Merge commit 'perf/core' into perf/hw-breakpoint
[cascardo/linux.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Amit Shah    <amit.shah@qumranet.com>
14  *   Ben-Ami Yassour <benami@il.ibm.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
28
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40 #include <trace/events/kvm.h>
41 #undef TRACE_INCLUDE_FILE
42 #define CREATE_TRACE_POINTS
43 #include "trace.h"
44
45 #include <asm/uaccess.h>
46 #include <asm/msr.h>
47 #include <asm/desc.h>
48 #include <asm/mtrr.h>
49 #include <asm/mce.h>
50
51 #define MAX_IO_MSRS 256
52 #define CR0_RESERVED_BITS                                               \
53         (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
54                           | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
55                           | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
56 #define CR4_RESERVED_BITS                                               \
57         (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
58                           | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
59                           | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR  \
60                           | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
61
62 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
63
64 #define KVM_MAX_MCE_BANKS 32
65 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
66
67 /* EFER defaults:
68  * - enable syscall per default because its emulated by KVM
69  * - enable LME and LMA per default on 64 bit KVM
70  */
71 #ifdef CONFIG_X86_64
72 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
73 #else
74 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
75 #endif
76
77 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
78 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
79
80 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
81 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
82                                     struct kvm_cpuid_entry2 __user *entries);
83
84 struct kvm_x86_ops *kvm_x86_ops;
85 EXPORT_SYMBOL_GPL(kvm_x86_ops);
86
87 int ignore_msrs = 0;
88 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
89
90 struct kvm_stats_debugfs_item debugfs_entries[] = {
91         { "pf_fixed", VCPU_STAT(pf_fixed) },
92         { "pf_guest", VCPU_STAT(pf_guest) },
93         { "tlb_flush", VCPU_STAT(tlb_flush) },
94         { "invlpg", VCPU_STAT(invlpg) },
95         { "exits", VCPU_STAT(exits) },
96         { "io_exits", VCPU_STAT(io_exits) },
97         { "mmio_exits", VCPU_STAT(mmio_exits) },
98         { "signal_exits", VCPU_STAT(signal_exits) },
99         { "irq_window", VCPU_STAT(irq_window_exits) },
100         { "nmi_window", VCPU_STAT(nmi_window_exits) },
101         { "halt_exits", VCPU_STAT(halt_exits) },
102         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
103         { "hypercalls", VCPU_STAT(hypercalls) },
104         { "request_irq", VCPU_STAT(request_irq_exits) },
105         { "irq_exits", VCPU_STAT(irq_exits) },
106         { "host_state_reload", VCPU_STAT(host_state_reload) },
107         { "efer_reload", VCPU_STAT(efer_reload) },
108         { "fpu_reload", VCPU_STAT(fpu_reload) },
109         { "insn_emulation", VCPU_STAT(insn_emulation) },
110         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
111         { "irq_injections", VCPU_STAT(irq_injections) },
112         { "nmi_injections", VCPU_STAT(nmi_injections) },
113         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
114         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
115         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
116         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
117         { "mmu_flooded", VM_STAT(mmu_flooded) },
118         { "mmu_recycled", VM_STAT(mmu_recycled) },
119         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
120         { "mmu_unsync", VM_STAT(mmu_unsync) },
121         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
122         { "largepages", VM_STAT(lpages) },
123         { NULL }
124 };
125
126 unsigned long segment_base(u16 selector)
127 {
128         struct descriptor_table gdt;
129         struct desc_struct *d;
130         unsigned long table_base;
131         unsigned long v;
132
133         if (selector == 0)
134                 return 0;
135
136         kvm_get_gdt(&gdt);
137         table_base = gdt.base;
138
139         if (selector & 4) {           /* from ldt */
140                 u16 ldt_selector = kvm_read_ldt();
141
142                 table_base = segment_base(ldt_selector);
143         }
144         d = (struct desc_struct *)(table_base + (selector & ~7));
145         v = get_desc_base(d);
146 #ifdef CONFIG_X86_64
147         if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
148                 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
149 #endif
150         return v;
151 }
152 EXPORT_SYMBOL_GPL(segment_base);
153
154 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
155 {
156         if (irqchip_in_kernel(vcpu->kvm))
157                 return vcpu->arch.apic_base;
158         else
159                 return vcpu->arch.apic_base;
160 }
161 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
162
163 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
164 {
165         /* TODO: reserve bits check */
166         if (irqchip_in_kernel(vcpu->kvm))
167                 kvm_lapic_set_base(vcpu, data);
168         else
169                 vcpu->arch.apic_base = data;
170 }
171 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
172
173 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
174 {
175         WARN_ON(vcpu->arch.exception.pending);
176         vcpu->arch.exception.pending = true;
177         vcpu->arch.exception.has_error_code = false;
178         vcpu->arch.exception.nr = nr;
179 }
180 EXPORT_SYMBOL_GPL(kvm_queue_exception);
181
182 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
183                            u32 error_code)
184 {
185         ++vcpu->stat.pf_guest;
186
187         if (vcpu->arch.exception.pending) {
188                 switch(vcpu->arch.exception.nr) {
189                 case DF_VECTOR:
190                         /* triple fault -> shutdown */
191                         set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
192                         return;
193                 case PF_VECTOR:
194                         vcpu->arch.exception.nr = DF_VECTOR;
195                         vcpu->arch.exception.error_code = 0;
196                         return;
197                 default:
198                         /* replace previous exception with a new one in a hope
199                            that instruction re-execution will regenerate lost
200                            exception */
201                         vcpu->arch.exception.pending = false;
202                         break;
203                 }
204         }
205         vcpu->arch.cr2 = addr;
206         kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
207 }
208
209 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
210 {
211         vcpu->arch.nmi_pending = 1;
212 }
213 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
214
215 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
216 {
217         WARN_ON(vcpu->arch.exception.pending);
218         vcpu->arch.exception.pending = true;
219         vcpu->arch.exception.has_error_code = true;
220         vcpu->arch.exception.nr = nr;
221         vcpu->arch.exception.error_code = error_code;
222 }
223 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
224
225 /*
226  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
227  * a #GP and return false.
228  */
229 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
230 {
231         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
232                 return true;
233         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
234         return false;
235 }
236 EXPORT_SYMBOL_GPL(kvm_require_cpl);
237
238 /*
239  * Load the pae pdptrs.  Return true is they are all valid.
240  */
241 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
242 {
243         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
244         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
245         int i;
246         int ret;
247         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
248
249         ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
250                                   offset * sizeof(u64), sizeof(pdpte));
251         if (ret < 0) {
252                 ret = 0;
253                 goto out;
254         }
255         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
256                 if (is_present_gpte(pdpte[i]) &&
257                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
258                         ret = 0;
259                         goto out;
260                 }
261         }
262         ret = 1;
263
264         memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
265         __set_bit(VCPU_EXREG_PDPTR,
266                   (unsigned long *)&vcpu->arch.regs_avail);
267         __set_bit(VCPU_EXREG_PDPTR,
268                   (unsigned long *)&vcpu->arch.regs_dirty);
269 out:
270
271         return ret;
272 }
273 EXPORT_SYMBOL_GPL(load_pdptrs);
274
275 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
276 {
277         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
278         bool changed = true;
279         int r;
280
281         if (is_long_mode(vcpu) || !is_pae(vcpu))
282                 return false;
283
284         if (!test_bit(VCPU_EXREG_PDPTR,
285                       (unsigned long *)&vcpu->arch.regs_avail))
286                 return true;
287
288         r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
289         if (r < 0)
290                 goto out;
291         changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
292 out:
293
294         return changed;
295 }
296
297 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
298 {
299         if (cr0 & CR0_RESERVED_BITS) {
300                 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
301                        cr0, vcpu->arch.cr0);
302                 kvm_inject_gp(vcpu, 0);
303                 return;
304         }
305
306         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
307                 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
308                 kvm_inject_gp(vcpu, 0);
309                 return;
310         }
311
312         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
313                 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
314                        "and a clear PE flag\n");
315                 kvm_inject_gp(vcpu, 0);
316                 return;
317         }
318
319         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
320 #ifdef CONFIG_X86_64
321                 if ((vcpu->arch.shadow_efer & EFER_LME)) {
322                         int cs_db, cs_l;
323
324                         if (!is_pae(vcpu)) {
325                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
326                                        "in long mode while PAE is disabled\n");
327                                 kvm_inject_gp(vcpu, 0);
328                                 return;
329                         }
330                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
331                         if (cs_l) {
332                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
333                                        "in long mode while CS.L == 1\n");
334                                 kvm_inject_gp(vcpu, 0);
335                                 return;
336
337                         }
338                 } else
339 #endif
340                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
341                         printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
342                                "reserved bits\n");
343                         kvm_inject_gp(vcpu, 0);
344                         return;
345                 }
346
347         }
348
349         kvm_x86_ops->set_cr0(vcpu, cr0);
350         vcpu->arch.cr0 = cr0;
351
352         kvm_mmu_reset_context(vcpu);
353         return;
354 }
355 EXPORT_SYMBOL_GPL(kvm_set_cr0);
356
357 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
358 {
359         kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
360 }
361 EXPORT_SYMBOL_GPL(kvm_lmsw);
362
363 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
364 {
365         unsigned long old_cr4 = vcpu->arch.cr4;
366         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
367
368         if (cr4 & CR4_RESERVED_BITS) {
369                 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
370                 kvm_inject_gp(vcpu, 0);
371                 return;
372         }
373
374         if (is_long_mode(vcpu)) {
375                 if (!(cr4 & X86_CR4_PAE)) {
376                         printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
377                                "in long mode\n");
378                         kvm_inject_gp(vcpu, 0);
379                         return;
380                 }
381         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
382                    && ((cr4 ^ old_cr4) & pdptr_bits)
383                    && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
384                 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
385                 kvm_inject_gp(vcpu, 0);
386                 return;
387         }
388
389         if (cr4 & X86_CR4_VMXE) {
390                 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
391                 kvm_inject_gp(vcpu, 0);
392                 return;
393         }
394         kvm_x86_ops->set_cr4(vcpu, cr4);
395         vcpu->arch.cr4 = cr4;
396         vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
397         kvm_mmu_reset_context(vcpu);
398 }
399 EXPORT_SYMBOL_GPL(kvm_set_cr4);
400
401 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
402 {
403         if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
404                 kvm_mmu_sync_roots(vcpu);
405                 kvm_mmu_flush_tlb(vcpu);
406                 return;
407         }
408
409         if (is_long_mode(vcpu)) {
410                 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
411                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
412                         kvm_inject_gp(vcpu, 0);
413                         return;
414                 }
415         } else {
416                 if (is_pae(vcpu)) {
417                         if (cr3 & CR3_PAE_RESERVED_BITS) {
418                                 printk(KERN_DEBUG
419                                        "set_cr3: #GP, reserved bits\n");
420                                 kvm_inject_gp(vcpu, 0);
421                                 return;
422                         }
423                         if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
424                                 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
425                                        "reserved bits\n");
426                                 kvm_inject_gp(vcpu, 0);
427                                 return;
428                         }
429                 }
430                 /*
431                  * We don't check reserved bits in nonpae mode, because
432                  * this isn't enforced, and VMware depends on this.
433                  */
434         }
435
436         /*
437          * Does the new cr3 value map to physical memory? (Note, we
438          * catch an invalid cr3 even in real-mode, because it would
439          * cause trouble later on when we turn on paging anyway.)
440          *
441          * A real CPU would silently accept an invalid cr3 and would
442          * attempt to use it - with largely undefined (and often hard
443          * to debug) behavior on the guest side.
444          */
445         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
446                 kvm_inject_gp(vcpu, 0);
447         else {
448                 vcpu->arch.cr3 = cr3;
449                 vcpu->arch.mmu.new_cr3(vcpu);
450         }
451 }
452 EXPORT_SYMBOL_GPL(kvm_set_cr3);
453
454 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
455 {
456         if (cr8 & CR8_RESERVED_BITS) {
457                 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
458                 kvm_inject_gp(vcpu, 0);
459                 return;
460         }
461         if (irqchip_in_kernel(vcpu->kvm))
462                 kvm_lapic_set_tpr(vcpu, cr8);
463         else
464                 vcpu->arch.cr8 = cr8;
465 }
466 EXPORT_SYMBOL_GPL(kvm_set_cr8);
467
468 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
469 {
470         if (irqchip_in_kernel(vcpu->kvm))
471                 return kvm_lapic_get_cr8(vcpu);
472         else
473                 return vcpu->arch.cr8;
474 }
475 EXPORT_SYMBOL_GPL(kvm_get_cr8);
476
477 static inline u32 bit(int bitno)
478 {
479         return 1 << (bitno & 31);
480 }
481
482 /*
483  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
484  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
485  *
486  * This list is modified at module load time to reflect the
487  * capabilities of the host cpu.
488  */
489 static u32 msrs_to_save[] = {
490         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
491         MSR_K6_STAR,
492 #ifdef CONFIG_X86_64
493         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
494 #endif
495         MSR_IA32_TSC, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
496         MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
497 };
498
499 static unsigned num_msrs_to_save;
500
501 static u32 emulated_msrs[] = {
502         MSR_IA32_MISC_ENABLE,
503 };
504
505 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
506 {
507         if (efer & efer_reserved_bits) {
508                 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
509                        efer);
510                 kvm_inject_gp(vcpu, 0);
511                 return;
512         }
513
514         if (is_paging(vcpu)
515             && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
516                 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
517                 kvm_inject_gp(vcpu, 0);
518                 return;
519         }
520
521         if (efer & EFER_FFXSR) {
522                 struct kvm_cpuid_entry2 *feat;
523
524                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
525                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
526                         printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
527                         kvm_inject_gp(vcpu, 0);
528                         return;
529                 }
530         }
531
532         if (efer & EFER_SVME) {
533                 struct kvm_cpuid_entry2 *feat;
534
535                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
536                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
537                         printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
538                         kvm_inject_gp(vcpu, 0);
539                         return;
540                 }
541         }
542
543         kvm_x86_ops->set_efer(vcpu, efer);
544
545         efer &= ~EFER_LMA;
546         efer |= vcpu->arch.shadow_efer & EFER_LMA;
547
548         vcpu->arch.shadow_efer = efer;
549
550         vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
551         kvm_mmu_reset_context(vcpu);
552 }
553
554 void kvm_enable_efer_bits(u64 mask)
555 {
556        efer_reserved_bits &= ~mask;
557 }
558 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
559
560
561 /*
562  * Writes msr value into into the appropriate "register".
