
6258         /* revision id */
6259         put_smstate(u32, buf, 0x7efc, 0x00020064);
6260
6261         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6262
6263         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6264         put_smstate(u16, buf, 0x7e90, seg.selector);
6265         put_smstate(u16, buf, 0x7e92, process_smi_get_segment_flags(&seg) >> 8);
6266         put_smstate(u32, buf, 0x7e94, seg.limit);
6267         put_smstate(u64, buf, 0x7e98, seg.base);
6268
6269         kvm_x86_ops->get_idt(vcpu, &dt);
6270         put_smstate(u32, buf, 0x7e84, dt.size);
6271         put_smstate(u64, buf, 0x7e88, dt.address);
6272
6273         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6274         put_smstate(u16, buf, 0x7e70, seg.selector);
6275         put_smstate(u16, buf, 0x7e72, process_smi_get_segment_flags(&seg) >> 8);
6276         put_smstate(u32, buf, 0x7e74, seg.limit);
6277         put_smstate(u64, buf, 0x7e78, seg.base);
6278
6279         kvm_x86_ops->get_gdt(vcpu, &dt);
6280         put_smstate(u32, buf, 0x7e64, dt.size);
6281         put_smstate(u64, buf, 0x7e68, dt.address);
6282
6283         for (i = 0; i < 6; i++)
6284                 process_smi_save_seg_64(vcpu, buf, i);
6285 #else
6286         WARN_ON_ONCE(1);
6287 #endif
6288 }
6289
6290 static void process_smi(struct kvm_vcpu *vcpu)
6291 {
6292         struct kvm_segment cs, ds;
6293         struct desc_ptr dt;
6294         char buf[512];
6295         u32 cr0;
6296
6297         if (is_smm(vcpu)) {
6298                 vcpu->arch.smi_pending = true;
6299                 return;
6300         }
6301
6302         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6303         vcpu->arch.hflags |= HF_SMM_MASK;
6304         memset(buf, 0, 512);
6305         if (guest_cpuid_has_longmode(vcpu))
6306                 process_smi_save_state_64(vcpu, buf);
6307         else
6308                 process_smi_save_state_32(vcpu, buf);
6309
6310         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6311
6312         if (kvm_x86_ops->get_nmi_mask(vcpu))
6313                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6314         else
6315                 kvm_x86_ops->set_nmi_mask(vcpu, true);
6316
6317         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6318         kvm_rip_write(vcpu, 0x8000);
6319
6320         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6321         kvm_x86_ops->set_cr0(vcpu, cr0);
6322         vcpu->arch.cr0 = cr0;
6323
6324         kvm_x86_ops->set_cr4(vcpu, 0);
6325
6326         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
6327         dt.address = dt.size = 0;
6328         kvm_x86_ops->set_idt(vcpu, &dt);
6329
6330         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6331
6332         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6333         cs.base = vcpu->arch.smbase;
6334
6335         ds.selector = 0;
6336         ds.base = 0;
6337
6338         cs.limit    = ds.limit = 0xffffffff;
6339         cs.type     = ds.type = 0x3;
6340         cs.dpl      = ds.dpl = 0;
6341         cs.db       = ds.db = 0;
6342         cs.s        = ds.s = 1;
6343         cs.l        = ds.l = 0;
6344         cs.g        = ds.g = 1;
6345         cs.avl      = ds.avl = 0;
6346         cs.present  = ds.present = 1;
6347         cs.unusable = ds.unusable = 0;
6348         cs.padding  = ds.padding = 0;
6349
6350         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6351         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6352         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6353         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6354         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6355         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6356
6357         if (guest_cpuid_has_longmode(vcpu))
6358                 kvm_x86_ops->set_efer(vcpu, 0);
6359
6360         kvm_update_cpuid(vcpu);
6361         kvm_mmu_reset_context(vcpu);
6362 }
6363
6364 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6365 {
6366         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6367 }
6368
6369 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6370 {
6371         u64 eoi_exit_bitmap[4];
6372
6373         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6374                 return;
6375
6376         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6377
6378         if (irqchip_split(vcpu->kvm))
6379                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6380         else {
6381                 if (vcpu->arch.apicv_active)
6382                         kvm_x86_ops->sync_pir_to_irr(vcpu);
6383                 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6384         }
6385         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6386                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
6387         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6388 }
6389
6390 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6391 {
6392         ++vcpu->stat.tlb_flush;
6393         kvm_x86_ops->tlb_flush(vcpu);
6394 }
6395
6396 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6397 {
6398         struct page *page = NULL;
6399
6400         if (!lapic_in_kernel(vcpu))
6401                 return;
6402
6403         if (!kvm_x86_ops->set_apic_access_page_addr)
6404                 return;
6405
6406         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6407         if (is_error_page(page))
6408                 return;
6409         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6410
6411         /*
6412          * Do not pin apic access page in memory, the MMU notifier
6413          * will call us again if it is migrated or swapped out.
6414          */
6415         put_page(page);
6416 }
6417 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6418
6419 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6420                                            unsigned long address)
6421 {
6422         /*
6423          * The physical address of apic access page is stored in the VMCS.
6424          * Update it when it becomes invalid.
6425          */
6426         if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6427                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6428 }
6429
6430 /*
6431  * Returns 1 to let vcpu_run() continue the guest execution loop without
6432  * exiting to the userspace.  Otherwise, the value will be returned to the
6433  * userspace.
6434  */
6435 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6436 {
6437         int r;
6438         bool req_int_win =
6439                 dm_request_for_irq_injection(vcpu) &&
6440                 kvm_cpu_accept_dm_intr(vcpu);
6441
6442         bool req_immediate_exit = false;
6443
6444         if (vcpu->requests) {
6445                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6446                         kvm_mmu_unload(vcpu);
6447                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6448                         __kvm_migrate_timers(vcpu);
6449                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6450                         kvm_gen_update_masterclock(vcpu->kvm);
6451                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6452                         kvm_gen_kvmclock_update(vcpu);
6453                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6454                         r = kvm_guest_time_update(vcpu);
6455                         if (unlikely(r))
6456                                 goto out;
6457                 }
6458                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6459                         kvm_mmu_sync_roots(vcpu);
6460                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6461                         kvm_vcpu_flush_tlb(vcpu);
6462                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6463                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6464                         r = 0;
6465                         goto out;
6466                 }
6467                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6468                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6469                         r = 0;
6470                         goto out;
6471                 }
6472                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6473                         vcpu->fpu_active = 0;
6474                         kvm_x86_ops->fpu_deactivate(vcpu);
6475                 }
6476                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6477                         /* Page is swapped out. Do synthetic halt */
6478                         vcpu->arch.apf.halted = true;
6479                         r = 1;
6480                         goto out;
6481                 }
6482                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6483                         record_steal_time(vcpu);
6484                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6485                         process_smi(vcpu);
6486                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6487                         process_nmi(vcpu);
6488                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6489                         kvm_pmu_handle_event(vcpu);
6490                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6491                         kvm_pmu_deliver_pmi(vcpu);
6492                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6493                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6494                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
6495                                      vcpu->arch.ioapic_handled_vectors)) {
6496                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6497                                 vcpu->run->eoi.vector =
6498                                                 vcpu->arch.pending_ioapic_eoi;
6499                                 r = 0;
6500                                 goto out;
6501                         }
6502                 }
6503                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6504                         vcpu_scan_ioapic(vcpu);
6505                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6506                         kvm_vcpu_reload_apic_access_page(vcpu);
6507                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6508                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6509                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6510                         r = 0;
6511                         goto out;
6512                 }
6513                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6514                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6515                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6516                         r = 0;
6517                         goto out;
6518                 }
6519                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6520                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6521                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6522                         r = 0;
6523                         goto out;
6524                 }
6525
6526                 /*
6527                  * KVM_REQ_HV_STIMER has to be processed after
6528                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6529                  * depend on the guest clock being up-to-date
6530                  */
6531                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6532                         kvm_hv_process_stimers(vcpu);
6533         }
6534
6535         /*
6536          * KVM_REQ_EVENT is not set when posted interrupts are set by
6537          * VT-d hardware, so we have to update RVI unconditionally.