563  * Returns 0 on success, non-0 otherwise.
564  * Assumes vcpu_load() was already called.
565  */
566 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
567 {
568         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
569 }
570
571 /*
572  * Adapt set_msr() to msr_io()'s calling convention
573  */
574 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
575 {
576         return kvm_set_msr(vcpu, index, *data);
577 }
578
579 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
580 {
581         static int version;
582         struct pvclock_wall_clock wc;
583         struct timespec now, sys, boot;
584
585         if (!wall_clock)
586                 return;
587
588         version++;
589
590         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
591
592         /*
593          * The guest calculates current wall clock time by adding
594          * system time (updated by kvm_write_guest_time below) to the
595          * wall clock specified here.  guest system time equals host
596          * system time for us, thus we must fill in host boot time here.
597          */
598         now = current_kernel_time();
599         ktime_get_ts(&sys);
600         boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
601
602         wc.sec = boot.tv_sec;
603         wc.nsec = boot.tv_nsec;
604         wc.version = version;
605
606         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
607
608         version++;
609         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
610 }
611
612 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
613 {
614         uint32_t quotient, remainder;
615
616         /* Don't try to replace with do_div(), this one calculates
617          * "(dividend << 32) / divisor" */
618         __asm__ ( "divl %4"
619                   : "=a" (quotient), "=d" (remainder)
620                   : "0" (0), "1" (dividend), "r" (divisor) );
621         return quotient;
622 }
623
624 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
625 {
626         uint64_t nsecs = 1000000000LL;
627         int32_t  shift = 0;
628         uint64_t tps64;
629         uint32_t tps32;
630
631         tps64 = tsc_khz * 1000LL;
632         while (tps64 > nsecs*2) {
633                 tps64 >>= 1;
634                 shift--;
635         }
636
637         tps32 = (uint32_t)tps64;
638         while (tps32 <= (uint32_t)nsecs) {
639                 tps32 <<= 1;
640                 shift++;
641         }
642
643         hv_clock->tsc_shift = shift;
644         hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
645
646         pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
647                  __func__, tsc_khz, hv_clock->tsc_shift,
648                  hv_clock->tsc_to_system_mul);
649 }
650
651 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
652
653 static void kvm_write_guest_time(struct kvm_vcpu *v)
654 {
655         struct timespec ts;
656         unsigned long flags;
657         struct kvm_vcpu_arch *vcpu = &v->arch;
658         void *shared_kaddr;
659         unsigned long this_tsc_khz;
660
661         if ((!vcpu->time_page))
662                 return;
663
664         this_tsc_khz = get_cpu_var(cpu_tsc_khz);
665         if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
666                 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
667                 vcpu->hv_clock_tsc_khz = this_tsc_khz;
668         }
669         put_cpu_var(cpu_tsc_khz);
670
671         /* Keep irq disabled to prevent changes to the clock */
672         local_irq_save(flags);
673         kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
674         ktime_get_ts(&ts);
675         local_irq_restore(flags);
676
677         /* With all the info we got, fill in the values */
678
679         vcpu->hv_clock.system_time = ts.tv_nsec +
680                                      (NSEC_PER_SEC * (u64)ts.tv_sec);
681         /*
682          * The interface expects us to write an even number signaling that the
683          * update is finished. Since the guest won't see the intermediate
684          * state, we just increase by 2 at the end.
685          */
686         vcpu->hv_clock.version += 2;
687
688         shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
689
690         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
691                sizeof(vcpu->hv_clock));
692
693         kunmap_atomic(shared_kaddr, KM_USER0);
694
695         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
696 }
697
698 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
699 {
700         struct kvm_vcpu_arch *vcpu = &v->arch;
701
702         if (!vcpu->time_page)
703                 return 0;
704         set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
705         return 1;
706 }
707
708 static bool msr_mtrr_valid(unsigned msr)
709 {
710         switch (msr) {
711         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
712         case MSR_MTRRfix64K_00000:
713         case MSR_MTRRfix16K_80000:
714         case MSR_MTRRfix16K_A0000:
715         case MSR_MTRRfix4K_C0000:
716         case MSR_MTRRfix4K_C8000:
717         case MSR_MTRRfix4K_D0000:
718         case MSR_MTRRfix4K_D8000:
719         case MSR_MTRRfix4K_E0000:
720         case MSR_MTRRfix4K_E8000:
721         case MSR_MTRRfix4K_F0000:
722         case MSR_MTRRfix4K_F8000:
723         case MSR_MTRRdefType:
724         case MSR_IA32_CR_PAT:
725                 return true;
726         case 0x2f8:
727                 return true;
728         }
729         return false;
730 }
731
732 static bool valid_pat_type(unsigned t)
733 {
734         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
735 }
736
737 static bool valid_mtrr_type(unsigned t)
738 {
739         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
740 }
741
742 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
743 {
744         int i;
745
746         if (!msr_mtrr_valid(msr))
747                 return false;
748
749         if (msr == MSR_IA32_CR_PAT) {
750                 for (i = 0; i < 8; i++)
751                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
752                                 return false;
753                 return true;
754         } else if (msr == MSR_MTRRdefType) {
755                 if (data & ~0xcff)
756                         return false;
757                 return valid_mtrr_type(data & 0xff);
758         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
759                 for (i = 0; i < 8 ; i++)
760                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
761                                 return false;
762                 return true;
763         }
764
765         /* variable MTRRs */
766         return valid_mtrr_type(data & 0xff);
767 }
768
769 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
770 {
771         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
772
773         if (!mtrr_valid(vcpu, msr, data))
774                 return 1;
775
776         if (msr == MSR_MTRRdefType) {
777                 vcpu->arch.mtrr_state.def_type = data;
778                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
779         } else if (msr == MSR_MTRRfix64K_00000)
780                 p[0] = data;
781         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
782                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
783         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
784                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
785         else if (msr == MSR_IA32_CR_PAT)
786                 vcpu->arch.pat = data;
787         else {  /* Variable MTRRs */
788                 int idx, is_mtrr_mask;
789                 u64 *pt;
790
791                 idx = (msr - 0x200) / 2;
792                 is_mtrr_mask = msr - 0x200 - 2 * idx;
793                 if (!is_mtrr_mask)
794                         pt =
795                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
796                 else
797                         pt =
798                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
799                 *pt = data;
800         }
801
802         kvm_mmu_reset_context(vcpu);
803         return 0;
804 }
805
806 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
807 {
808         u64 mcg_cap = vcpu->arch.mcg_cap;
809         unsigned bank_num = mcg_cap & 0xff;
810
811         switch (msr) {
812         case MSR_IA32_MCG_STATUS:
813                 vcpu->arch.mcg_status = data;
814                 break;
815         case MSR_IA32_MCG_CTL:
816                 if (!(mcg_cap & MCG_CTL_P))
817                         return 1;
818                 if (data != 0 && data != ~(u64)0)
819                         return -1;
820                 vcpu->arch.mcg_ctl = data;
821                 break;
822         default:
823                 if (msr >= MSR_IA32_MC0_CTL &&
824                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
825                         u32 offset = msr - MSR_IA32_MC0_CTL;
826                         /* only 0 or all 1s can be written to IA32_MCi_CTL */
827                         if ((offset & 0x3) == 0 &&
828                             data != 0 && data != ~(u64)0)
829                                 return -1;
830                         vcpu->arch.mce_banks[offset] = data;
831                         break;
832                 }
833                 return 1;
834         }
835         return 0;
836 }
837
838 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
839 {
840         switch (msr) {
841         case MSR_EFER:
842                 set_efer(vcpu, data);
843                 break;
844         case MSR_K7_HWCR:
845                 data &= ~(u64)0x40;     /* ignore flush filter disable */
846                 if (data != 0) {
847                         pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
848                                 data);
849                         return 1;
850                 }
851                 break;
852         case MSR_FAM10H_MMIO_CONF_BASE:
853                 if (data != 0) {
854                         pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
855                                 "0x%llx\n", data);
856                         return 1;
857                 }
858                 break;
859         case MSR_AMD64_NB_CFG:
860                 break;
861         case MSR_IA32_DEBUGCTLMSR:
862                 if (!data) {
863                         /* We support the non-activated case already */
864                         break;
865                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
866                         /* Values other than LBR and BTF are vendor-specific,
867                            thus reserved and should throw a #GP */
868                         return 1;
869                 }
870                 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
871                         __func__, data);
872                 break;
873         case MSR_IA32_UCODE_REV:
874         case MSR_IA32_UCODE_WRITE:
875         case MSR_VM_HSAVE_PA:
876         case MSR_AMD64_PATCH_LOADER:
877                 break;
878         case 0x200 ... 0x2ff:
879                 return set_msr_mtrr(vcpu, msr, data);
880         case MSR_IA32_APICBASE:
881                 kvm_set_apic_base(vcpu, data);
882                 break;
883         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
884                 return kvm_x2apic_msr_write(vcpu, msr, data);
885         case MSR_IA32_MISC_ENABLE:
886                 vcpu->arch.ia32_misc_enable_msr = data;
887                 break;
888         case MSR_KVM_WALL_CLOCK:
889                 vcpu->kvm->arch.wall_clock = data;
890                 kvm_write_wall_clock(vcpu->kvm, data);
891                 break;
892         case MSR_KVM_SYSTEM_TIME: {
893                 if (vcpu->arch.time_page) {
894                         kvm_release_page_dirty(vcpu->arch.time_page);
895                         vcpu->arch.time_page = NULL;
896                 }
897
898                 vcpu->arch.time = data;
899
900                 /* we verify if the enable bit is set... */
901                 if (!(data & 1))
902                         break;
903
904                 /* ...but clean it before doing the actual write */
905                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
906
907                 vcpu->arch.time_page =
908                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
909
910                 if (is_error_page(vcpu->arch.time_page)) {
911                         kvm_release_page_clean(vcpu->arch.time_page);
912                         vcpu->arch.time_page = NULL;
913                 }
914
915                 kvm_request_guest_time_update(vcpu);
916                 break;
917         }
918         case MSR_IA32_MCG_CTL:
919         case MSR_IA32_MCG_STATUS:
920         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
921                 return set_msr_mce(vcpu, msr, data);
922
923         /* Performance counters are not protected by a CPUID bit,
924          * so we should check all of them in the generic path for the sake of
925          * cross vendor migration.
926          * Writing a zero into the event select MSRs disables them,
927          * which we perfectly emulate ;-). Any other value should be at least
928          * reported, some guests depend on them.
929          */
930         case MSR_P6_EVNTSEL0:
931         case MSR_P6_EVNTSEL1:
932         case MSR_K7_EVNTSEL0:
933         case MSR_K7_EVNTSEL1:
934         case MSR_K7_EVNTSEL2:
935         case MSR_K7_EVNTSEL3:
936                 if (data != 0)
937                         pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
938                                 "0x%x data 0x%llx\n", msr, data);
939                 break;
940         /* at least RHEL 4 unconditionally writes to the perfctr registers,
941          * so we ignore writes to make it happy.
942          */
943         case MSR_P6_PERFCTR0:
944         case MSR_P6_PERFCTR1:
945         case MSR_K7_PERFCTR0:
946         case MSR_K7_PERFCTR1:
947         case MSR_K7_PERFCTR2:
948         case MSR_K7_PERFCTR3:
949                 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
950                         "0x%x data 0x%llx\n", msr, data);
951                 break;
952         default:
953                 if (!ignore_msrs) {
954                         pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
955                                 msr, data);
956                         return 1;
957                 } else {
958                         pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
959                                 msr, data);
960                         break;
961                 }
962         }
963         return 0;
964 }
965 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
966
967
968 /*
969  * Reads an msr value (of 'msr_index') into 'pdata'.
970  * Returns 0 on success, non-0 otherwise.
971  * Assumes vcpu_load() was already called.