6538          */
6539         if (kvm_lapic_enabled(vcpu)) {
6540                 /*
6541                  * Update architecture specific hints for APIC
6542                  * virtual interrupt delivery.
6543                  */
6544                 if (vcpu->arch.apicv_active)
6545                         kvm_x86_ops->hwapic_irr_update(vcpu,
6546                                 kvm_lapic_find_highest_irr(vcpu));
6547         }
6548
6549         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6550                 kvm_apic_accept_events(vcpu);
6551                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6552                         r = 1;
6553                         goto out;
6554                 }
6555
6556                 if (inject_pending_event(vcpu, req_int_win) != 0)
6557                         req_immediate_exit = true;
6558                 /* enable NMI/IRQ window open exits if needed */
6559                 else {
6560                         if (vcpu->arch.nmi_pending)
6561                                 kvm_x86_ops->enable_nmi_window(vcpu);
6562                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6563                                 kvm_x86_ops->enable_irq_window(vcpu);
6564                 }
6565
6566                 if (kvm_lapic_enabled(vcpu)) {
6567                         update_cr8_intercept(vcpu);
6568                         kvm_lapic_sync_to_vapic(vcpu);
6569                 }
6570         }
6571
6572         r = kvm_mmu_reload(vcpu);
6573         if (unlikely(r)) {
6574                 goto cancel_injection;
6575         }
6576
6577         preempt_disable();
6578
6579         kvm_x86_ops->prepare_guest_switch(vcpu);
6580         if (vcpu->fpu_active)
6581                 kvm_load_guest_fpu(vcpu);
6582         vcpu->mode = IN_GUEST_MODE;
6583
6584         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6585
6586         /*
6587          * We should set ->mode before check ->requests,
6588          * Please see the comment in kvm_make_all_cpus_request.
6589          * This also orders the write to mode from any reads
6590          * to the page tables done while the VCPU is running.
6591          * Please see the comment in kvm_flush_remote_tlbs.
6592          */
6593         smp_mb__after_srcu_read_unlock();
6594
6595         local_irq_disable();
6596
6597         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6598             || need_resched() || signal_pending(current)) {
6599                 vcpu->mode = OUTSIDE_GUEST_MODE;
6600                 smp_wmb();
6601                 local_irq_enable();
6602                 preempt_enable();
6603                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6604                 r = 1;
6605                 goto cancel_injection;
6606         }
6607
6608         kvm_load_guest_xcr0(vcpu);
6609
6610         if (req_immediate_exit)
6611                 smp_send_reschedule(vcpu->cpu);
6612
6613         trace_kvm_entry(vcpu->vcpu_id);
6614         wait_lapic_expire(vcpu);
6615         __kvm_guest_enter();
6616
6617         if (unlikely(vcpu->arch.switch_db_regs)) {
6618                 set_debugreg(0, 7);
6619                 set_debugreg(vcpu->arch.eff_db[0], 0);
6620                 set_debugreg(vcpu->arch.eff_db[1], 1);
6621                 set_debugreg(vcpu->arch.eff_db[2], 2);
6622                 set_debugreg(vcpu->arch.eff_db[3], 3);
6623                 set_debugreg(vcpu->arch.dr6, 6);
6624                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6625         }
6626
6627         kvm_x86_ops->run(vcpu);
6628
6629         /*
6630          * Do this here before restoring debug registers on the host.  And
6631          * since we do this before handling the vmexit, a DR access vmexit
6632          * can (a) read the correct value of the debug registers, (b) set
6633          * KVM_DEBUGREG_WONT_EXIT again.
6634          */
6635         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6636                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6637                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6638                 kvm_update_dr0123(vcpu);
6639                 kvm_update_dr6(vcpu);
6640                 kvm_update_dr7(vcpu);
6641                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6642         }
6643
6644         /*
6645          * If the guest has used debug registers, at least dr7
6646          * will be disabled while returning to the host.
6647          * If we don't have active breakpoints in the host, we don't
6648          * care about the messed up debug address registers. But if
6649          * we have some of them active, restore the old state.
6650          */
6651         if (hw_breakpoint_active())
6652                 hw_breakpoint_restore();
6653
6654         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6655
6656         vcpu->mode = OUTSIDE_GUEST_MODE;
6657         smp_wmb();
6658
6659         kvm_put_guest_xcr0(vcpu);
6660
6661         /* Interrupt is enabled by handle_external_intr() */
6662         kvm_x86_ops->handle_external_intr(vcpu);
6663
6664         ++vcpu->stat.exits;
6665
6666         /*
6667          * We must have an instruction between local_irq_enable() and
6668          * kvm_guest_exit(), so the timer interrupt isn't delayed by
6669          * the interrupt shadow.  The stat.exits increment will do nicely.
6670          * But we need to prevent reordering, hence this barrier():
6671          */
6672         barrier();
6673
6674         kvm_guest_exit();
6675
6676         preempt_enable();
6677
6678         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6679
6680         /*
6681          * Profile KVM exit RIPs:
6682          */
6683         if (unlikely(prof_on == KVM_PROFILING)) {
6684                 unsigned long rip = kvm_rip_read(vcpu);
6685                 profile_hit(KVM_PROFILING, (void *)rip);
6686         }
6687
6688         if (unlikely(vcpu->arch.tsc_always_catchup))
6689                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6690
6691         if (vcpu->arch.apic_attention)
6692                 kvm_lapic_sync_from_vapic(vcpu);
6693
6694         r = kvm_x86_ops->handle_exit(vcpu);
6695         return r;
6696
6697 cancel_injection:
6698         kvm_x86_ops->cancel_injection(vcpu);
6699         if (unlikely(vcpu->arch.apic_attention))
6700                 kvm_lapic_sync_from_vapic(vcpu);
6701 out:
6702         return r;
6703 }
6704
6705 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6706 {
6707         if (!kvm_arch_vcpu_runnable(vcpu) &&
6708             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6709                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6710                 kvm_vcpu_block(vcpu);
6711                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6712
6713                 if (kvm_x86_ops->post_block)
6714                         kvm_x86_ops->post_block(vcpu);
6715
6716                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6717                         return 1;
6718         }
6719
6720         kvm_apic_accept_events(vcpu);
6721         switch(vcpu->arch.mp_state) {
6722         case KVM_MP_STATE_HALTED:
6723                 vcpu->arch.pv.pv_unhalted = false;
6724                 vcpu->arch.mp_state =
6725                         KVM_MP_STATE_RUNNABLE;
6726         case KVM_MP_STATE_RUNNABLE:
6727                 vcpu->arch.apf.halted = false;
6728                 break;
6729         case KVM_MP_STATE_INIT_RECEIVED:
6730                 break;
6731         default:
6732                 return -EINTR;
6733                 break;
6734         }
6735         return 1;
6736 }
6737
6738 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
6739 {
6740         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6741                 !vcpu->arch.apf.halted);
6742 }
6743
6744 static int vcpu_run(struct kvm_vcpu *vcpu)
6745 {
6746         int r;
6747         struct kvm *kvm = vcpu->kvm;
6748
6749         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6750
6751         for (;;) {
6752                 if (kvm_vcpu_running(vcpu)) {
6753                         r = vcpu_enter_guest(vcpu);
6754                 } else {
6755                         r = vcpu_block(kvm, vcpu);
6756                 }
6757
6758                 if (r <= 0)
6759                         break;
6760
6761                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6762                 if (kvm_cpu_has_pending_timer(vcpu))
6763                         kvm_inject_pending_timer_irqs(vcpu);
6764
6765                 if (dm_request_for_irq_injection(vcpu) &&
6766                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
6767                         r = 0;
6768                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
6769                         ++vcpu->stat.request_irq_exits;
6770                         break;
6771                 }
6772
6773                 kvm_check_async_pf_completion(vcpu);
6774
6775                 if (signal_pending(current)) {
6776                         r = -EINTR;
6777                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6778                         ++vcpu->stat.signal_exits;
6779                         break;
6780                 }
6781                 if (need_resched()) {
6782                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6783                         cond_resched();
6784                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6785                 }
6786         }
6787
6788         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6789
6790         return r;
6791 }
6792
6793 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6794 {
6795         int r;
6796         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6797         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6798         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6799         if (r != EMULATE_DONE)
6800                 return 0;
6801         return 1;
6802 }
6803
6804 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6805 {
6806         BUG_ON(!vcpu->arch.pio.count);
6807
6808         return complete_emulated_io(vcpu);
6809 }
6810
6811 /*
6812  * Implements the following, as a state machine:
6813  *
6814  * read:
6815  *   for each fragment
6816  *     for each mmio piece in the fragment
6817  *       write gpa, len
6818  *       exit
6819  *       copy data
6820  *   execute insn
6821  *
6822  * write:
6823  *   for each fragment
6824  *     for each mmio piece in the fragment
6825  *       write gpa, len
6826  *       copy data
6827  *       exit
6828  */
6829 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6830 {
6831         struct kvm_run *run = vcpu->run;
6832         struct kvm_mmio_fragment *frag;
6833         unsigned len;
6834
6835         BUG_ON(!vcpu->mmio_needed);
6836
6837         /* Complete previous fragment */
6838         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6839         len = min(8u, frag->len);
6840         if (!vcpu->mmio_is_write)
6841                 memcpy(frag->data, run->mmio.data, len);
6842
6843         if (frag->len <= 8) {
6844                 /* Switch to the next fragment. */
6845                 frag++;
6846                 vcpu->mmio_cur_fragment++;
6847         } else {
6848                 /* Go forward to the next mmio piece. */
6849                 frag->data += len;
6850                 frag->gpa += len;
6851                 frag->len -= len;
6852         }
6853
6854         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6855                 vcpu->mmio_needed = 0;
6856
6857                 /* FIXME: return into emulator if single-stepping.  */
6858                 if (vcpu->mmio_is_write)
6859                         return 1;
6860                 vcpu->mmio_read_completed = 1;
6861                 return complete_emulated_io(vcpu);
6862         }
6863
6864         run->exit_reason = KVM_EXIT_MMIO;
6865         run->mmio.phys_addr = frag->gpa;
6866         if (vcpu->mmio_is_write)
6867                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6868         run->mmio.len = min(8u, frag->len);
6869         run->mmio.is_write = vcpu->mmio_is_write;
6870         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6871         return 0;
6872 }
6873
6874
6875 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6876 {
6877         struct fpu *fpu = &current->thread.fpu;
6878         int r;
6879         sigset_t sigsaved;
6880
6881         fpu__activate_curr(fpu);
6882
6883         if (vcpu->sigset_active)
6884                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6885
6886         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6887                 kvm_vcpu_block(vcpu);
6888                 kvm_apic_accept_events(vcpu);
6889                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6890                 r = -EAGAIN;
6891                 goto out;
6892         }
6893
6894         /* re-sync apic's tpr */
6895         if (!lapic_in_kernel(vcpu)) {
6896                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6897                         r = -EINVAL;
6898                         goto out;
6899                 }
6900         }
6901
6902         if (unlikely(vcpu->arch.complete_userspace_io)) {
6903                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6904                 vcpu->arch.complete_userspace_io = NULL;
6905                 r = cui(vcpu);
6906                 if (r <= 0)
6907                         goto out;
6908         } else
6909                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6910
6911         r = vcpu_run(vcpu);
6912
6913 out:
6914         post_kvm_run_save(vcpu);
6915         if (vcpu->sigset_active)
6916                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6917
6918         return r;
6919 }
6920
6921 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6922 {
6923         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6924                 /*
6925                  * We are here if userspace calls get_regs() in the middle of
6926                  * instruction emulation. Registers state needs to be copied
6927                  * back from emulation context to vcpu. Userspace shouldn't do
6928                  * that usually, but some bad designed PV devices (vmware
6929                  * backdoor interface) need this to work
6930                  */
6931                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6932                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6933         }
6934         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6935         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6936         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6937         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6938         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6939         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6940         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6941         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6942 #ifdef CONFIG_X86_64
6943         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6944         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6945         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6946         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6947         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6948         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6949         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6950         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6951 #endif
6952
6953         regs->rip = kvm_rip_read(vcpu);
6954         regs->rflags = kvm_get_rflags(vcpu);
6955
6956         return 0;
6957 }
6958
6959 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6960 {
6961         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6962         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6963
6964         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6965         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6966         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6967         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6968         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6969         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6970         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6971         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6972 #ifdef CONFIG_X86_64
6973         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6974         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6975         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6976         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6977         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6978         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6979         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6980         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6981 #endif
6982
6983         kvm_rip_write(vcpu, regs->rip);
6984         kvm_set_rflags(vcpu, regs->rflags);
6985
6986         vcpu->arch.exception.pending = false;
6987
6988         kvm_make_request(KVM_REQ_EVENT, vcpu);
6989
6990         return 0;
6991 }
6992
6993 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6994 {
6995         struct kvm_segment cs;
6996
6997         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6998         *db = cs.db;
6999         *l = cs.l;
7000 }
7001 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7002
7003 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7004                                   struct kvm_sregs *sregs)
7005 {
7006         struct desc_ptr dt;
7007
7008         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7009         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7010         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7011         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7012         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7013         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7014
7015         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7016         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7017
7018         kvm_x86_ops->get_idt(vcpu, &dt);
7019         sregs->idt.limit = dt.size;
7020         sregs->idt.base = dt.address;
7021         kvm_x86_ops->get_gdt(vcpu, &dt);
7022         sregs->gdt.limit = dt.size;
7023         sregs->gdt.base = dt.address;
7024
7025         sregs->cr0 = kvm_read_cr0(vcpu);
7026         sregs->cr2 = vcpu->arch.cr2;
7027         sregs->cr3 = kvm_read_cr3(vcpu);
7028         sregs->cr4 = kvm_read_cr4(vcpu);
7029         sregs->cr8 = kvm_get_cr8(vcpu);
7030         sregs->efer = vcpu->arch.efer;
7031         sregs->apic_base = kvm_get_apic_base(vcpu);
7032
7033         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7034
7035         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7036                 set_bit(vcpu->arch.interrupt.nr,
7037                         (unsigned long *)sregs->interrupt_bitmap);
7038
7039         return 0;
7040 }
7041
7042 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7043                                     struct kvm_mp_state *mp_state)
7044 {
7045         kvm_apic_accept_events(vcpu);
7046         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7047                                         vcpu->arch.pv.pv_unhalted)
7048                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7049         else
7050                 mp_state->mp_state = vcpu->arch.mp_state;
7051
7052         return 0;
7053 }
7054
7055 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7056                                     struct kvm_mp_state *mp_state)
7057 {
7058         if (!lapic_in_kernel(vcpu) &&
7059             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7060                 return -EINVAL;
7061