972  */
973 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
974 {
975         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
976 }
977
978 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
979 {
980         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
981
982         if (!msr_mtrr_valid(msr))
983                 return 1;
984
985         if (msr == MSR_MTRRdefType)
986                 *pdata = vcpu->arch.mtrr_state.def_type +
987                          (vcpu->arch.mtrr_state.enabled << 10);
988         else if (msr == MSR_MTRRfix64K_00000)
989                 *pdata = p[0];
990         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
991                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
992         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
993                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
994         else if (msr == MSR_IA32_CR_PAT)
995                 *pdata = vcpu->arch.pat;
996         else {  /* Variable MTRRs */
997                 int idx, is_mtrr_mask;
998                 u64 *pt;
999
1000                 idx = (msr - 0x200) / 2;
1001                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1002                 if (!is_mtrr_mask)
1003                         pt =
1004                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1005                 else
1006                         pt =
1007                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1008                 *pdata = *pt;
1009         }
1010
1011         return 0;
1012 }
1013
1014 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1015 {
1016         u64 data;
1017         u64 mcg_cap = vcpu->arch.mcg_cap;
1018         unsigned bank_num = mcg_cap & 0xff;
1019
1020         switch (msr) {
1021         case MSR_IA32_P5_MC_ADDR:
1022         case MSR_IA32_P5_MC_TYPE:
1023                 data = 0;
1024                 break;
1025         case MSR_IA32_MCG_CAP:
1026                 data = vcpu->arch.mcg_cap;
1027                 break;
1028         case MSR_IA32_MCG_CTL:
1029                 if (!(mcg_cap & MCG_CTL_P))
1030                         return 1;
1031                 data = vcpu->arch.mcg_ctl;
1032                 break;
1033         case MSR_IA32_MCG_STATUS:
1034                 data = vcpu->arch.mcg_status;
1035                 break;
1036         default:
1037                 if (msr >= MSR_IA32_MC0_CTL &&
1038                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1039                         u32 offset = msr - MSR_IA32_MC0_CTL;
1040                         data = vcpu->arch.mce_banks[offset];
1041                         break;
1042                 }
1043                 return 1;
1044         }
1045         *pdata = data;
1046         return 0;
1047 }
1048
1049 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1050 {
1051         u64 data;
1052
1053         switch (msr) {
1054         case MSR_IA32_PLATFORM_ID:
1055         case MSR_IA32_UCODE_REV:
1056         case MSR_IA32_EBL_CR_POWERON:
1057         case MSR_IA32_DEBUGCTLMSR:
1058         case MSR_IA32_LASTBRANCHFROMIP:
1059         case MSR_IA32_LASTBRANCHTOIP:
1060         case MSR_IA32_LASTINTFROMIP:
1061         case MSR_IA32_LASTINTTOIP:
1062         case MSR_K8_SYSCFG:
1063         case MSR_K7_HWCR:
1064         case MSR_VM_HSAVE_PA:
1065         case MSR_P6_PERFCTR0:
1066         case MSR_P6_PERFCTR1:
1067         case MSR_P6_EVNTSEL0:
1068         case MSR_P6_EVNTSEL1:
1069         case MSR_K7_EVNTSEL0:
1070         case MSR_K7_PERFCTR0:
1071         case MSR_K8_INT_PENDING_MSG:
1072         case MSR_AMD64_NB_CFG:
1073         case MSR_FAM10H_MMIO_CONF_BASE:
1074                 data = 0;
1075                 break;
1076         case MSR_MTRRcap:
1077                 data = 0x500 | KVM_NR_VAR_MTRR;
1078                 break;
1079         case 0x200 ... 0x2ff:
1080                 return get_msr_mtrr(vcpu, msr, pdata);
1081         case 0xcd: /* fsb frequency */
1082                 data = 3;
1083                 break;
1084         case MSR_IA32_APICBASE:
1085                 data = kvm_get_apic_base(vcpu);
1086                 break;
1087         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1088                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1089                 break;
1090         case MSR_IA32_MISC_ENABLE:
1091                 data = vcpu->arch.ia32_misc_enable_msr;
1092                 break;
1093         case MSR_IA32_PERF_STATUS:
1094                 /* TSC increment by tick */
1095                 data = 1000ULL;
1096                 /* CPU multiplier */
1097                 data |= (((uint64_t)4ULL) << 40);
1098                 break;
1099         case MSR_EFER:
1100                 data = vcpu->arch.shadow_efer;
1101                 break;
1102         case MSR_KVM_WALL_CLOCK:
1103                 data = vcpu->kvm->arch.wall_clock;
1104                 break;
1105         case MSR_KVM_SYSTEM_TIME:
1106                 data = vcpu->arch.time;
1107                 break;
1108         case MSR_IA32_P5_MC_ADDR:
1109         case MSR_IA32_P5_MC_TYPE:
1110         case MSR_IA32_MCG_CAP:
1111         case MSR_IA32_MCG_CTL:
1112         case MSR_IA32_MCG_STATUS:
1113         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1114                 return get_msr_mce(vcpu, msr, pdata);
1115         default:
1116                 if (!ignore_msrs) {
1117                         pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1118                         return 1;
1119                 } else {
1120                         pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1121                         data = 0;
1122                 }
1123                 break;
1124         }
1125         *pdata = data;
1126         return 0;
1127 }
1128 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1129
1130 /*
1131  * Read or write a bunch of msrs. All parameters are kernel addresses.
1132  *
1133  * @return number of msrs set successfully.
1134  */
1135 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1136                     struct kvm_msr_entry *entries,
1137                     int (*do_msr)(struct kvm_vcpu *vcpu,
1138                                   unsigned index, u64 *data))
1139 {
1140         int i;
1141
1142         vcpu_load(vcpu);
1143
1144         down_read(&vcpu->kvm->slots_lock);
1145         for (i = 0; i < msrs->nmsrs; ++i)
1146                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1147                         break;
1148         up_read(&vcpu->kvm->slots_lock);
1149
1150         vcpu_put(vcpu);
1151
1152         return i;
1153 }
1154
1155 /*
1156  * Read or write a bunch of msrs. Parameters are user addresses.
1157  *
1158  * @return number of msrs set successfully.
1159  */
1160 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1161                   int (*do_msr)(struct kvm_vcpu *vcpu,
1162                                 unsigned index, u64 *data),
1163                   int writeback)
1164 {
1165         struct kvm_msrs msrs;
1166         struct kvm_msr_entry *entries;
1167         int r, n;
1168         unsigned size;
1169
1170         r = -EFAULT;
1171         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1172                 goto out;
1173
1174         r = -E2BIG;
1175         if (msrs.nmsrs >= MAX_IO_MSRS)
1176                 goto out;
1177
1178         r = -ENOMEM;
1179         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1180         entries = vmalloc(size);
1181         if (!entries)
1182                 goto out;
1183
1184         r = -EFAULT;
1185         if (copy_from_user(entries, user_msrs->entries, size))
1186                 goto out_free;
1187
1188         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1189         if (r < 0)
1190                 goto out_free;
1191
1192         r = -EFAULT;
1193         if (writeback && copy_to_user(user_msrs->entries, entries, size))
1194                 goto out_free;
1195
1196         r = n;
1197
1198 out_free:
1199         vfree(entries);
1200 out:
1201         return r;
1202 }
1203
1204 int kvm_dev_ioctl_check_extension(long ext)
1205 {
1206         int r;
1207
1208         switch (ext) {
1209         case KVM_CAP_IRQCHIP:
1210         case KVM_CAP_HLT:
1211         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1212         case KVM_CAP_SET_TSS_ADDR:
1213         case KVM_CAP_EXT_CPUID:
1214         case KVM_CAP_CLOCKSOURCE:
1215         case KVM_CAP_PIT:
1216         case KVM_CAP_NOP_IO_DELAY:
1217         case KVM_CAP_MP_STATE:
1218         case KVM_CAP_SYNC_MMU:
1219         case KVM_CAP_REINJECT_CONTROL:
1220         case KVM_CAP_IRQ_INJECT_STATUS:
1221         case KVM_CAP_ASSIGN_DEV_IRQ:
1222         case KVM_CAP_IRQFD:
1223         case KVM_CAP_IOEVENTFD:
1224         case KVM_CAP_PIT2:
1225         case KVM_CAP_PIT_STATE2:
1226         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1227                 r = 1;
1228                 break;
1229         case KVM_CAP_COALESCED_MMIO:
1230                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1231                 break;
1232         case KVM_CAP_VAPIC:
1233                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1234                 break;
1235         case KVM_CAP_NR_VCPUS:
1236                 r = KVM_MAX_VCPUS;
1237                 break;
1238         case KVM_CAP_NR_MEMSLOTS:
1239                 r = KVM_MEMORY_SLOTS;
1240                 break;
1241         case KVM_CAP_PV_MMU:
1242                 r = !tdp_enabled;
1243                 break;
1244         case KVM_CAP_IOMMU:
1245                 r = iommu_found();
1246                 break;
1247         case KVM_CAP_MCE:
1248                 r = KVM_MAX_MCE_BANKS;
1249                 break;
1250         default:
1251                 r = 0;
1252                 break;
1253         }
1254         return r;
1255
1256 }
1257
1258 long kvm_arch_dev_ioctl(struct file *filp,
1259                         unsigned int ioctl, unsigned long arg)
1260 {
1261         void __user *argp = (void __user *)arg;
1262         long r;
1263
1264         switch (ioctl) {
1265         case KVM_GET_MSR_INDEX_LIST: {
1266                 struct kvm_msr_list __user *user_msr_list = argp;
1267                 struct kvm_msr_list msr_list;
1268                 unsigned n;
1269
1270                 r = -EFAULT;
1271                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1272                         goto out;
1273                 n = msr_list.nmsrs;
1274                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1275                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1276                         goto out;
1277                 r = -E2BIG;
1278                 if (n < msr_list.nmsrs)
1279                         goto out;
1280                 r = -EFAULT;
1281                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1282                                  num_msrs_to_save * sizeof(u32)))
1283                         goto out;
1284                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1285                                  &emulated_msrs,
1286                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1287                         goto out;
1288                 r = 0;
1289                 break;
1290         }
1291         case KVM_GET_SUPPORTED_CPUID: {
1292                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1293                 struct kvm_cpuid2 cpuid;
1294
1295                 r = -EFAULT;
1296                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1297                         goto out;
1298                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1299                                                       cpuid_arg->entries);
1300                 if (r)
1301                         goto out;
1302
1303                 r = -EFAULT;
1304                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1305                         goto out;
1306                 r = 0;
1307                 break;
1308         }
1309         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1310                 u64 mce_cap;
1311
1312                 mce_cap = KVM_MCE_CAP_SUPPORTED;
1313                 r = -EFAULT;
1314                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1315                         goto out;
1316                 r = 0;
1317                 break;
1318         }
1319         default:
1320                 r = -EINVAL;
1321         }
1322 out:
1323         return r;
1324 }
1325
1326 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1327 {
1328         kvm_x86_ops->vcpu_load(vcpu, cpu);
1329         kvm_request_guest_time_update(vcpu);
1330 }
1331
1332 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1333 {
1334         kvm_x86_ops->vcpu_put(vcpu);
1335         kvm_put_guest_fpu(vcpu);
1336 }
1337
1338 static int is_efer_nx(void)
1339 {
1340         unsigned long long efer = 0;
1341
1342         rdmsrl_safe(MSR_EFER, &efer);
1343         return efer & EFER_NX;
1344 }
1345
1346 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1347 {
1348         int i;
1349         struct kvm_cpuid_entry2 *e, *entry;
1350
1351         entry = NULL;
1352         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1353                 e = &vcpu->arch.cpuid_entries[i];
1354                 if (e->function == 0x80000001) {
1355                         entry = e;
1356                         break;
1357                 }
1358         }
1359         if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1360                 entry->edx &= ~(1 << 20);
1361                 printk(KERN_INFO "kvm: guest NX capability removed\n");
1362         }
1363 }
1364
1365 /* when an old userspace process fills a new kernel module */
1366 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1367                                     struct kvm_cpuid *cpuid,
1368                                     struct kvm_cpuid_entry __user *entries)
1369 {
1370         int r, i;
1371         struct kvm_cpuid_entry *cpuid_entries;
1372
1373         r = -E2BIG;
1374         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1375                 goto out;
1376         r = -ENOMEM;
1377         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1378         if (!cpuid_entries)
1379                 goto out;
1380         r = -EFAULT;
1381         if (copy_from_user(cpuid_entries, entries,
1382                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1383                 goto out_free;
1384         for (i = 0; i < cpuid->nent; i++) {
1385                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1386                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1387                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1388                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1389                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1390                 vcpu->arch.cpuid_entries[i].index = 0;
1391                 vcpu->arch.cpuid_entries[i].flags = 0;
1392                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1393                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1394                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1395         }
1396         vcpu->arch.cpuid_nent = cpuid->nent;
1397         cpuid_fix_nx_cap(vcpu);
1398         r = 0;
1399         kvm_apic_set_version(vcpu);
1400
1401 out_free:
1402         vfree(cpuid_entries);
1403 out:
1404         return r;
1405 }
1406
1407 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1408                                      struct kvm_cpuid2 *cpuid,
1409                                      struct kvm_cpuid_entry2 __user *entries)
1410 {
1411         int r;
1412
1413         r = -E2BIG;
1414         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1415                 goto out;
1416         r = -EFAULT;
1417         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1418                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1419                 goto out;
1420         vcpu->arch.cpuid_nent = cpuid->nent;
1421         kvm_apic_set_version(vcpu);
1422         return 0;
1423
1424 out:
1425         return r;
1426 }
1427
1428 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1429                                      struct kvm_cpuid2 *cpuid,
1430                                      struct kvm_cpuid_entry2 __user *entries)
1431 {
1432         int r;
1433
1434         r = -E2BIG;
1435         if (cpuid->nent < vcpu->arch.cpuid_nent)
1436                 goto out;
1437         r = -EFAULT;
1438         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1439                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1440                 goto out;
1441         return 0;
1442
1443 out:
1444         cpuid->nent = vcpu->arch.cpuid_nent;
1445         return r;
1446 }
1447
1448 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1449                            u32 index)
1450 {
1451         entry->function = function;
1452         entry->index = index;
1453         cpuid_count(entry->function, entry->index,
1454                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1455         entry->flags = 0;
1456 }
1457
1458 #define F(x) bit(X86_FEATURE_##x)
1459
1460 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1461                          u32 index, int *nent, int maxnent)
1462 {
1463         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
1464         unsigned f_gbpages = kvm_x86_ops->gb_page_enable() ? F(GBPAGES) : 0;
1465 #ifdef CONFIG_X86_64
1466         unsigned f_lm = F(LM);
1467 #else
1468         unsigned f_lm = 0;
1469 #endif
1470
1471         /* cpuid 1.edx */
1472         const u32 kvm_supported_word0_x86_features =
1473                 F(FPU) | F(VME) | F(DE) | F(PSE) |
1474                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1475                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
1476                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1477                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
1478                 0 /* Reserved, DS, ACPI */ | F(MMX) |
1479                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
1480                 0 /* HTT, TM, Reserved, PBE */;
1481         /* cpuid 0x80000001.edx */
1482         const u32 kvm_supported_word1_x86_features =
1483                 F(FPU) | F(VME) | F(DE) | F(PSE) |
1484                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1485                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
1486                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1487                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
1488                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