7062         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7063                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7064                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7065         } else
7066                 vcpu->arch.mp_state = mp_state->mp_state;
7067         kvm_make_request(KVM_REQ_EVENT, vcpu);
7068         return 0;
7069 }
7070
7071 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7072                     int reason, bool has_error_code, u32 error_code)
7073 {
7074         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7075         int ret;
7076
7077         init_emulate_ctxt(vcpu);
7078
7079         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7080                                    has_error_code, error_code);
7081
7082         if (ret)
7083                 return EMULATE_FAIL;
7084
7085         kvm_rip_write(vcpu, ctxt->eip);
7086         kvm_set_rflags(vcpu, ctxt->eflags);
7087         kvm_make_request(KVM_REQ_EVENT, vcpu);
7088         return EMULATE_DONE;
7089 }
7090 EXPORT_SYMBOL_GPL(kvm_task_switch);
7091
7092 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7093                                   struct kvm_sregs *sregs)
7094 {
7095         struct msr_data apic_base_msr;
7096         int mmu_reset_needed = 0;
7097         int pending_vec, max_bits, idx;
7098         struct desc_ptr dt;
7099
7100         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7101                 return -EINVAL;
7102
7103         dt.size = sregs->idt.limit;
7104         dt.address = sregs->idt.base;
7105         kvm_x86_ops->set_idt(vcpu, &dt);
7106         dt.size = sregs->gdt.limit;
7107         dt.address = sregs->gdt.base;
7108         kvm_x86_ops->set_gdt(vcpu, &dt);
7109
7110         vcpu->arch.cr2 = sregs->cr2;
7111         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7112         vcpu->arch.cr3 = sregs->cr3;
7113         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7114
7115         kvm_set_cr8(vcpu, sregs->cr8);
7116
7117         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7118         kvm_x86_ops->set_efer(vcpu, sregs->efer);
7119         apic_base_msr.data = sregs->apic_base;
7120         apic_base_msr.host_initiated = true;
7121         kvm_set_apic_base(vcpu, &apic_base_msr);
7122
7123         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7124         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7125         vcpu->arch.cr0 = sregs->cr0;
7126
7127         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7128         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7129         if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7130                 kvm_update_cpuid(vcpu);
7131
7132         idx = srcu_read_lock(&vcpu->kvm->srcu);
7133         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7134                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7135                 mmu_reset_needed = 1;
7136         }
7137         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7138
7139         if (mmu_reset_needed)
7140                 kvm_mmu_reset_context(vcpu);
7141
7142         max_bits = KVM_NR_INTERRUPTS;
7143         pending_vec = find_first_bit(
7144                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7145         if (pending_vec < max_bits) {
7146                 kvm_queue_interrupt(vcpu, pending_vec, false);
7147                 pr_debug("Set back pending irq %d\n", pending_vec);
7148         }
7149
7150         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7151         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7152         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7153         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7154         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7155         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7156
7157         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7158         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7159
7160         update_cr8_intercept(vcpu);
7161
7162         /* Older userspace won't unhalt the vcpu on reset. */
7163         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7164             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7165             !is_protmode(vcpu))
7166                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7167
7168         kvm_make_request(KVM_REQ_EVENT, vcpu);
7169
7170         return 0;
7171 }
7172
7173 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7174                                         struct kvm_guest_debug *dbg)
7175 {
7176         unsigned long rflags;
7177         int i, r;
7178
7179         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7180                 r = -EBUSY;
7181                 if (vcpu->arch.exception.pending)
7182                         goto out;
7183                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7184                         kvm_queue_exception(vcpu, DB_VECTOR);
7185                 else
7186                         kvm_queue_exception(vcpu, BP_VECTOR);
7187         }
7188
7189         /*
7190          * Read rflags as long as potentially injected trace flags are still
7191          * filtered out.
7192          */
7193         rflags = kvm_get_rflags(vcpu);
7194
7195         vcpu->guest_debug = dbg->control;
7196         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7197                 vcpu->guest_debug = 0;
7198
7199         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7200                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7201                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7202                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7203         } else {
7204                 for (i = 0; i < KVM_NR_DB_REGS; i++)
7205                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7206         }
7207         kvm_update_dr7(vcpu);
7208
7209         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7210                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7211                         get_segment_base(vcpu, VCPU_SREG_CS);
7212
7213         /*
7214          * Trigger an rflags update that will inject or remove the trace
7215          * flags.
7216          */
7217         kvm_set_rflags(vcpu, rflags);
7218
7219         kvm_x86_ops->update_bp_intercept(vcpu);
7220
7221         r = 0;
7222
7223 out:
7224
7225         return r;
7226 }
7227
7228 /*
7229  * Translate a guest virtual address to a guest physical address.
7230  */
7231 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7232                                     struct kvm_translation *tr)
7233 {
7234         unsigned long vaddr = tr->linear_address;
7235         gpa_t gpa;
7236         int idx;
7237
7238         idx = srcu_read_lock(&vcpu->kvm->srcu);
7239         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7240         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7241         tr->physical_address = gpa;
7242         tr->valid = gpa != UNMAPPED_GVA;
7243         tr->writeable = 1;
7244         tr->usermode = 0;
7245
7246         return 0;
7247 }
7248
7249 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7250 {
7251         struct fxregs_state *fxsave =
7252                         &vcpu->arch.guest_fpu.state.fxsave;
7253
7254         memcpy(fpu->fpr, fxsave->st_space, 128);
7255         fpu->fcw = fxsave->cwd;
7256         fpu->fsw = fxsave->swd;
7257         fpu->ftwx = fxsave->twd;
7258         fpu->last_opcode = fxsave->fop;
7259         fpu->last_ip = fxsave->rip;
7260         fpu->last_dp = fxsave->rdp;
7261         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7262
7263         return 0;
7264 }
7265
7266 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7267 {
7268         struct fxregs_state *fxsave =
7269                         &vcpu->arch.guest_fpu.state.fxsave;
7270
7271         memcpy(fxsave->st_space, fpu->fpr, 128);
7272         fxsave->cwd = fpu->fcw;
7273         fxsave->swd = fpu->fsw;
7274         fxsave->twd = fpu->ftwx;
7275         fxsave->fop = fpu->last_opcode;
7276         fxsave->rip = fpu->last_ip;
7277         fxsave->rdp = fpu->last_dp;
7278         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7279
7280         return 0;
7281 }
7282
7283 static void fx_init(struct kvm_vcpu *vcpu)
7284 {
7285         fpstate_init(&vcpu->arch.guest_fpu.state);
7286         if (boot_cpu_has(X86_FEATURE_XSAVES))
7287                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7288                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
7289
7290         /*
7291          * Ensure guest xcr0 is valid for loading
7292          */
7293         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7294
7295         vcpu->arch.cr0 |= X86_CR0_ET;
7296 }
7297
7298 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7299 {
7300         if (vcpu->guest_fpu_loaded)
7301                 return;
7302
7303         /*
7304          * Restore all possible states in the guest,
7305          * and assume host would use all available bits.
7306          * Guest xcr0 would be loaded later.
7307          */
7308         vcpu->guest_fpu_loaded = 1;
7309         __kernel_fpu_begin();
7310         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7311         trace_kvm_fpu(1);
7312 }
7313
7314 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7315 {
7316         if (!vcpu->guest_fpu_loaded) {
7317                 vcpu->fpu_counter = 0;
7318                 return;
7319         }
7320
7321         vcpu->guest_fpu_loaded = 0;
7322         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7323         __kernel_fpu_end();
7324         ++vcpu->stat.fpu_reload;
7325         /*
7326          * If using eager FPU mode, or if the guest is a frequent user
7327          * of the FPU, just leave the FPU active for next time.
7328          * Every 255 times fpu_counter rolls over to 0; a guest that uses
7329          * the FPU in bursts will revert to loading it on demand.
7330          */
7331         if (!use_eager_fpu()) {
7332                 if (++vcpu->fpu_counter < 5)
7333                         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7334         }
7335         trace_kvm_fpu(0);
7336 }
7337
7338 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7339 {
7340         kvmclock_reset(vcpu);
7341
7342         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7343         kvm_x86_ops->vcpu_free(vcpu);
7344 }
7345
7346 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7347                                                 unsigned int id)
7348 {
7349         struct kvm_vcpu *vcpu;
7350
7351         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7352                 printk_once(KERN_WARNING
7353                 "kvm: SMP vm created on host with unstable TSC; "
7354                 "guest TSC will not be reliable\n");
7355
7356         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7357
7358         return vcpu;
7359 }
7360
7361 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7362 {
7363         int r;
7364
7365         kvm_vcpu_mtrr_init(vcpu);
7366         r = vcpu_load(vcpu);
7367         if (r)
7368                 return r;
7369         kvm_vcpu_reset(vcpu, false);
7370         kvm_mmu_setup(vcpu);
7371         vcpu_put(vcpu);
7372         return r;
7373 }
7374
7375 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7376 {
7377         struct msr_data msr;
7378         struct kvm *kvm = vcpu->kvm;
7379
7380         if (vcpu_load(vcpu))
7381                 return;
7382         msr.data = 0x0;
7383         msr.index = MSR_IA32_TSC;
7384         msr.host_initiated = true;
7385         kvm_write_tsc(vcpu, &msr);
7386         vcpu_put(vcpu);
7387
7388         if (!kvmclock_periodic_sync)
7389                 return;
7390
7391         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7392                                         KVMCLOCK_SYNC_PERIOD);
7393 }
7394
7395 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7396 {
7397         int r;
7398         vcpu->arch.apf.msr_val = 0;
7399
7400         r = vcpu_load(vcpu);
7401         BUG_ON(r);
7402         kvm_mmu_unload(vcpu);
7403         vcpu_put(vcpu);
7404
7405         kvm_x86_ops->vcpu_free(vcpu);
7406 }
7407
7408 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7409 {
7410         vcpu->arch.hflags = 0;
7411
7412         atomic_set(&vcpu->arch.nmi_queued, 0);
7413         vcpu->arch.nmi_pending = 0;
7414         vcpu->arch.nmi_injected = false;
7415         kvm_clear_interrupt_queue(vcpu);
7416         kvm_clear_exception_queue(vcpu);
7417
7418         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7419         kvm_update_dr0123(vcpu);
7420         vcpu->arch.dr6 = DR6_INIT;
7421         kvm_update_dr6(vcpu);
7422         vcpu->arch.dr7 = DR7_FIXED_1;
7423         kvm_update_dr7(vcpu);
7424
7425         vcpu->arch.cr2 = 0;
7426
7427         kvm_make_request(KVM_REQ_EVENT, vcpu);
7428         vcpu->arch.apf.msr_val = 0;
7429         vcpu->arch.st.msr_val = 0;
7430
7431         kvmclock_reset(vcpu);
7432
7433         kvm_clear_async_pf_completion_queue(vcpu);
7434         kvm_async_pf_hash_reset(vcpu);
7435         vcpu->arch.apf.halted = false;
7436
7437         if (!init_event) {
7438                 kvm_pmu_reset(vcpu);
7439                 vcpu->arch.smbase = 0x30000;
7440         }
7441
7442         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7443         vcpu->arch.regs_avail = ~0;
7444         vcpu->arch.regs_dirty = ~0;
7445
7446         kvm_x86_ops->vcpu_reset(vcpu, init_event);
7447 }
7448
7449 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7450 {
7451         struct kvm_segment cs;
7452
7453         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7454         cs.selector = vector << 8;
7455         cs.base = vector << 12;
7456         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7457         kvm_rip_write(vcpu, 0);
7458 }
7459
7460 int kvm_arch_hardware_enable(void)
7461 {
7462         struct kvm *kvm;
7463         struct kvm_vcpu *vcpu;
7464         int i;
7465         int ret;
7466         u64 local_tsc;
7467         u64 max_tsc = 0;
7468         bool stable, backwards_tsc = false;
7469
7470         kvm_shared_msr_cpu_online();
7471         ret = kvm_x86_ops->hardware_enable();
7472         if (ret != 0)
7473                 return ret;
7474
7475         local_tsc = rdtsc();
7476         stable = !check_tsc_unstable();
7477         list_for_each_entry(kvm, &vm_list, vm_list) {
7478                 kvm_for_each_vcpu(i, vcpu, kvm) {
7479                         if (!stable && vcpu->cpu == smp_processor_id())
7480                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7481                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7482                                 backwards_tsc = true;
7483                                 if (vcpu->arch.last_host_tsc > max_tsc)
7484                                         max_tsc = vcpu->arch.last_host_tsc;
7485                         }
7486                 }
7487         }
7488
7489         /*
7490          * Sometimes, even reliable TSCs go backwards.  This happens on
7491          * platforms that reset TSC during suspend or hibernate actions, but
7492          * maintain synchronization.  We must compensate.  Fortunately, we can
7493          * detect that condition here, which happens early in CPU bringup,
7494          * before any KVM threads can be running.  Unfortunately, we can't
7495          * bring the TSCs fully up to date with real time, as we aren't yet far
7496          * enough into CPU bringup that we know how much real time has actually
7497          * elapsed; our helper function, get_kernel_ns() will be using boot
7498          * variables that haven't been updated yet.
7499          *
7500          * So we simply find the maximum observed TSC above, then record the
7501          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7502          * the adjustment will be applied.  Note that we accumulate
7503          * adjustments, in case multiple suspend cycles happen before some VCPU
7504          * gets a chance to run again.  In the event that no KVM threads get a
7505          * chance to run, we will miss the entire elapsed period, as we'll have
7506          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7507          * loose cycle time.  This isn't too big a deal, since the loss will be
7508          * uniform across all VCPUs (not to mention the scenario is extremely
7509          * unlikely). It is possible that a second hibernate recovery happens
7510          * much faster than a first, causing the observed TSC here to be
7511          * smaller; this would require additional padding adjustment, which is
7512          * why we set last_host_tsc to the local tsc observed here.
7513          *
7514          * N.B. - this code below runs only on platforms with reliable TSC,
7515          * as that is the only way backwards_tsc is set above.  Also note
7516          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7517          * have the same delta_cyc adjustment applied if backwards_tsc
7518          * is detected.  Note further, this adjustment is only done once,
7519          * as we reset last_host_tsc on all VCPUs to stop this from being
7520          * called multiple times (one for each physical CPU bringup).
7521          *
7522          * Platforms with unreliable TSCs don't have to deal with this, they
7523          * will be compensated by the logic in vcpu_load, which sets the TSC to
7524          * catchup mode.  This will catchup all VCPUs to real time, but cannot
7525          * guarantee that they stay in perfect synchronization.
7526          */
7527         if (backwards_tsc) {
7528                 u64 delta_cyc = max_tsc - local_tsc;
7529                 backwards_tsc_observed = true;
7530                 list_for_each_entry(kvm, &vm_list, vm_list) {
7531                         kvm_for_each_vcpu(i, vcpu, kvm) {
7532                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7533                                 vcpu->arch.last_host_tsc = local_tsc;
7534                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7535                         }
7536
7537                         /*
7538                          * We have to disable TSC offset matching.. if you were
7539                          * booting a VM while issuing an S4 host suspend....
7540                          * you may have some problem.  Solving this issue is
7541                          * left as an exercise to the reader.
7542                          */
7543                         kvm->arch.last_tsc_nsec = 0;
7544                         kvm->arch.last_tsc_write = 0;
7545                 }
7546
7547         }
7548         return 0;
7549 }
7550
7551 void kvm_arch_hardware_disable(void)
7552 {
7553         kvm_x86_ops->hardware_disable();
7554         drop_user_return_notifiers();
7555 }
7556
7557 int kvm_arch_hardware_setup(void)
7558 {
7559         int r;
7560
7561         r = kvm_x86_ops->hardware_setup();
7562         if (r != 0)
7563                 return r;
7564
7565         if (kvm_has_tsc_control) {
7566                 /*
7567                  * Make sure the user can only configure tsc_khz values that
7568                  * fit into a signed integer.