1489                 F(FXSR) | F(FXSR_OPT) | f_gbpages | 0 /* RDTSCP */ |
1490                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
1491         /* cpuid 1.ecx */
1492         const u32 kvm_supported_word4_x86_features =
1493                 F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
1494                 0 /* DS-CPL, VMX, SMX, EST */ |
1495                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1496                 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
1497                 0 /* Reserved, DCA */ | F(XMM4_1) |
1498                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
1499                 0 /* Reserved, XSAVE, OSXSAVE */;
1500         /* cpuid 0x80000001.ecx */
1501         const u32 kvm_supported_word6_x86_features =
1502                 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
1503                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
1504                 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
1505                 0 /* SKINIT */ | 0 /* WDT */;
1506
1507         /* all calls to cpuid_count() should be made on the same cpu */
1508         get_cpu();
1509         do_cpuid_1_ent(entry, function, index);
1510         ++*nent;
1511
1512         switch (function) {
1513         case 0:
1514                 entry->eax = min(entry->eax, (u32)0xb);
1515                 break;
1516         case 1:
1517                 entry->edx &= kvm_supported_word0_x86_features;
1518                 entry->ecx &= kvm_supported_word4_x86_features;
1519                 /* we support x2apic emulation even if host does not support
1520                  * it since we emulate x2apic in software */
1521                 entry->ecx |= F(X2APIC);
1522                 break;
1523         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1524          * may return different values. This forces us to get_cpu() before
1525          * issuing the first command, and also to emulate this annoying behavior
1526          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1527         case 2: {
1528                 int t, times = entry->eax & 0xff;
1529
1530                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1531                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1532                 for (t = 1; t < times && *nent < maxnent; ++t) {
1533                         do_cpuid_1_ent(&entry[t], function, 0);
1534                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1535                         ++*nent;
1536                 }
1537                 break;
1538         }
1539         /* function 4 and 0xb have additional index. */
1540         case 4: {
1541                 int i, cache_type;
1542
1543                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1544                 /* read more entries until cache_type is zero */
1545                 for (i = 1; *nent < maxnent; ++i) {
1546                         cache_type = entry[i - 1].eax & 0x1f;
1547                         if (!cache_type)
1548                                 break;
1549                         do_cpuid_1_ent(&entry[i], function, i);
1550                         entry[i].flags |=
1551                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1552                         ++*nent;
1553                 }
1554                 break;
1555         }
1556         case 0xb: {
1557                 int i, level_type;
1558
1559                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1560                 /* read more entries until level_type is zero */
1561                 for (i = 1; *nent < maxnent; ++i) {
1562                         level_type = entry[i - 1].ecx & 0xff00;
1563                         if (!level_type)
1564                                 break;
1565                         do_cpuid_1_ent(&entry[i], function, i);
1566                         entry[i].flags |=
1567                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1568                         ++*nent;
1569                 }
1570                 break;
1571         }
1572         case 0x80000000:
1573                 entry->eax = min(entry->eax, 0x8000001a);
1574                 break;
1575         case 0x80000001:
1576                 entry->edx &= kvm_supported_word1_x86_features;
1577                 entry->ecx &= kvm_supported_word6_x86_features;
1578                 break;
1579         }
1580         put_cpu();
1581 }
1582
1583 #undef F
1584
1585 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1586                                      struct kvm_cpuid_entry2 __user *entries)
1587 {
1588         struct kvm_cpuid_entry2 *cpuid_entries;
1589         int limit, nent = 0, r = -E2BIG;
1590         u32 func;
1591
1592         if (cpuid->nent < 1)
1593                 goto out;
1594         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1595                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1596         r = -ENOMEM;
1597         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1598         if (!cpuid_entries)
1599                 goto out;
1600
1601         do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1602         limit = cpuid_entries[0].eax;
1603         for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1604                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1605                              &nent, cpuid->nent);
1606         r = -E2BIG;
1607         if (nent >= cpuid->nent)
1608                 goto out_free;
1609
1610         do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1611         limit = cpuid_entries[nent - 1].eax;
1612         for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1613                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1614                              &nent, cpuid->nent);
1615         r = -E2BIG;
1616         if (nent >= cpuid->nent)
1617                 goto out_free;
1618
1619         r = -EFAULT;
1620         if (copy_to_user(entries, cpuid_entries,
1621                          nent * sizeof(struct kvm_cpuid_entry2)))
1622                 goto out_free;
1623         cpuid->nent = nent;
1624         r = 0;
1625
1626 out_free:
1627         vfree(cpuid_entries);
1628 out:
1629         return r;
1630 }
1631
1632 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1633                                     struct kvm_lapic_state *s)
1634 {
1635         vcpu_load(vcpu);
1636         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1637         vcpu_put(vcpu);
1638
1639         return 0;
1640 }
1641
1642 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1643                                     struct kvm_lapic_state *s)
1644 {
1645         vcpu_load(vcpu);
1646         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1647         kvm_apic_post_state_restore(vcpu);
1648         update_cr8_intercept(vcpu);
1649         vcpu_put(vcpu);
1650
1651         return 0;
1652 }
1653
1654 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1655                                     struct kvm_interrupt *irq)
1656 {
1657         if (irq->irq < 0 || irq->irq >= 256)
1658                 return -EINVAL;
1659         if (irqchip_in_kernel(vcpu->kvm))
1660                 return -ENXIO;
1661         vcpu_load(vcpu);
1662
1663         kvm_queue_interrupt(vcpu, irq->irq, false);
1664
1665         vcpu_put(vcpu);
1666
1667         return 0;
1668 }
1669
1670 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
1671 {
1672         vcpu_load(vcpu);
1673         kvm_inject_nmi(vcpu);
1674         vcpu_put(vcpu);
1675
1676         return 0;
1677 }
1678
1679 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1680                                            struct kvm_tpr_access_ctl *tac)
1681 {
1682         if (tac->flags)
1683                 return -EINVAL;
1684         vcpu->arch.tpr_access_reporting = !!tac->enabled;
1685         return 0;
1686 }
1687
1688 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
1689                                         u64 mcg_cap)
1690 {
1691         int r;
1692         unsigned bank_num = mcg_cap & 0xff, bank;
1693
1694         r = -EINVAL;
1695         if (!bank_num)
1696                 goto out;
1697         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
1698                 goto out;
1699         r = 0;
1700         vcpu->arch.mcg_cap = mcg_cap;
1701         /* Init IA32_MCG_CTL to all 1s */
1702         if (mcg_cap & MCG_CTL_P)
1703                 vcpu->arch.mcg_ctl = ~(u64)0;
1704         /* Init IA32_MCi_CTL to all 1s */
1705         for (bank = 0; bank < bank_num; bank++)
1706                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
1707 out:
1708         return r;
1709 }
1710
1711 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
1712                                       struct kvm_x86_mce *mce)
1713 {
1714         u64 mcg_cap = vcpu->arch.mcg_cap;
1715         unsigned bank_num = mcg_cap & 0xff;
1716         u64 *banks = vcpu->arch.mce_banks;
1717
1718         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
1719                 return -EINVAL;
1720         /*
1721          * if IA32_MCG_CTL is not all 1s, the uncorrected error
1722          * reporting is disabled
1723          */
1724         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
1725             vcpu->arch.mcg_ctl != ~(u64)0)
1726                 return 0;
1727         banks += 4 * mce->bank;
1728         /*
1729          * if IA32_MCi_CTL is not all 1s, the uncorrected error
1730          * reporting is disabled for the bank
1731          */
1732         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
1733                 return 0;
1734         if (mce->status & MCI_STATUS_UC) {
1735                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
1736                     !(vcpu->arch.cr4 & X86_CR4_MCE)) {
1737                         printk(KERN_DEBUG "kvm: set_mce: "
1738                                "injects mce exception while "
1739                                "previous one is in progress!\n");
1740                         set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
1741                         return 0;
1742                 }
1743                 if (banks[1] & MCI_STATUS_VAL)
1744                         mce->status |= MCI_STATUS_OVER;
1745                 banks[2] = mce->addr;
1746                 banks[3] = mce->misc;
1747                 vcpu->arch.mcg_status = mce->mcg_status;
1748                 banks[1] = mce->status;
1749                 kvm_queue_exception(vcpu, MC_VECTOR);
1750         } else if (!(banks[1] & MCI_STATUS_VAL)
1751                    || !(banks[1] & MCI_STATUS_UC)) {
1752                 if (banks[1] & MCI_STATUS_VAL)
1753                         mce->status |= MCI_STATUS_OVER;
1754                 banks[2] = mce->addr;
1755                 banks[3] = mce->misc;
1756                 banks[1] = mce->status;
1757         } else
1758                 banks[1] |= MCI_STATUS_OVER;
1759         return 0;
1760 }
1761
1762 long kvm_arch_vcpu_ioctl(struct file *filp,
1763                          unsigned int ioctl, unsigned long arg)
1764 {
1765         struct kvm_vcpu *vcpu = filp->private_data;
1766         void __user *argp = (void __user *)arg;
1767         int r;
1768         struct kvm_lapic_state *lapic = NULL;
1769
1770         switch (ioctl) {
1771         case KVM_GET_LAPIC: {
1772                 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1773
1774                 r = -ENOMEM;
1775                 if (!lapic)
1776                         goto out;
1777                 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
1778                 if (r)
1779                         goto out;
1780                 r = -EFAULT;
1781                 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
1782                         goto out;
1783                 r = 0;
1784                 break;
1785         }
1786         case KVM_SET_LAPIC: {
1787                 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1788                 r = -ENOMEM;
1789                 if (!lapic)
1790                         goto out;
1791                 r = -EFAULT;
1792                 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
1793                         goto out;
1794                 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
1795                 if (r)
1796                         goto out;
1797                 r = 0;
1798                 break;
1799         }
1800         case KVM_INTERRUPT: {
1801                 struct kvm_interrupt irq;
1802
1803                 r = -EFAULT;
1804                 if (copy_from_user(&irq, argp, sizeof irq))
1805                         goto out;
1806                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1807                 if (r)
1808                         goto out;
1809                 r = 0;
1810                 break;
1811         }
1812         case KVM_NMI: {
1813                 r = kvm_vcpu_ioctl_nmi(vcpu);
1814                 if (r)
1815                         goto out;
1816                 r = 0;
1817                 break;
1818         }
1819         case KVM_SET_CPUID: {
1820                 struct kvm_cpuid __user *cpuid_arg = argp;
1821                 struct kvm_cpuid cpuid;
1822
1823                 r = -EFAULT;
1824                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1825                         goto out;
1826                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1827                 if (r)
1828                         goto out;
1829                 break;
1830         }
1831         case KVM_SET_CPUID2: {
1832                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1833                 struct kvm_cpuid2 cpuid;
1834
1835                 r = -EFAULT;
1836                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1837                         goto out;
1838                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1839                                               cpuid_arg->entries);
1840                 if (r)
1841                         goto out;
1842                 break;
1843         }
1844         case KVM_GET_CPUID2: {
1845                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1846                 struct kvm_cpuid2 cpuid;
1847
1848                 r = -EFAULT;
1849                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1850                         goto out;
1851                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1852                                               cpuid_arg->entries);
1853                 if (r)
1854                         goto out;
1855                 r = -EFAULT;
1856                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1857                         goto out;
1858                 r = 0;
1859                 break;
1860         }
1861         case KVM_GET_MSRS:
1862                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1863                 break;
1864         case KVM_SET_MSRS:
1865                 r = msr_io(vcpu, argp, do_set_msr, 0);
1866                 break;
1867         case KVM_TPR_ACCESS_REPORTING: {
1868                 struct kvm_tpr_access_ctl tac;
1869
1870                 r = -EFAULT;
1871                 if (copy_from_user(&tac, argp, sizeof tac))
1872                         goto out;
1873                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1874                 if (r)
1875                         goto out;
1876                 r = -EFAULT;
1877                 if (copy_to_user(argp, &tac, sizeof tac))
1878                         goto out;
1879                 r = 0;
1880                 break;
1881         };
1882         case KVM_SET_VAPIC_ADDR: {
1883                 struct kvm_vapic_addr va;
1884
1885                 r = -EINVAL;
1886                 if (!irqchip_in_kernel(vcpu->kvm))
1887                         goto out;
1888                 r = -EFAULT;
1889                 if (copy_from_user(&va, argp, sizeof va))
1890                         goto out;
1891                 r = 0;
1892                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1893                 break;
1894         }
1895         case KVM_X86_SETUP_MCE: {
1896                 u64 mcg_cap;
1897
1898                 r = -EFAULT;
1899                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
1900                         goto out;
1901                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
1902                 break;
1903         }
1904         case KVM_X86_SET_MCE: {
1905                 struct kvm_x86_mce mce;
1906
1907                 r = -EFAULT;
1908                 if (copy_from_user(&mce, argp, sizeof mce))
1909                         goto out;
1910                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
1911                 break;
1912         }
1913         default:
1914                 r = -EINVAL;
1915         }
1916 out:
1917         kfree(lapic);
1918         return r;
1919 }
1920
1921 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1922 {
1923         int ret;
1924
1925         if (addr > (unsigned int)(-3 * PAGE_SIZE))
1926                 return -1;
1927         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1928         return ret;
1929 }
1930
1931 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
1932                                               u64 ident_addr)
1933 {
1934         kvm->arch.ept_identity_map_addr = ident_addr;
1935         return 0;
1936 }
1937
1938 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1939                                           u32 kvm_nr_mmu_pages)
1940 {
1941         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1942                 return -EINVAL;
1943
1944         down_write(&kvm->slots_lock);
1945         spin_lock(&kvm->mmu_lock);
1946
1947         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1948         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1949
1950         spin_unlock(&kvm->mmu_lock);
1951         up_write(&kvm->slots_lock);
1952         return 0;
1953 }
1954
1955 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1956 {
1957         return kvm->arch.n_alloc_mmu_pages;
1958 }
1959
1960 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1961 {
1962         int i;
1963         struct kvm_mem_alias *alias;
1964
1965         for (i = 0; i < kvm->arch.naliases; ++i) {
1966                 alias = &kvm->arch.aliases[i];
1967                 if (gfn >= alias->base_gfn
1968                     && gfn < alias->base_gfn + alias->npages)
1969                         return alias->target_gfn + gfn - alias->base_gfn;
1970         }
1971         return gfn;
1972 }
1973
1974 /*
1975  * Set a new alias region.  Aliases map a portion of physical memory into
1976  * another portion.  This is useful for memory windows, for example the PC
1977  * VGA region.