7569                  * A min value is not calculated needed because it will always
7570                  * be 1 on all machines.
7571                  */
7572                 u64 max = min(0x7fffffffULL,
7573                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7574                 kvm_max_guest_tsc_khz = max;
7575
7576                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7577         }
7578
7579         kvm_init_msr_list();
7580         return 0;
7581 }
7582
7583 void kvm_arch_hardware_unsetup(void)
7584 {
7585         kvm_x86_ops->hardware_unsetup();
7586 }
7587
7588 void kvm_arch_check_processor_compat(void *rtn)
7589 {
7590         kvm_x86_ops->check_processor_compatibility(rtn);
7591 }
7592
7593 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7594 {
7595         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7596 }
7597 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7598
7599 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7600 {
7601         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7602 }
7603
7604 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7605 {
7606         return irqchip_in_kernel(vcpu->kvm) == lapic_in_kernel(vcpu);
7607 }
7608
7609 struct static_key kvm_no_apic_vcpu __read_mostly;
7610 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7611
7612 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7613 {
7614         struct page *page;
7615         struct kvm *kvm;
7616         int r;
7617
7618         BUG_ON(vcpu->kvm == NULL);
7619         kvm = vcpu->kvm;
7620
7621         vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7622         vcpu->arch.pv.pv_unhalted = false;
7623         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7624         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7625                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7626         else
7627                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7628
7629         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7630         if (!page) {
7631                 r = -ENOMEM;
7632                 goto fail;
7633         }
7634         vcpu->arch.pio_data = page_address(page);
7635
7636         kvm_set_tsc_khz(vcpu, max_tsc_khz);
7637
7638         r = kvm_mmu_create(vcpu);
7639         if (r < 0)
7640                 goto fail_free_pio_data;
7641
7642         if (irqchip_in_kernel(kvm)) {
7643                 r = kvm_create_lapic(vcpu);
7644                 if (r < 0)
7645                         goto fail_mmu_destroy;
7646         } else
7647                 static_key_slow_inc(&kvm_no_apic_vcpu);
7648
7649         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7650                                        GFP_KERNEL);
7651         if (!vcpu->arch.mce_banks) {
7652                 r = -ENOMEM;
7653                 goto fail_free_lapic;
7654         }
7655         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7656
7657         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7658                 r = -ENOMEM;
7659                 goto fail_free_mce_banks;
7660         }
7661
7662         fx_init(vcpu);
7663
7664         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7665         vcpu->arch.pv_time_enabled = false;
7666
7667         vcpu->arch.guest_supported_xcr0 = 0;
7668         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7669
7670         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7671
7672         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7673
7674         kvm_async_pf_hash_reset(vcpu);
7675         kvm_pmu_init(vcpu);
7676
7677         vcpu->arch.pending_external_vector = -1;
7678
7679         kvm_hv_vcpu_init(vcpu);
7680
7681         return 0;
7682
7683 fail_free_mce_banks:
7684         kfree(vcpu->arch.mce_banks);
7685 fail_free_lapic:
7686         kvm_free_lapic(vcpu);
7687 fail_mmu_destroy:
7688         kvm_mmu_destroy(vcpu);
7689 fail_free_pio_data:
7690         free_page((unsigned long)vcpu->arch.pio_data);
7691 fail:
7692         return r;
7693 }
7694
7695 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7696 {
7697         int idx;
7698
7699         kvm_hv_vcpu_uninit(vcpu);
7700         kvm_pmu_destroy(vcpu);
7701         kfree(vcpu->arch.mce_banks);
7702         kvm_free_lapic(vcpu);
7703         idx = srcu_read_lock(&vcpu->kvm->srcu);
7704         kvm_mmu_destroy(vcpu);
7705         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7706         free_page((unsigned long)vcpu->arch.pio_data);
7707         if (!lapic_in_kernel(vcpu))
7708                 static_key_slow_dec(&kvm_no_apic_vcpu);
7709 }
7710
7711 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7712 {
7713         kvm_x86_ops->sched_in(vcpu, cpu);
7714 }
7715
7716 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7717 {
7718         if (type)
7719                 return -EINVAL;
7720
7721         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7722         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7723         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7724         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7725         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7726
7727         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7728         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7729         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7730         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7731                 &kvm->arch.irq_sources_bitmap);
7732
7733         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7734         mutex_init(&kvm->arch.apic_map_lock);
7735         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7736
7737         pvclock_update_vm_gtod_copy(kvm);
7738
7739         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7740         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7741
7742         kvm_page_track_init(kvm);
7743         kvm_mmu_init_vm(kvm);
7744
7745         if (kvm_x86_ops->vm_init)
7746                 return kvm_x86_ops->vm_init(kvm);
7747
7748         return 0;
7749 }
7750
7751 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7752 {
7753         int r;
7754         r = vcpu_load(vcpu);
7755         BUG_ON(r);
7756         kvm_mmu_unload(vcpu);
7757         vcpu_put(vcpu);
7758 }
7759
7760 static void kvm_free_vcpus(struct kvm *kvm)
7761 {
7762         unsigned int i;
7763         struct kvm_vcpu *vcpu;
7764
7765         /*
7766          * Unpin any mmu pages first.
7767          */
7768         kvm_for_each_vcpu(i, vcpu, kvm) {
7769                 kvm_clear_async_pf_completion_queue(vcpu);
7770                 kvm_unload_vcpu_mmu(vcpu);
7771         }
7772         kvm_for_each_vcpu(i, vcpu, kvm)
7773                 kvm_arch_vcpu_free(vcpu);
7774
7775         mutex_lock(&kvm->lock);
7776         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7777                 kvm->vcpus[i] = NULL;
7778
7779         atomic_set(&kvm->online_vcpus, 0);
7780         mutex_unlock(&kvm->lock);
7781 }
7782
7783 void kvm_arch_sync_events(struct kvm *kvm)
7784 {
7785         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7786         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7787         kvm_free_all_assigned_devices(kvm);
7788         kvm_free_pit(kvm);
7789 }
7790
7791 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7792 {
7793         int i, r;
7794         unsigned long hva;
7795         struct kvm_memslots *slots = kvm_memslots(kvm);
7796         struct kvm_memory_slot *slot, old;
7797
7798         /* Called with kvm->slots_lock held.  */
7799         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
7800                 return -EINVAL;
7801
7802         slot = id_to_memslot(slots, id);
7803         if (size) {
7804                 if (slot->npages)
7805                         return -EEXIST;
7806
7807                 /*
7808                  * MAP_SHARED to prevent internal slot pages from being moved
7809                  * by fork()/COW.
7810                  */
7811                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
7812                               MAP_SHARED | MAP_ANONYMOUS, 0);
7813                 if (IS_ERR((void *)hva))
7814                         return PTR_ERR((void *)hva);
7815         } else {
7816                 if (!slot->npages)
7817                         return 0;
7818
7819                 hva = 0;
7820         }
7821
7822         old = *slot;
7823         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7824                 struct kvm_userspace_memory_region m;
7825
7826                 m.slot = id | (i << 16);
7827                 m.flags = 0;
7828                 m.guest_phys_addr = gpa;
7829                 m.userspace_addr = hva;
7830                 m.memory_size = size;
7831                 r = __kvm_set_memory_region(kvm, &m);
7832                 if (r < 0)
7833                         return r;
7834         }
7835
7836         if (!size) {
7837                 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
7838                 WARN_ON(r < 0);
7839         }
7840
7841         return 0;
7842 }
7843 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7844
7845 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7846 {
7847         int r;
7848
7849         mutex_lock(&kvm->slots_lock);
7850         r = __x86_set_memory_region(kvm, id, gpa, size);
7851         mutex_unlock(&kvm->slots_lock);
7852
7853         return r;
7854 }
7855 EXPORT_SYMBOL_GPL(x86_set_memory_region);
7856
7857 void kvm_arch_destroy_vm(struct kvm *kvm)
7858 {
7859         if (current->mm == kvm->mm) {
7860                 /*
7861                  * Free memory regions allocated on behalf of userspace,
7862                  * unless the the memory map has changed due to process exit
7863                  * or fd copying.