1978  */
1979 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1980                                          struct kvm_memory_alias *alias)
1981 {
1982         int r, n;
1983         struct kvm_mem_alias *p;
1984
1985         r = -EINVAL;
1986         /* General sanity checks */
1987         if (alias->memory_size & (PAGE_SIZE - 1))
1988                 goto out;
1989         if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1990                 goto out;
1991         if (alias->slot >= KVM_ALIAS_SLOTS)
1992                 goto out;
1993         if (alias->guest_phys_addr + alias->memory_size
1994             < alias->guest_phys_addr)
1995                 goto out;
1996         if (alias->target_phys_addr + alias->memory_size
1997             < alias->target_phys_addr)
1998                 goto out;
1999
2000         down_write(&kvm->slots_lock);
2001         spin_lock(&kvm->mmu_lock);
2002
2003         p = &kvm->arch.aliases[alias->slot];
2004         p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
2005         p->npages = alias->memory_size >> PAGE_SHIFT;
2006         p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
2007
2008         for (n = KVM_ALIAS_SLOTS; n > 0; --n)
2009                 if (kvm->arch.aliases[n - 1].npages)
2010                         break;
2011         kvm->arch.naliases = n;
2012
2013         spin_unlock(&kvm->mmu_lock);
2014         kvm_mmu_zap_all(kvm);
2015
2016         up_write(&kvm->slots_lock);
2017
2018         return 0;
2019
2020 out:
2021         return r;
2022 }
2023
2024 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2025 {
2026         int r;
2027
2028         r = 0;
2029         switch (chip->chip_id) {
2030         case KVM_IRQCHIP_PIC_MASTER:
2031                 memcpy(&chip->chip.pic,
2032                         &pic_irqchip(kvm)->pics[0],
2033                         sizeof(struct kvm_pic_state));
2034                 break;
2035         case KVM_IRQCHIP_PIC_SLAVE:
2036                 memcpy(&chip->chip.pic,
2037                         &pic_irqchip(kvm)->pics[1],
2038                         sizeof(struct kvm_pic_state));
2039                 break;
2040         case KVM_IRQCHIP_IOAPIC:
2041                 memcpy(&chip->chip.ioapic,
2042                         ioapic_irqchip(kvm),
2043                         sizeof(struct kvm_ioapic_state));
2044                 break;
2045         default:
2046                 r = -EINVAL;
2047                 break;
2048         }
2049         return r;
2050 }
2051
2052 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2053 {
2054         int r;
2055
2056         r = 0;
2057         switch (chip->chip_id) {
2058         case KVM_IRQCHIP_PIC_MASTER:
2059                 spin_lock(&pic_irqchip(kvm)->lock);
2060                 memcpy(&pic_irqchip(kvm)->pics[0],
2061                         &chip->chip.pic,
2062                         sizeof(struct kvm_pic_state));
2063                 spin_unlock(&pic_irqchip(kvm)->lock);
2064                 break;
2065         case KVM_IRQCHIP_PIC_SLAVE:
2066                 spin_lock(&pic_irqchip(kvm)->lock);
2067                 memcpy(&pic_irqchip(kvm)->pics[1],
2068                         &chip->chip.pic,
2069                         sizeof(struct kvm_pic_state));
2070                 spin_unlock(&pic_irqchip(kvm)->lock);
2071                 break;
2072         case KVM_IRQCHIP_IOAPIC:
2073                 mutex_lock(&kvm->irq_lock);
2074                 memcpy(ioapic_irqchip(kvm),
2075                         &chip->chip.ioapic,
2076                         sizeof(struct kvm_ioapic_state));
2077                 mutex_unlock(&kvm->irq_lock);
2078                 break;
2079         default:
2080                 r = -EINVAL;
2081                 break;
2082         }
2083         kvm_pic_update_irq(pic_irqchip(kvm));
2084         return r;
2085 }
2086
2087 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2088 {
2089         int r = 0;
2090
2091         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2092         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2093         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2094         return r;
2095 }
2096
2097 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2098 {
2099         int r = 0;
2100
2101         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2102         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2103         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2104         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2105         return r;
2106 }
2107
2108 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2109 {
2110         int r = 0;
2111
2112         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2113         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2114                 sizeof(ps->channels));
2115         ps->flags = kvm->arch.vpit->pit_state.flags;
2116         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2117         return r;
2118 }
2119
2120 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2121 {
2122         int r = 0, start = 0;
2123         u32 prev_legacy, cur_legacy;
2124         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2125         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2126         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2127         if (!prev_legacy && cur_legacy)
2128                 start = 1;
2129         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2130                sizeof(kvm->arch.vpit->pit_state.channels));
2131         kvm->arch.vpit->pit_state.flags = ps->flags;
2132         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2133         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2134         return r;
2135 }
2136
2137 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2138                                  struct kvm_reinject_control *control)
2139 {
2140         if (!kvm->arch.vpit)
2141                 return -ENXIO;
2142         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2143         kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2144         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2145         return 0;
2146 }
2147
2148 /*
2149  * Get (and clear) the dirty memory log for a memory slot.
2150  */
2151 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2152                                       struct kvm_dirty_log *log)
2153 {
2154         int r;
2155         int n;
2156         struct kvm_memory_slot *memslot;
2157         int is_dirty = 0;
2158
2159         down_write(&kvm->slots_lock);
2160
2161         r = kvm_get_dirty_log(kvm, log, &is_dirty);
2162         if (r)
2163                 goto out;
2164
2165         /* If nothing is dirty, don't bother messing with page tables. */
2166         if (is_dirty) {
2167                 spin_lock(&kvm->mmu_lock);
2168                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
2169                 spin_unlock(&kvm->mmu_lock);
2170                 memslot = &kvm->memslots[log->slot];
2171                 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
2172                 memset(memslot->dirty_bitmap, 0, n);
2173         }
2174         r = 0;
2175 out:
2176         up_write(&kvm->slots_lock);
2177         return r;
2178 }
2179
2180 long kvm_arch_vm_ioctl(struct file *filp,
2181                        unsigned int ioctl, unsigned long arg)
2182 {
2183         struct kvm *kvm = filp->private_data;
2184         void __user *argp = (void __user *)arg;
2185         int r = -EINVAL;
2186         /*
2187          * This union makes it completely explicit to gcc-3.x
2188          * that these two variables' stack usage should be
2189          * combined, not added together.
2190          */
2191         union {
2192                 struct kvm_pit_state ps;
2193                 struct kvm_pit_state2 ps2;
2194                 struct kvm_memory_alias alias;
2195                 struct kvm_pit_config pit_config;
2196         } u;
2197
2198         switch (ioctl) {
2199         case KVM_SET_TSS_ADDR:
2200                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
2201                 if (r < 0)
2202                         goto out;
2203                 break;
2204         case KVM_SET_IDENTITY_MAP_ADDR: {
2205                 u64 ident_addr;
2206
2207                 r = -EFAULT;
2208                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
2209                         goto out;
2210                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
2211                 if (r < 0)
2212                         goto out;
2213                 break;
2214         }
2215         case KVM_SET_MEMORY_REGION: {
2216                 struct kvm_memory_region kvm_mem;
2217                 struct kvm_userspace_memory_region kvm_userspace_mem;
2218
2219                 r = -EFAULT;
2220                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2221                         goto out;
2222                 kvm_userspace_mem.slot = kvm_mem.slot;
2223                 kvm_userspace_mem.flags = kvm_mem.flags;
2224                 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
2225                 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
2226                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
2227                 if (r)
2228                         goto out;
2229                 break;
2230         }
2231         case KVM_SET_NR_MMU_PAGES:
2232                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
2233                 if (r)
2234                         goto out;
2235                 break;
2236         case KVM_GET_NR_MMU_PAGES:
2237                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
2238                 break;
2239         case KVM_SET_MEMORY_ALIAS:
2240                 r = -EFAULT;
2241                 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
2242                         goto out;
2243                 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
2244                 if (r)
2245                         goto out;
2246                 break;
2247         case KVM_CREATE_IRQCHIP:
2248                 r = -ENOMEM;
2249                 kvm->arch.vpic = kvm_create_pic(kvm);
2250                 if (kvm->arch.vpic) {
2251                         r = kvm_ioapic_init(kvm);
2252                         if (r) {
2253                                 kfree(kvm->arch.vpic);
2254                                 kvm->arch.vpic = NULL;
2255                                 goto out;
2256                         }
2257                 } else
2258                         goto out;
2259                 r = kvm_setup_default_irq_routing(kvm);
2260                 if (r) {
2261                         kfree(kvm->arch.vpic);
2262                         kfree(kvm->arch.vioapic);
2263                         goto out;
2264                 }
2265                 break;
2266         case KVM_CREATE_PIT:
2267                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
2268                 goto create_pit;
2269         case KVM_CREATE_PIT2:
2270                 r = -EFAULT;
2271                 if (copy_from_user(&u.pit_config, argp,
2272                                    sizeof(struct kvm_pit_config)))
2273                         goto out;
2274         create_pit:
2275                 down_write(&kvm->slots_lock);
2276                 r = -EEXIST;
2277                 if (kvm->arch.vpit)
2278                         goto create_pit_unlock;
2279                 r = -ENOMEM;
2280                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
2281                 if (kvm->arch.vpit)
2282                         r = 0;
2283         create_pit_unlock:
2284                 up_write(&kvm->slots_lock);
2285                 break;
2286         case KVM_IRQ_LINE_STATUS:
2287         case KVM_IRQ_LINE: {
2288                 struct kvm_irq_level irq_event;
2289
2290                 r = -EFAULT;
2291                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2292                         goto out;
2293                 if (irqchip_in_kernel(kvm)) {
2294                         __s32 status;
2295                         mutex_lock(&kvm->irq_lock);
2296                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2297                                         irq_event.irq, irq_event.level);
2298                         mutex_unlock(&kvm->irq_lock);
2299                         if (ioctl == KVM_IRQ_LINE_STATUS) {
2300                                 irq_event.status = status;
2301                                 if (copy_to_user(argp, &irq_event,
2302                                                         sizeof irq_event))
2303                                         goto out;
2304                         }
2305                         r = 0;
2306                 }
2307                 break;
2308         }
2309         case KVM_GET_IRQCHIP: {
2310                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2311                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2312
2313                 r = -ENOMEM;
2314                 if (!chip)
2315                         goto out;
2316                 r = -EFAULT;
2317                 if (copy_from_user(chip, argp, sizeof *chip))
2318                         goto get_irqchip_out;
2319                 r = -ENXIO;
2320                 if (!irqchip_in_kernel(kvm))
2321                         goto get_irqchip_out;
2322                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
2323                 if (r)
2324                         goto get_irqchip_out;
2325                 r = -EFAULT;
2326                 if (copy_to_user(argp, chip, sizeof *chip))
2327                         goto get_irqchip_out;
2328                 r = 0;
2329         get_irqchip_out:
2330                 kfree(chip);
2331                 if (r)
2332                         goto out;
2333                 break;
2334         }
2335         case KVM_SET_IRQCHIP: {
2336                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2337                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2338
2339                 r = -ENOMEM;
2340                 if (!chip)
2341                         goto out;
2342                 r = -EFAULT;
2343                 if (copy_from_user(chip, argp, sizeof *chip))
2344                         goto set_irqchip_out;
2345                 r = -ENXIO;
2346                 if (!irqchip_in_kernel(kvm))
2347                         goto set_irqchip_out;
2348                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
2349                 if (r)
2350                         goto set_irqchip_out;
2351                 r = 0;
2352         set_irqchip_out:
2353                 kfree(chip);
2354                 if (r)
2355                         goto out;
2356                 break;
2357         }
2358         case KVM_GET_PIT: {
2359                 r = -EFAULT;
2360                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
2361                         goto out;
2362                 r = -ENXIO;
2363                 if (!kvm->arch.vpit)
2364                         goto out;
2365                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
2366                 if (r)
2367                         goto out;
2368                 r = -EFAULT;
2369                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
2370                         goto out;
2371                 r = 0;
2372                 break;
2373         }
2374         case KVM_SET_PIT: {
2375                 r = -EFAULT;
2376                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
2377                         goto out;
2378                 r = -ENXIO;
2379                 if (!kvm->arch.vpit)
2380                         goto out;
2381                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
2382                 if (r)
2383                         goto out;
2384                 r = 0;
2385                 break;
2386         }
2387         case KVM_GET_PIT2: {
2388                 r = -ENXIO;
2389                 if (!kvm->arch.vpit)
2390                         goto out;
2391                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
2392                 if (r)
2393                         goto out;
2394                 r = -EFAULT;
2395                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
2396                         goto out;
2397                 r = 0;
2398                 break;
2399         }
2400         case KVM_SET_PIT2: {
2401                 r = -EFAULT;
2402                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
2403                         goto out;
2404                 r = -ENXIO;
2405                 if (!kvm->arch.vpit)
2406                         goto out;
2407                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
2408                 if (r)
2409                         goto out;
2410                 r = 0;
2411                 break;
2412         }
2413         case KVM_REINJECT_CONTROL: {
2414                 struct kvm_reinject_control control;
2415                 r =  -EFAULT;
2416                 if (copy_from_user(&control, argp, sizeof(control)))
2417                         goto out;
2418                 r = kvm_vm_ioctl_reinject(kvm, &control);
2419                 if (r)
2420                         goto out;
2421                 r = 0;
2422                 break;
2423         }
2424         default:
2425                 ;
2426         }
2427 out:
2428         return r;
2429 }
2430
2431 static void kvm_init_msr_list(void)
2432 {
2433         u32 dummy[2];
2434         unsigned i, j;
2435
2436         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2437                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2438                         continue;
2439                 if (j < i)
2440                         msrs_to_save[j] = msrs_to_save[i];
2441                 j++;
2442         }
2443         num_msrs_to_save = j;
2444 }
2445
2446 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
2447                            const void *v)
2448 {
2449         if (vcpu->arch.apic &&
2450             !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
2451                 return 0;
2452
2453         return kvm_io_bus_write(&vcpu->kvm->mmio_bus, addr, len, v);
2454 }
2455
2456 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
2457 {
2458         if (vcpu->arch.apic &&
2459             !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
2460                 return 0;
2461
2462         return kvm_io_bus_read(&vcpu->kvm->mmio_bus, addr, len, v);
2463 }
2464
2465 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
2466                                struct kvm_vcpu *vcpu)
2467 {
2468         void *data = val;
2469         int r = X86EMUL_CONTINUE;
2470
2471         while (bytes) {
2472                 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2473                 unsigned offset = addr & (PAGE_SIZE-1);
2474                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
2475                 int ret;
2476
2477                 if (gpa == UNMAPPED_GVA) {
2478                         r = X86EMUL_PROPAGATE_FAULT;
2479                         goto out;
2480                 }
2481                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
2482                 if (ret < 0) {
2483                         r = X86EMUL_UNHANDLEABLE;
2484                         goto out;
2485                 }
2486
2487                 bytes -= toread;
2488                 data += toread;
2489                 addr += toread;
2490         }
2491 out:
2492         return r;
2493 }
2494
2495 static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
2496                                 struct kvm_vcpu *vcpu)
2497 {
2498         void *data = val;
2499         int r = X86EMUL_CONTINUE;
2500
2501         while (bytes) {
2502                 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2503                 unsigned offset = addr & (PAGE_SIZE-1);
2504                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
2505                 int ret;
2506
2507                 if (gpa == UNMAPPED_GVA) {
2508                         r = X86EMUL_PROPAGATE_FAULT;
2509                         goto out;
2510                 }
2511                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
2512                 if (ret < 0) {
2513                         r = X86EMUL_UNHANDLEABLE;
2514                         goto out;
2515                 }
2516
2517                 bytes -= towrite;
2518                 data += towrite;
2519                 addr += towrite;
2520         }
2521 out:
2522         return r;
2523 }
2524
2525
2526 static int emulator_read_emulated(unsigned long addr,
2527                                   void *val,
2528                                   unsigned int bytes,
2529                                   struct kvm_vcpu *vcpu)
2530 {
2531         gpa_t                 gpa;
2532
2533         if (vcpu->mmio_read_completed) {
2534                 memcpy(val, vcpu->mmio_data, bytes);
2535                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
2536                                vcpu->mmio_phys_addr, *(u64 *)val);
2537                 vcpu->mmio_read_completed = 0;
2538                 return X86EMUL_CONTINUE;
2539         }
2540
2541         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2542
2543         /* For APIC access vmexit */
2544         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2545                 goto mmio;
2546
2547         if (kvm_read_guest_virt(addr, val, bytes, vcpu)
2548                                 == X86EMUL_CONTINUE)
2549                 return X86EMUL_CONTINUE;
2550         if (gpa == UNMAPPED_GVA)
2551                 return X86EMUL_PROPAGATE_FAULT;
2552
2553 mmio:
2554         /*
2555          * Is this MMIO handled locally?
2556          */
2557         if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
2558                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
2559                 return X86EMUL_CONTINUE;
2560         }
2561
2562         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
2563
2564         vcpu->mmio_needed = 1;
2565         vcpu->mmio_phys_addr = gpa;
2566         vcpu->mmio_size = bytes;
2567         vcpu->mmio_is_write = 0;
2568
2569         return X86EMUL_UNHANDLEABLE;
2570 }
2571
2572 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2573                           const void *val, int bytes)
2574 {
2575         int ret;
2576
2577         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
2578         if (ret < 0)
2579                 return 0;
2580         kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
2581         return 1;
2582 }
2583
2584 static int emulator_write_emulated_onepage(unsigned long addr,
2585                                            const void *val,
2586                                            unsigned int bytes,
2587                                            struct kvm_vcpu *vcpu)
2588 {
2589         gpa_t                 gpa;
2590
2591         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2592
2593         if (gpa == UNMAPPED_GVA) {
2594                 kvm_inject_page_fault(vcpu, addr, 2);
2595                 return X86EMUL_PROPAGATE_FAULT;
2596         }
2597
2598         /* For APIC access vmexit */
2599         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2600                 goto mmio;
2601
2602         if (emulator_write_phys(vcpu, gpa, val, bytes))
2603                 return X86EMUL_CONTINUE;
2604
2605 mmio:
2606         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
2607         /*
2608          * Is this MMIO handled locally?
2609          */
2610         if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
2611                 return X86EMUL_CONTINUE;
2612
2613         vcpu->mmio_needed = 1;
2614         vcpu->mmio_phys_addr = gpa;
2615         vcpu->mmio_size = bytes;
2616         vcpu->mmio_is_write = 1;
2617         memcpy(vcpu->mmio_data, val, bytes);
2618
2619         return X86EMUL_CONTINUE;
2620 }
2621
2622 int emulator_write_emulated(unsigned long addr,
2623                                    const void *val,
2624                                    unsigned int bytes,
2625                                    struct kvm_vcpu *vcpu)
2626 {
2627         /* Crossing a page boundary? */
2628         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
2629                 int rc, now;
2630
2631                 now = -addr & ~PAGE_MASK;
2632                 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
2633                 if (rc != X86EMUL_CONTINUE)
2634                         return rc;
2635                 addr += now;
2636                 val += now;
2637                 bytes -= now;
2638         }
2639         return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
2640 }
2641 EXPORT_SYMBOL_GPL(emulator_write_emulated);
2642
2643 static int emulator_cmpxchg_emulated(unsigned long addr,
2644                                      const void *old,
2645                                      const void *new,
2646                                      unsigned int bytes,
2647                                      struct kvm_vcpu *vcpu)
2648 {
2649         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
2650 #ifndef CONFIG_X86_64
2651         /* guests cmpxchg8b have to be emulated atomically */
2652         if (bytes == 8) {
2653                 gpa_t gpa;
2654                 struct page *page;
2655                 char *kaddr;
2656                 u64 val;
2657
2658                 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2659
2660                 if (gpa == UNMAPPED_GVA ||
2661                    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2662                         goto emul_write;
2663
2664                 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2665                         goto emul_write;
2666
2667                 val = *(u64 *)new;
2668
2669                 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2670
2671                 kaddr = kmap_atomic(page, KM_USER0);
2672                 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2673                 kunmap_atomic(kaddr, KM_USER0);
2674                 kvm_release_page_dirty(page);
2675         }
2676 emul_write:
2677 #endif
2678
2679         return emulator_write_emulated(addr, new, bytes, vcpu);
2680 }
2681
2682 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2683 {
2684         return kvm_x86_ops->get_segment_base(vcpu, seg);
2685 }
2686
2687 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2688 {
2689         kvm_mmu_invlpg(vcpu, address);
2690         return X86EMUL_CONTINUE;
2691 }
2692
2693 int emulate_clts(struct kvm_vcpu *vcpu)
2694 {
2695         kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2696         return X86EMUL_CONTINUE;
2697 }
2698
2699 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2700 {
2701         struct kvm_vcpu *vcpu = ctxt->vcpu;
2702
2703         switch (dr) {
2704         case 0 ... 3:
2705                 *dest = kvm_x86_ops->get_dr(vcpu, dr);
2706                 return X86EMUL_CONTINUE;
2707         default:
2708                 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2709                 return X86EMUL_UNHANDLEABLE;
2710         }
2711 }
2712
2713 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2714 {
2715         unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2716         int exception;
2717
2718         kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2719         if (exception) {
2720                 /* FIXME: better handling */
2721                 return X86EMUL_UNHANDLEABLE;
2722         }
2723         return X86EMUL_CONTINUE;
2724 }
2725
2726 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2727 {
2728         u8 opcodes[4];
2729         unsigned long rip = kvm_rip_read(vcpu);
2730         unsigned long rip_linear;
2731
2732         if (!printk_ratelimit())
2733                 return;
2734
2735         rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2736
2737         kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
2738
2739         printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2740                context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2741 }
2742 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2743
2744 static struct x86_emulate_ops emulate_ops = {
2745         .read_std            = kvm_read_guest_virt,
2746         .read_emulated       = emulator_read_emulated,
2747         .write_emulated      = emulator_write_emulated,
2748         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
2749 };
2750
2751 static void cache_all_regs(struct kvm_vcpu *vcpu)
2752 {
2753         kvm_register_read(vcpu, VCPU_REGS_RAX);
2754         kvm_register_read(vcpu, VCPU_REGS_RSP);
2755         kvm_register_read(vcpu, VCPU_REGS_RIP);
2756         vcpu->arch.regs_dirty = ~0;
2757 }
2758
2759 int emulate_instruction(struct kvm_vcpu *vcpu,
2760                         struct kvm_run *run,
2761                         unsigned long cr2,
2762                         u16 error_code,
2763                         int emulation_type)
2764 {
2765         int r, shadow_mask;
2766         struct decode_cache *c;
2767
2768         kvm_clear_exception_queue(vcpu);
2769         vcpu->arch.mmio_fault_cr2 = cr2;
2770         /*
2771          * TODO: fix emulate.c to use guest_read/write_register
2772          * instead of direct ->regs accesses, can save hundred cycles
2773          * on Intel for instructions that don't read/change RSP, for
2774          * for example.
2775          */
2776         cache_all_regs(vcpu);
2777
2778         vcpu->mmio_is_write = 0;
2779         vcpu->arch.pio.string = 0;
2780
2781         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2782                 int cs_db, cs_l;
2783                 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2784
2785                 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2786                 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2787                 vcpu->arch.emulate_ctxt.mode =
2788                         (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2789                         ? X86EMUL_MODE_REAL : cs_l
2790                         ? X86EMUL_MODE_PROT64 : cs_db
2791                         ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2792
2793                 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2794
2795                 /* Only allow emulation of specific instructions on #UD
2796                  * (namely VMMCALL, sysenter, sysexit, syscall)*/
2797                 c = &vcpu->arch.emulate_ctxt.decode;
2798                 if (emulation_type & EMULTYPE_TRAP_UD) {
2799                         if (!c->twobyte)
2800                                 return EMULATE_FAIL;
2801                         switch (c->b) {
2802                         case 0x01: /* VMMCALL */
2803                                 if (c->modrm_mod != 3 || c->modrm_rm != 1)
2804                                         return EMULATE_FAIL;
2805                                 break;
2806                         case 0x34: /* sysenter */
2807                         case 0x35: /* sysexit */
2808                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
2809                                         return EMULATE_FAIL;
2810                                 break;
2811                         case 0x05: /* syscall */
2812                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
2813                                         return EMULATE_FAIL;
2814                                 break;
2815                         default:
2816                                 return EMULATE_FAIL;
2817                         }
2818
2819                         if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
2820                                 return EMULATE_FAIL;
2821                 }
2822
2823                 ++vcpu->stat.insn_emulation;
2824                 if (r)  {
2825                         ++vcpu->stat.insn_emulation_fail;
2826                         if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2827                                 return EMULATE_DONE;
2828                         return EMULATE_FAIL;
2829                 }
2830         }
2831
2832         if (emulation_type & EMULTYPE_SKIP) {
2833                 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
2834                 return EMULATE_DONE;
2835         }
2836
2837         r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2838         shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
2839
2840         if (r == 0)
2841                 kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
2842
2843         if (vcpu->arch.pio.string)
2844                 return EMULATE_DO_MMIO;
2845
2846         if ((r || vcpu->mmio_is_write) && run) {
2847                 run->exit_reason = KVM_EXIT_MMIO;
2848                 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2849                 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2850                 run->mmio.len = vcpu->mmio_size;
2851                 run->mmio.is_write = vcpu->mmio_is_write;
2852         }
2853
2854         if (r) {
2855                 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2856                         return EMULATE_DONE;
2857                 if (!vcpu->mmio_needed) {
2858                         kvm_report_emulation_failure(vcpu, "mmio");
2859                         return EMULATE_FAIL;
2860                 }
2861                 return EMULATE_DO_MMIO;
2862         }
2863
2864         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2865
2866         if (vcpu->mmio_is_write) {
2867                 vcpu->mmio_needed = 0;
2868                 return EMULATE_DO_MMIO;
2869         }
2870
2871         return EMULATE_DONE;
2872 }
2873 EXPORT_SYMBOL_GPL(emulate_instruction);
2874
2875 static int pio_copy_data(struct kvm_vcpu *vcpu)
2876 {
2877         void *p = vcpu->arch.pio_data;
2878         gva_t q = vcpu->arch.pio.guest_gva;
2879         unsigned bytes;
2880         int ret;
2881
2882         bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2883         if (vcpu->arch.pio.in)
2884                 ret = kvm_write_guest_virt(q, p, bytes, vcpu);
2885         else
2886                 ret = kvm_read_guest_virt(q, p, bytes, vcpu);
2887         return ret;
2888 }
2889
2890 int complete_pio(struct kvm_vcpu *vcpu)
2891 {
2892         struct kvm_pio_request *io = &vcpu->arch.pio;
2893         long delta;
2894         int r;
2895         unsigned long val;
2896
2897         if (!io->string) {
2898                 if (io->in) {
2899                         val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2900                         memcpy(&val, vcpu->arch.pio_data, io->size);
2901                         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
2902                 }
2903         } else {
2904                 if (io->in) {
2905                         r = pio_copy_data(vcpu);
2906                         if (r)
2907                                 return r;
2908                 }
2909
2910                 delta = 1;
2911                 if (io->rep) {
2912                         delta *= io->cur_count;
2913                         /*
2914                          * The size of the register should really depend on
2915                          * current address size.