7864                  */
7865                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
7866                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
7867                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
7868         }
7869         if (kvm_x86_ops->vm_destroy)
7870                 kvm_x86_ops->vm_destroy(kvm);
7871         kvm_iommu_unmap_guest(kvm);
7872         kfree(kvm->arch.vpic);
7873         kfree(kvm->arch.vioapic);
7874         kvm_free_vcpus(kvm);
7875         kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7876         kvm_mmu_uninit_vm(kvm);
7877 }
7878
7879 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7880                            struct kvm_memory_slot *dont)
7881 {
7882         int i;
7883
7884         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7885                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7886                         kvfree(free->arch.rmap[i]);
7887                         free->arch.rmap[i] = NULL;
7888                 }
7889                 if (i == 0)
7890                         continue;
7891
7892                 if (!dont || free->arch.lpage_info[i - 1] !=
7893                              dont->arch.lpage_info[i - 1]) {
7894                         kvfree(free->arch.lpage_info[i - 1]);
7895                         free->arch.lpage_info[i - 1] = NULL;
7896                 }
7897         }
7898
7899         kvm_page_track_free_memslot(free, dont);
7900 }
7901
7902 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7903                             unsigned long npages)
7904 {
7905         int i;
7906
7907         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7908                 struct kvm_lpage_info *linfo;
7909                 unsigned long ugfn;
7910                 int lpages;
7911                 int level = i + 1;
7912
7913                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7914                                       slot->base_gfn, level) + 1;
7915
7916                 slot->arch.rmap[i] =
7917                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7918                 if (!slot->arch.rmap[i])
7919                         goto out_free;
7920                 if (i == 0)
7921                         continue;
7922
7923                 linfo = kvm_kvzalloc(lpages * sizeof(*linfo));
7924                 if (!linfo)
7925                         goto out_free;
7926
7927                 slot->arch.lpage_info[i - 1] = linfo;
7928
7929                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7930                         linfo[0].disallow_lpage = 1;
7931                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7932                         linfo[lpages - 1].disallow_lpage = 1;
7933                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7934                 /*
7935                  * If the gfn and userspace address are not aligned wrt each
7936                  * other, or if explicitly asked to, disable large page
7937                  * support for this slot
7938                  */
7939                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7940                     !kvm_largepages_enabled()) {
7941                         unsigned long j;
7942
7943                         for (j = 0; j < lpages; ++j)
7944                                 linfo[j].disallow_lpage = 1;
7945                 }
7946         }
7947
7948         if (kvm_page_track_create_memslot(slot, npages))
7949                 goto out_free;
7950
7951         return 0;
7952
7953 out_free:
7954         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7955                 kvfree(slot->arch.rmap[i]);
7956                 slot->arch.rmap[i] = NULL;
7957                 if (i == 0)
7958                         continue;
7959
7960                 kvfree(slot->arch.lpage_info[i - 1]);
7961                 slot->arch.lpage_info[i - 1] = NULL;
7962         }
7963         return -ENOMEM;
7964 }
7965
7966 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
7967 {
7968         /*
7969          * memslots->generation has been incremented.
7970          * mmio generation may have reached its maximum value.
7971          */
7972         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
7973 }
7974
7975 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7976                                 struct kvm_memory_slot *memslot,
7977                                 const struct kvm_userspace_memory_region *mem,
7978                                 enum kvm_mr_change change)
7979 {
7980         return 0;
7981 }
7982
7983 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
7984                                      struct kvm_memory_slot *new)
7985 {
7986         /* Still write protect RO slot */
7987         if (new->flags & KVM_MEM_READONLY) {
7988                 kvm_mmu_slot_remove_write_access(kvm, new);
7989                 return;
7990         }
7991
7992         /*
7993          * Call kvm_x86_ops dirty logging hooks when they are valid.
7994          *
7995          * kvm_x86_ops->slot_disable_log_dirty is called when:
7996          *
7997          *  - KVM_MR_CREATE with dirty logging is disabled
7998          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
7999          *
8000          * The reason is, in case of PML, we need to set D-bit for any slots
8001          * with dirty logging disabled in order to eliminate unnecessary GPA
8002          * logging in PML buffer (and potential PML buffer full VMEXT). This
8003          * guarantees leaving PML enabled during guest's lifetime won't have
8004          * any additonal overhead from PML when guest is running with dirty
8005          * logging disabled for memory slots.
8006          *
8007          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8008          * to dirty logging mode.
8009          *
8010          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8011          *
8012          * In case of write protect:
8013          *
8014          * Write protect all pages for dirty logging.
8015          *
8016          * All the sptes including the large sptes which point to this
8017          * slot are set to readonly. We can not create any new large
8018          * spte on this slot until the end of the logging.
8019          *
8020          * See the comments in fast_page_fault().
8021          */
8022         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8023                 if (kvm_x86_ops->slot_enable_log_dirty)
8024                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8025                 else
8026                         kvm_mmu_slot_remove_write_access(kvm, new);
8027         } else {
8028                 if (kvm_x86_ops->slot_disable_log_dirty)
8029                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8030         }
8031 }
8032
8033 void kvm_arch_commit_memory_region(struct kvm *kvm,
8034                                 const struct kvm_userspace_memory_region *mem,
8035                                 const struct kvm_memory_slot *old,
8036                                 const struct kvm_memory_slot *new,
8037                                 enum kvm_mr_change change)
8038 {
8039         int nr_mmu_pages = 0;
8040
8041         if (!kvm->arch.n_requested_mmu_pages)
8042                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8043
8044         if (nr_mmu_pages)
8045                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8046
8047         /*
8048          * Dirty logging tracks sptes in 4k granularity, meaning that large
8049          * sptes have to be split.  If live migration is successful, the guest
8050          * in the source machine will be destroyed and large sptes will be
8051          * created in the destination. However, if the guest continues to run
8052          * in the source machine (for example if live migration fails), small
8053          * sptes will remain around and cause bad performance.
8054          *
8055          * Scan sptes if dirty logging has been stopped, dropping those
8056          * which can be collapsed into a single large-page spte.  Later
8057          * page faults will create the large-page sptes.
8058          */
8059         if ((change != KVM_MR_DELETE) &&
8060                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8061                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8062                 kvm_mmu_zap_collapsible_sptes(kvm, new);
8063
8064         /*
8065          * Set up write protection and/or dirty logging for the new slot.
8066          *
8067          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8068          * been zapped so no dirty logging staff is needed for old slot. For
8069          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8070          * new and it's also covered when dealing with the new slot.
8071          *
8072          * FIXME: const-ify all uses of struct kvm_memory_slot.