2916                          */
2917                         val = kvm_register_read(vcpu, VCPU_REGS_RCX);
2918                         val -= delta;
2919                         kvm_register_write(vcpu, VCPU_REGS_RCX, val);
2920                 }
2921                 if (io->down)
2922                         delta = -delta;
2923                 delta *= io->size;
2924                 if (io->in) {
2925                         val = kvm_register_read(vcpu, VCPU_REGS_RDI);
2926                         val += delta;
2927                         kvm_register_write(vcpu, VCPU_REGS_RDI, val);
2928                 } else {
2929                         val = kvm_register_read(vcpu, VCPU_REGS_RSI);
2930                         val += delta;
2931                         kvm_register_write(vcpu, VCPU_REGS_RSI, val);
2932                 }
2933         }
2934
2935         io->count -= io->cur_count;
2936         io->cur_count = 0;
2937
2938         return 0;
2939 }
2940
2941 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
2942 {
2943         /* TODO: String I/O for in kernel device */
2944         int r;
2945
2946         if (vcpu->arch.pio.in)
2947                 r = kvm_io_bus_read(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
2948                                     vcpu->arch.pio.size, pd);
2949         else
2950                 r = kvm_io_bus_write(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
2951                                      vcpu->arch.pio.size, pd);
2952         return r;
2953 }
2954
2955 static int pio_string_write(struct kvm_vcpu *vcpu)
2956 {
2957         struct kvm_pio_request *io = &vcpu->arch.pio;
2958         void *pd = vcpu->arch.pio_data;
2959         int i, r = 0;
2960
2961         for (i = 0; i < io->cur_count; i++) {
2962                 if (kvm_io_bus_write(&vcpu->kvm->pio_bus,
2963                                      io->port, io->size, pd)) {
2964                         r = -EOPNOTSUPP;
2965                         break;
2966                 }
2967                 pd += io->size;
2968         }
2969         return r;
2970 }
2971
2972 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2973                   int size, unsigned port)
2974 {
2975         unsigned long val;
2976
2977         vcpu->run->exit_reason = KVM_EXIT_IO;
2978         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2979         vcpu->run->io.size = vcpu->arch.pio.size = size;
2980         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2981         vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2982         vcpu->run->io.port = vcpu->arch.pio.port = port;
2983         vcpu->arch.pio.in = in;
2984         vcpu->arch.pio.string = 0;
2985         vcpu->arch.pio.down = 0;
2986         vcpu->arch.pio.rep = 0;
2987
2988         trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
2989                       size, 1);
2990
2991         val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2992         memcpy(vcpu->arch.pio_data, &val, 4);
2993
2994         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
2995                 complete_pio(vcpu);
2996                 return 1;
2997         }
2998         return 0;
2999 }
3000 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
3001
3002 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
3003                   int size, unsigned long count, int down,
3004                   gva_t address, int rep, unsigned port)
3005 {
3006         unsigned now, in_page;
3007         int ret = 0;
3008
3009         vcpu->run->exit_reason = KVM_EXIT_IO;
3010         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3011         vcpu->run->io.size = vcpu->arch.pio.size = size;
3012         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3013         vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
3014         vcpu->run->io.port = vcpu->arch.pio.port = port;
3015         vcpu->arch.pio.in = in;
3016         vcpu->arch.pio.string = 1;
3017         vcpu->arch.pio.down = down;
3018         vcpu->arch.pio.rep = rep;
3019
3020         trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
3021                       size, count);
3022
3023         if (!count) {
3024                 kvm_x86_ops->skip_emulated_instruction(vcpu);
3025                 return 1;
3026         }
3027
3028         if (!down)
3029                 in_page = PAGE_SIZE - offset_in_page(address);
3030         else
3031                 in_page = offset_in_page(address) + size;
3032         now = min(count, (unsigned long)in_page / size);
3033         if (!now)
3034                 now = 1;
3035         if (down) {
3036                 /*
3037                  * String I/O in reverse.  Yuck.  Kill the guest, fix later.
3038                  */
3039                 pr_unimpl(vcpu, "guest string pio down\n");
3040                 kvm_inject_gp(vcpu, 0);
3041                 return 1;
3042         }
3043         vcpu->run->io.count = now;
3044         vcpu->arch.pio.cur_count = now;
3045
3046         if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
3047                 kvm_x86_ops->skip_emulated_instruction(vcpu);
3048
3049         vcpu->arch.pio.guest_gva = address;
3050
3051         if (!vcpu->arch.pio.in) {
3052                 /* string PIO write */
3053                 ret = pio_copy_data(vcpu);
3054                 if (ret == X86EMUL_PROPAGATE_FAULT) {
3055                         kvm_inject_gp(vcpu, 0);
3056                         return 1;
3057                 }
3058                 if (ret == 0 && !pio_string_write(vcpu)) {
3059                         complete_pio(vcpu);
3060                         if (vcpu->arch.pio.count == 0)
3061                                 ret = 1;
3062                 }
3063         }
3064         /* no string PIO read support yet */
3065
3066         return ret;
3067 }
3068 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
3069
3070 static void bounce_off(void *info)
3071 {
3072         /* nothing */
3073 }
3074
3075 static unsigned int  ref_freq;
3076 static unsigned long tsc_khz_ref;
3077
3078 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
3079                                      void *data)
3080 {
3081         struct cpufreq_freqs *freq = data;
3082         struct kvm *kvm;
3083         struct kvm_vcpu *vcpu;
3084         int i, send_ipi = 0;
3085
3086         if (!ref_freq)
3087                 ref_freq = freq->old;
3088
3089         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
3090                 return 0;
3091         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
3092                 return 0;
3093         per_cpu(cpu_tsc_khz, freq->cpu) = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
3094
3095         spin_lock(&kvm_lock);
3096         list_for_each_entry(kvm, &vm_list, vm_list) {
3097                 kvm_for_each_vcpu(i, vcpu, kvm) {
3098                         if (vcpu->cpu != freq->cpu)
3099                                 continue;
3100                         if (!kvm_request_guest_time_update(vcpu))
3101                                 continue;
3102                         if (vcpu->cpu != smp_processor_id())
3103                                 send_ipi++;
3104                 }
3105         }
3106         spin_unlock(&kvm_lock);
3107
3108         if (freq->old < freq->new && send_ipi) {
3109                 /*
3110                  * We upscale the frequency.  Must make the guest
3111                  * doesn't see old kvmclock values while running with
3112                  * the new frequency, otherwise we risk the guest sees
3113                  * time go backwards.
3114                  *
3115                  * In case we update the frequency for another cpu
3116                  * (which might be in guest context) send an interrupt
3117                  * to kick the cpu out of guest context.  Next time
3118                  * guest context is entered kvmclock will be updated,
3119                  * so the guest will not see stale values.
3120                  */
3121                 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
3122         }
3123         return 0;
3124 }
3125
3126 static struct notifier_block kvmclock_cpufreq_notifier_block = {
3127         .notifier_call  = kvmclock_cpufreq_notifier
3128 };
3129
3130 int kvm_arch_init(void *opaque)
3131 {
3132         int r, cpu;
3133         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
3134
3135         if (kvm_x86_ops) {
3136                 printk(KERN_ERR "kvm: already loaded the other module\n");
3137                 r = -EEXIST;
3138                 goto out;
3139         }
3140
3141         if (!ops->cpu_has_kvm_support()) {
3142                 printk(KERN_ERR "kvm: no hardware support\n");
3143                 r = -EOPNOTSUPP;
3144                 goto out;
3145         }
3146         if (ops->disabled_by_bios()) {
3147                 printk(KERN_ERR "kvm: disabled by bios\n");
3148                 r = -EOPNOTSUPP;
3149                 goto out;
3150         }
3151
3152         r = kvm_mmu_module_init();
3153         if (r)
3154                 goto out;
3155
3156         kvm_init_msr_list();
3157
3158         kvm_x86_ops = ops;
3159         kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
3160         kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
3161         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
3162                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
3163
3164         for_each_possible_cpu(cpu)
3165                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
3166         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
3167                 tsc_khz_ref = tsc_khz;
3168                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
3169                                           CPUFREQ_TRANSITION_NOTIFIER);
3170         }
3171
3172         return 0;
3173
3174 out:
3175         return r;
3176 }
3177
3178 void kvm_arch_exit(void)
3179 {
3180         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
3181                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
3182                                             CPUFREQ_TRANSITION_NOTIFIER);
3183         kvm_x86_ops = NULL;
3184         kvm_mmu_module_exit();
3185 }
3186
3187 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
3188 {
3189         ++vcpu->stat.halt_exits;
3190         if (irqchip_in_kernel(vcpu->kvm)) {
3191                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
3192                 return 1;
3193         } else {
3194                 vcpu->run->exit_reason = KVM_EXIT_HLT;
3195                 return 0;
3196         }
3197 }
3198 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
3199
3200 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
3201                            unsigned long a1)
3202 {
3203         if (is_long_mode(vcpu))
3204                 return a0;
3205         else
3206                 return a0 | ((gpa_t)a1 << 32);
3207 }
3208
3209 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
3210 {
3211         unsigned long nr, a0, a1, a2, a3, ret;
3212         int r = 1;
3213
3214         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
3215         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
3216         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
3217         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
3218         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
3219
3220         trace_kvm_hypercall(nr, a0, a1, a2, a3);
3221
3222         if (!is_long_mode(vcpu)) {
3223                 nr &= 0xFFFFFFFF;
3224                 a0 &= 0xFFFFFFFF;
3225                 a1 &= 0xFFFFFFFF;
3226                 a2 &= 0xFFFFFFFF;
3227                 a3 &= 0xFFFFFFFF;
3228         }
3229
3230         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
3231                 ret = -KVM_EPERM;
3232                 goto out;
3233         }
3234
3235         switch (nr) {
3236         case KVM_HC_VAPIC_POLL_IRQ:
3237                 ret = 0;
3238                 break;
3239         case KVM_HC_MMU_OP:
3240                 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
3241                 break;
3242         default:
3243                 ret = -KVM_ENOSYS;
3244                 break;
3245         }
3246 out:
3247         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
3248         ++vcpu->stat.hypercalls;
3249         return r;
3250 }
3251 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
3252
3253 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
3254 {
3255         char instruction[3];
3256         int ret = 0;
3257         unsigned long rip = kvm_rip_read(vcpu);
3258
3259
3260         /*
3261          * Blow out the MMU to ensure that no other VCPU has an active mapping
3262          * to ensure that the updated hypercall appears atomically across all
3263          * VCPUs.
3264          */
3265         kvm_mmu_zap_all(vcpu->kvm);
3266
3267         kvm_x86_ops->patch_hypercall(vcpu, instruction);
3268         if (emulator_write_emulated(rip, instruction, 3, vcpu)
3269             != X86EMUL_CONTINUE)
3270                 ret = -EFAULT;
3271
3272         return ret;
3273 }
3274
3275 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3276 {
3277         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3278 }
3279
3280 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3281 {
3282         struct descriptor_table dt = { limit, base };
3283
3284         kvm_x86_ops->set_gdt(vcpu, &dt);
3285 }
3286
3287 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3288 {
3289         struct descriptor_table dt = { limit, base };
3290
3291         kvm_x86_ops->set_idt(vcpu, &dt);
3292 }
3293
3294 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
3295                    unsigned long *rflags)
3296 {
3297         kvm_lmsw(vcpu, msw);
3298         *rflags = kvm_x86_ops->get_rflags(vcpu);
3299 }
3300
3301 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
3302 {
3303         unsigned long value;
3304
3305         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3306         switch (cr) {
3307         case 0:
3308                 value = vcpu->arch.cr0;
3309                 break;
3310         case 2:
3311                 value = vcpu->arch.cr2;
3312                 break;
3313         case 3:
3314                 value = vcpu->arch.cr3;
3315                 break;
3316         case 4:
3317                 value = vcpu->arch.cr4;
3318                 break;
3319         case 8:
3320                 value = kvm_get_cr8(vcpu);
3321                 break;
3322         default:
3323                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3324                 return 0;
3325         }
3326
3327         return value;
3328 }
3329
3330 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
3331                      unsigned long *rflags)
3332 {
3333         switch (cr) {
3334         case 0:
3335                 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
3336                 *rflags = kvm_x86_ops->get_rflags(vcpu);
3337                 break;
3338         case 2:
3339                 vcpu->arch.cr2 = val;
3340                 break;
3341         case 3:
3342                 kvm_set_cr3(vcpu, val);
3343                 break;
3344         case 4:
3345                 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
3346                 break;
3347         case 8:
3348                 kvm_set_cr8(vcpu, val & 0xfUL);
3349                 break;
3350         default:
3351                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3352         }
3353 }
3354
3355 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
3356 {
3357         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
3358         int j, nent = vcpu->arch.cpuid_nent;
3359
3360         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
3361         /* when no next entry is found, the current entry[i] is reselected */
3362         for (j = i + 1; ; j = (j + 1) % nent) {
3363                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
3364                 if (ej->function == e->function) {
3365                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
3366                         return j;
3367                 }
3368         }
3369         return 0; /* silence gcc, even though control never reaches here */
3370 }
3371
3372 /* find an entry with matching function, matching index (if needed), and that
3373  * should be read next (if it's stateful) */
3374 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
3375         u32 function, u32 index)
3376 {
3377         if (e->function != function)
3378                 return 0;
3379         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
3380                 return 0;
3381         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
3382             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
3383                 return 0;
3384         return 1;
3385 }
3386
3387 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
3388                                               u32 function, u32 index)
3389 {
3390         int i;
3391         struct kvm_cpuid_entry2 *best = NULL;
3392
3393         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
3394                 struct kvm_cpuid_entry2 *e;
3395
3396                 e = &vcpu->arch.cpuid_entries[i];
3397                 if (is_matching_cpuid_entry(e, function, index)) {
3398                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
3399                                 move_to_next_stateful_cpuid_entry(vcpu, i);
3400                         best = e;
3401                         break;
3402                 }
3403                 /*
3404                  * Both basic or both extended?
3405                  */
3406                 if (((e->function ^ function) & 0x80000000) == 0)
3407                         if (!best || e->function > best->function)
3408                                 best = e;
3409         }
3410         return best;
3411 }
3412
3413 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
3414 {
3415         struct kvm_cpuid_entry2 *best;
3416
3417         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
3418         if (best)
3419                 return best->eax & 0xff;
3420         return 36;
3421 }
3422
3423 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
3424 {
3425         u32 function, index;
3426         struct kvm_cpuid_entry2 *best;
3427
3428         function = kvm_register_read(vcpu, VCPU_REGS_RAX);
3429         index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3430         kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
3431         kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
3432         kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
3433         kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
3434         best = kvm_find_cpuid_entry(vcpu, function, index);
3435         if (best) {
3436                 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
3437                 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
3438                 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
3439                 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
3440         }
3441         kvm_x86_ops->skip_emulated_instruction(vcpu);
3442         trace_kvm_cpuid(function,
3443                         kvm_register_read(vcpu, VCPU_REGS_RAX),
3444                         kvm_register_read(vcpu, VCPU_REGS_RBX),
3445                         kvm_register_read(vcpu, VCPU_REGS_RCX),
3446                         kvm_register_read(vcpu, VCPU_REGS_RDX));
3447 }
3448 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
3449
3450 /*
3451  * Check if userspace requested an interrupt window, and that the
3452  * interrupt window is open.
3453  *
3454  * No need to exit to userspace if we already have an interrupt queued.