8073          */
8074         if (change != KVM_MR_DELETE)
8075                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8076 }
8077
8078 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8079 {
8080         kvm_mmu_invalidate_zap_all_pages(kvm);
8081 }
8082
8083 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8084                                    struct kvm_memory_slot *slot)
8085 {
8086         kvm_mmu_invalidate_zap_all_pages(kvm);
8087 }
8088
8089 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8090 {
8091         if (!list_empty_careful(&vcpu->async_pf.done))
8092                 return true;
8093
8094         if (kvm_apic_has_events(vcpu))
8095                 return true;
8096
8097         if (vcpu->arch.pv.pv_unhalted)
8098                 return true;
8099
8100         if (atomic_read(&vcpu->arch.nmi_queued))
8101                 return true;
8102
8103         if (test_bit(KVM_REQ_SMI, &vcpu->requests))
8104                 return true;
8105
8106         if (kvm_arch_interrupt_allowed(vcpu) &&
8107             kvm_cpu_has_interrupt(vcpu))
8108                 return true;
8109
8110         if (kvm_hv_has_stimer_pending(vcpu))
8111                 return true;
8112
8113         return false;
8114 }
8115
8116 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8117 {
8118         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8119                 kvm_x86_ops->check_nested_events(vcpu, false);
8120
8121         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8122 }
8123
8124 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8125 {
8126         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8127 }
8128
8129 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8130 {
8131         return kvm_x86_ops->interrupt_allowed(vcpu);
8132 }
8133
8134 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8135 {
8136         if (is_64_bit_mode(vcpu))
8137                 return kvm_rip_read(vcpu);
8138         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8139                      kvm_rip_read(vcpu));
8140 }
8141 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8142
8143 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8144 {
8145         return kvm_get_linear_rip(vcpu) == linear_rip;
8146 }
8147 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8148
8149 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8150 {
8151         unsigned long rflags;
8152
8153         rflags = kvm_x86_ops->get_rflags(vcpu);
8154         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8155                 rflags &= ~X86_EFLAGS_TF;
8156         return rflags;
8157 }
8158 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8159
8160 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8161 {
8162         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8163             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8164                 rflags |= X86_EFLAGS_TF;
8165         kvm_x86_ops->set_rflags(vcpu, rflags);
8166 }
8167
8168 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8169 {
8170         __kvm_set_rflags(vcpu, rflags);
8171         kvm_make_request(KVM_REQ_EVENT, vcpu);
8172 }
8173 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8174
8175 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8176 {
8177         int r;
8178
8179         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8180               work->wakeup_all)
8181                 return;
8182
8183         r = kvm_mmu_reload(vcpu);
8184         if (unlikely(r))
8185                 return;
8186
8187         if (!vcpu->arch.mmu.direct_map &&
8188               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8189                 return;
8190
8191         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8192 }
8193
8194 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8195 {
8196         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8197 }
8198
8199 static inline u32 kvm_async_pf_next_probe(u32 key)
8200 {
8201         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8202 }
8203
8204 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8205 {
8206         u32 key = kvm_async_pf_hash_fn(gfn);
8207
8208         while (vcpu->arch.apf.gfns[key] != ~0)
8209                 key = kvm_async_pf_next_probe(key);
8210
8211         vcpu->arch.apf.gfns[key] = gfn;
8212 }
8213
8214 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8215 {
8216         int i;
8217         u32 key = kvm_async_pf_hash_fn(gfn);
8218
8219         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8220                      (vcpu->arch.apf.gfns[key] != gfn &&
8221                       vcpu->arch.apf.gfns[key] != ~0); i++)
8222                 key = kvm_async_pf_next_probe(key);
8223
8224         return key;
8225 }
8226
8227 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8228 {
8229         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8230 }
8231
8232 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8233 {
8234         u32 i, j, k;
8235
8236         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8237         while (true) {
8238                 vcpu->arch.apf.gfns[i] = ~0;
8239                 do {
8240                         j = kvm_async_pf_next_probe(j);
8241                         if (vcpu->arch.apf.gfns[j] == ~0)
8242                                 return;
8243                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8244                         /*
8245                          * k lies cyclically in ]i,j]
8246                          * |    i.k.j |
8247                          * |....j i.k.| or  |.k..j i...|
8248                          */
8249                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8250                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8251                 i = j;
8252         }
8253 }
8254
8255 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8256 {
8257
8258         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8259                                       sizeof(val));
8260 }
8261
8262 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8263                                      struct kvm_async_pf *work)
8264 {
8265         struct x86_exception fault;
8266
8267         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8268         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8269
8270         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8271             (vcpu->arch.apf.send_user_only &&
8272              kvm_x86_ops->get_cpl(vcpu) == 0))
8273                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8274         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8275                 fault.vector = PF_VECTOR;
8276                 fault.error_code_valid = true;
8277                 fault.error_code = 0;
8278                 fault.nested_page_fault = false;
8279                 fault.address = work->arch.token;
8280                 kvm_inject_page_fault(vcpu, &fault);
8281         }
8282 }
8283
8284 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8285                                  struct kvm_async_pf *work)
8286 {
8287         struct x86_exception fault;
8288
8289         trace_kvm_async_pf_ready(work->arch.token, work->gva);
8290         if (work->wakeup_all)
8291                 work->arch.token = ~0; /* broadcast wakeup */
8292         else
8293                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8294
8295         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8296             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8297                 fault.vector = PF_VECTOR;
8298                 fault.error_code_valid = true;
8299                 fault.error_code = 0;
8300                 fault.nested_page_fault = false;
8301                 fault.address = work->arch.token;
8302                 kvm_inject_page_fault(vcpu, &fault);
8303         }
8304         vcpu->arch.apf.halted = false;
8305         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8306 }
8307
8308 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8309 {
8310         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8311                 return true;
8312         else
8313                 return !kvm_event_needs_reinjection(vcpu) &&
8314                         kvm_x86_ops->interrupt_allowed(vcpu);
8315 }
8316
8317 void kvm_arch_start_assignment(struct kvm *kvm)
8318 {
8319         atomic_inc(&kvm->arch.assigned_device_count);
8320 }
8321 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8322
8323 void kvm_arch_end_assignment(struct kvm *kvm)
8324 {
8325         atomic_dec(&kvm->arch.assigned_device_count);
8326 }
8327 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8328
8329 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8330 {
8331         return atomic_read(&kvm->arch.assigned_device_count);
8332 }
8333 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8334
8335 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8336 {
8337         atomic_inc(&kvm->arch.noncoherent_dma_count);
8338 }
8339 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8340
8341 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8342 {
8343         atomic_dec(&kvm->arch.noncoherent_dma_count);
8344 }
8345 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8346
8347 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8348 {
8349         return atomic_read(&kvm->arch.noncoherent_dma_count);
8350 }
8351 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8352
8353 bool kvm_arch_has_irq_bypass(void)
8354 {
8355         return kvm_x86_ops->update_pi_irte != NULL;
8356 }
8357
8358 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8359                                       struct irq_bypass_producer *prod)
8360 {
8361         struct kvm_kernel_irqfd *irqfd =
8362                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8363
8364         irqfd->producer = prod;
8365
8366         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8367                                            prod->irq, irqfd->gsi, 1);
8368 }
8369
8370 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8371                                       struct irq_bypass_producer *prod)
8372 {
8373         int ret;
8374         struct kvm_kernel_irqfd *irqfd =
8375                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8376
8377         WARN_ON(irqfd->producer != prod);
8378         irqfd->producer = NULL;
8379
8380         /*
8381          * When producer of consumer is unregistered, we change back to
8382          * remapped mode, so we can re-use the current implementation
8383          * when the irq is masked/disabed or the consumer side (KVM
8384          * int this case doesn't want to receive the interrupts.
8385         */
8386         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8387         if (ret)
8388                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8389                        " fails: %d\n", irqfd->consumer.token, ret);
8390 }
8391
8392 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8393                                    uint32_t guest_irq, bool set)
8394 {
8395         if (!kvm_x86_ops->update_pi_irte)
8396                 return -EINVAL;
8397
8398         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8399 }
8400
8401 bool kvm_vector_hashing_enabled(void)
8402 {
8403         return vector_hashing;
8404 }
8405 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8406
8407 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8408 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8409 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8410 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8411 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8412 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8413 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8414 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8415 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8416 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8417 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8418 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8419 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8420 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8421 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8422 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8423 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8424 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8425 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);