3455  */
3456 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
3457                                           struct kvm_run *kvm_run)
3458 {
3459         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
3460                 kvm_run->request_interrupt_window &&
3461                 kvm_arch_interrupt_allowed(vcpu));
3462 }
3463
3464 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
3465                               struct kvm_run *kvm_run)
3466 {
3467         kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
3468         kvm_run->cr8 = kvm_get_cr8(vcpu);
3469         kvm_run->apic_base = kvm_get_apic_base(vcpu);
3470         if (irqchip_in_kernel(vcpu->kvm))
3471                 kvm_run->ready_for_interrupt_injection = 1;
3472         else
3473                 kvm_run->ready_for_interrupt_injection =
3474                         kvm_arch_interrupt_allowed(vcpu) &&
3475                         !kvm_cpu_has_interrupt(vcpu) &&
3476                         !kvm_event_needs_reinjection(vcpu);
3477 }
3478
3479 static void vapic_enter(struct kvm_vcpu *vcpu)
3480 {
3481         struct kvm_lapic *apic = vcpu->arch.apic;
3482         struct page *page;
3483
3484         if (!apic || !apic->vapic_addr)
3485                 return;
3486
3487         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3488
3489         vcpu->arch.apic->vapic_page = page;
3490 }
3491
3492 static void vapic_exit(struct kvm_vcpu *vcpu)
3493 {
3494         struct kvm_lapic *apic = vcpu->arch.apic;
3495
3496         if (!apic || !apic->vapic_addr)
3497                 return;
3498
3499         down_read(&vcpu->kvm->slots_lock);
3500         kvm_release_page_dirty(apic->vapic_page);
3501         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3502         up_read(&vcpu->kvm->slots_lock);
3503 }
3504
3505 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
3506 {
3507         int max_irr, tpr;
3508
3509         if (!kvm_x86_ops->update_cr8_intercept)
3510                 return;
3511
3512         if (!vcpu->arch.apic)
3513                 return;
3514
3515         if (!vcpu->arch.apic->vapic_addr)
3516                 max_irr = kvm_lapic_find_highest_irr(vcpu);
3517         else
3518                 max_irr = -1;
3519
3520         if (max_irr != -1)
3521                 max_irr >>= 4;
3522
3523         tpr = kvm_lapic_get_cr8(vcpu);
3524
3525         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
3526 }
3527
3528 static void inject_pending_event(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3529 {
3530         /* try to reinject previous events if any */
3531         if (vcpu->arch.exception.pending) {
3532                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
3533                                           vcpu->arch.exception.has_error_code,
3534                                           vcpu->arch.exception.error_code);
3535                 return;
3536         }
3537
3538         if (vcpu->arch.nmi_injected) {
3539                 kvm_x86_ops->set_nmi(vcpu);
3540                 return;
3541         }
3542
3543         if (vcpu->arch.interrupt.pending) {
3544                 kvm_x86_ops->set_irq(vcpu);
3545                 return;
3546         }
3547
3548         /* try to inject new event if pending */
3549         if (vcpu->arch.nmi_pending) {
3550                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
3551                         vcpu->arch.nmi_pending = false;
3552                         vcpu->arch.nmi_injected = true;
3553                         kvm_x86_ops->set_nmi(vcpu);
3554                 }
3555         } else if (kvm_cpu_has_interrupt(vcpu)) {
3556                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
3557                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
3558                                             false);
3559                         kvm_x86_ops->set_irq(vcpu);
3560                 }
3561         }
3562 }
3563
3564 static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3565 {
3566         int r;
3567         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
3568                 kvm_run->request_interrupt_window;
3569
3570         if (vcpu->requests)
3571                 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
3572                         kvm_mmu_unload(vcpu);
3573
3574         r = kvm_mmu_reload(vcpu);
3575         if (unlikely(r))
3576                 goto out;
3577
3578         if (vcpu->requests) {
3579                 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
3580                         __kvm_migrate_timers(vcpu);
3581                 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
3582                         kvm_write_guest_time(vcpu);
3583                 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
3584                         kvm_mmu_sync_roots(vcpu);
3585                 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
3586                         kvm_x86_ops->tlb_flush(vcpu);
3587                 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
3588                                        &vcpu->requests)) {
3589                         kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
3590                         r = 0;
3591                         goto out;
3592                 }
3593                 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
3594                         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
3595                         r = 0;
3596                         goto out;
3597                 }
3598         }
3599
3600         preempt_disable();
3601
3602         kvm_x86_ops->prepare_guest_switch(vcpu);
3603         kvm_load_guest_fpu(vcpu);
3604
3605         local_irq_disable();
3606
3607         clear_bit(KVM_REQ_KICK, &vcpu->requests);
3608         smp_mb__after_clear_bit();
3609
3610         if (vcpu->requests || need_resched() || signal_pending(current)) {
3611                 set_bit(KVM_REQ_KICK, &vcpu->requests);
3612                 local_irq_enable();
3613                 preempt_enable();
3614                 r = 1;
3615                 goto out;
3616         }
3617
3618         inject_pending_event(vcpu, kvm_run);
3619
3620         /* enable NMI/IRQ window open exits if needed */
3621         if (vcpu->arch.nmi_pending)
3622                 kvm_x86_ops->enable_nmi_window(vcpu);
3623         else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
3624                 kvm_x86_ops->enable_irq_window(vcpu);
3625
3626         if (kvm_lapic_enabled(vcpu)) {
3627                 update_cr8_intercept(vcpu);
3628                 kvm_lapic_sync_to_vapic(vcpu);
3629         }
3630
3631         up_read(&vcpu->kvm->slots_lock);
3632
3633         kvm_guest_enter();
3634
3635         if (unlikely(vcpu->arch.switch_db_regs)) {
3636                 set_debugreg(0, 7);
3637                 set_debugreg(vcpu->arch.eff_db[0], 0);
3638                 set_debugreg(vcpu->arch.eff_db[1], 1);
3639                 set_debugreg(vcpu->arch.eff_db[2], 2);
3640                 set_debugreg(vcpu->arch.eff_db[3], 3);
3641         }
3642
3643         trace_kvm_entry(vcpu->vcpu_id);
3644         kvm_x86_ops->run(vcpu, kvm_run);
3645
3646         if (unlikely(vcpu->arch.switch_db_regs || test_thread_flag(TIF_DEBUG))) {
3647                 set_debugreg(current->thread.debugreg[0], 0);
3648                 set_debugreg(current->thread.debugreg[1], 1);
3649                 set_debugreg(current->thread.debugreg[2], 2);
3650                 set_debugreg(current->thread.debugreg[3], 3);
3651                 set_debugreg(current->thread.debugreg6, 6);
3652                 set_debugreg(current->thread.debugreg7, 7);
3653         }
3654
3655         set_bit(KVM_REQ_KICK, &vcpu->requests);
3656         local_irq_enable();
3657
3658         ++vcpu->stat.exits;
3659
3660         /*
3661          * We must have an instruction between local_irq_enable() and
3662          * kvm_guest_exit(), so the timer interrupt isn't delayed by
3663          * the interrupt shadow.  The stat.exits increment will do nicely.
3664          * But we need to prevent reordering, hence this barrier():
3665          */
3666         barrier();
3667
3668         kvm_guest_exit();
3669
3670         preempt_enable();
3671
3672         down_read(&vcpu->kvm->slots_lock);
3673
3674         /*
3675          * Profile KVM exit RIPs:
3676          */
3677         if (unlikely(prof_on == KVM_PROFILING)) {
3678                 unsigned long rip = kvm_rip_read(vcpu);
3679                 profile_hit(KVM_PROFILING, (void *)rip);
3680         }
3681
3682
3683         kvm_lapic_sync_from_vapic(vcpu);
3684
3685         r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
3686 out:
3687         return r;
3688 }
3689
3690
3691 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3692 {
3693         int r;
3694
3695         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
3696                 pr_debug("vcpu %d received sipi with vector # %x\n",
3697                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
3698                 kvm_lapic_reset(vcpu);
3699                 r = kvm_arch_vcpu_reset(vcpu);
3700                 if (r)
3701                         return r;
3702                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3703         }
3704
3705         down_read(&vcpu->kvm->slots_lock);
3706         vapic_enter(vcpu);
3707
3708         r = 1;
3709         while (r > 0) {
3710                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
3711                         r = vcpu_enter_guest(vcpu, kvm_run);
3712                 else {
3713                         up_read(&vcpu->kvm->slots_lock);
3714                         kvm_vcpu_block(vcpu);
3715                         down_read(&vcpu->kvm->slots_lock);
3716                         if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
3717                         {
3718                                 switch(vcpu->arch.mp_state) {
3719                                 case KVM_MP_STATE_HALTED:
3720                                         vcpu->arch.mp_state =
3721                                                 KVM_MP_STATE_RUNNABLE;
3722                                 case KVM_MP_STATE_RUNNABLE:
3723                                         break;
3724                                 case KVM_MP_STATE_SIPI_RECEIVED:
3725                                 default:
3726                                         r = -EINTR;
3727                                         break;
3728                                 }
3729                         }
3730                 }
3731
3732                 if (r <= 0)
3733                         break;
3734
3735                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
3736                 if (kvm_cpu_has_pending_timer(vcpu))
3737                         kvm_inject_pending_timer_irqs(vcpu);
3738
3739                 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
3740                         r = -EINTR;
3741                         kvm_run->exit_reason = KVM_EXIT_INTR;
3742                         ++vcpu->stat.request_irq_exits;
3743                 }
3744                 if (signal_pending(current)) {
3745                         r = -EINTR;
3746                         kvm_run->exit_reason = KVM_EXIT_INTR;
3747                         ++vcpu->stat.signal_exits;
3748                 }
3749                 if (need_resched()) {
3750                         up_read(&vcpu->kvm->slots_lock);
3751                         kvm_resched(vcpu);
3752                         down_read(&vcpu->kvm->slots_lock);
3753                 }
3754         }
3755
3756         up_read(&vcpu->kvm->slots_lock);
3757         post_kvm_run_save(vcpu, kvm_run);
3758
3759         vapic_exit(vcpu);
3760
3761         return r;
3762 }
3763
3764 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3765 {
3766         int r;
3767         sigset_t sigsaved;
3768
3769         vcpu_load(vcpu);
3770
3771         if (vcpu->sigset_active)
3772                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
3773
3774         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
3775                 kvm_vcpu_block(vcpu);
3776                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
3777                 r = -EAGAIN;
3778                 goto out;
3779         }
3780
3781         /* re-sync apic's tpr */
3782         if (!irqchip_in_kernel(vcpu->kvm))
3783                 kvm_set_cr8(vcpu, kvm_run->cr8);
3784
3785         if (vcpu->arch.pio.cur_count) {
3786                 r = complete_pio(vcpu);
3787                 if (r)
3788                         goto out;
3789         }
3790 #if CONFIG_HAS_IOMEM
3791         if (vcpu->mmio_needed) {
3792                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
3793                 vcpu->mmio_read_completed = 1;
3794                 vcpu->mmio_needed = 0;
3795
3796                 down_read(&vcpu->kvm->slots_lock);
3797                 r = emulate_instruction(vcpu, kvm_run,
3798                                         vcpu->arch.mmio_fault_cr2, 0,
3799                                         EMULTYPE_NO_DECODE);
3800                 up_read(&vcpu->kvm->slots_lock);
3801                 if (r == EMULATE_DO_MMIO) {
3802                         /*
3803                          * Read-modify-write.  Back to userspace.
3804                          */
3805                         r = 0;
3806                         goto out;
3807                 }
3808         }
3809 #endif
3810         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
3811                 kvm_register_write(vcpu, VCPU_REGS_RAX,
3812                                      kvm_run->hypercall.ret);
3813
3814         r = __vcpu_run(vcpu, kvm_run);
3815
3816 out:
3817         if (vcpu->sigset_active)
3818                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
3819
3820         vcpu_put(vcpu);
3821         return r;
3822 }
3823
3824 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3825 {
3826         vcpu_load(vcpu);
3827
3828         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3829         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3830         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3831         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3832         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3833         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3834         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3835         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3836 #ifdef CONFIG_X86_64
3837         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
3838         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
3839         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
3840         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
3841         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
3842         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
3843         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
3844         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
3845 #endif
3846
3847         regs->rip = kvm_rip_read(vcpu);
3848         regs->rflags = kvm_x86_ops->get_rflags(vcpu);
3849
3850         /*
3851          * Don't leak debug flags in case they were set for guest debugging
3852          */
3853         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3854                 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
3855
3856         vcpu_put(vcpu);
3857
3858         return 0;
3859 }
3860
3861 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3862 {
3863         vcpu_load(vcpu);
3864
3865         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
3866         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
3867         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
3868         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
3869         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
3870         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
3871         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
3872         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
3873 #ifdef CONFIG_X86_64
3874         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
3875         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
3876         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
3877         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
3878         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
3879         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
3880         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
3881         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
3882
3883 #endif
3884
3885         kvm_rip_write(vcpu, regs->rip);
3886         kvm_x86_ops->set_rflags(vcpu, regs->rflags);
3887
3888
3889         vcpu->arch.exception.pending = false;
3890
3891         vcpu_put(vcpu);
3892
3893         return 0;
3894 }
3895
3896 void kvm_get_segment(struct kvm_vcpu *vcpu,
3897                      struct kvm_segment *var, int seg)
3898 {
3899         kvm_x86_ops->get_segment(vcpu, var, seg);
3900 }
3901
3902 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3903 {
3904         struct kvm_segment cs;
3905
3906         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3907         *db = cs.db;
3908         *l = cs.l;
3909 }
3910 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3911
3912 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3913                                   struct kvm_sregs *sregs)
3914 {
3915         struct descriptor_table dt;
3916
3917         vcpu_load(vcpu);
3918
3919         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3920         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3921         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3922         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3923         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3924         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3925
3926         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3927         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3928
3929         kvm_x86_ops->get_idt(vcpu, &dt);
3930         sregs->idt.limit = dt.limit;
3931         sregs->idt.base = dt.base;
3932         kvm_x86_ops->get_gdt(vcpu, &dt);
3933         sregs->gdt.limit = dt.limit;
3934         sregs->gdt.base = dt.base;
3935
3936         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3937         sregs->cr0 = vcpu->arch.cr0;
3938         sregs->cr2 = vcpu->arch.cr2;
3939         sregs->cr3 = vcpu->arch.cr3;
3940         sregs->cr4 = vcpu->arch.cr4;
3941         sregs->cr8 = kvm_get_cr8(vcpu);
3942         sregs->efer = vcpu->arch.shadow_efer;
3943         sregs->apic_base = kvm_get_apic_base(vcpu);
3944
3945         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
3946
3947         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
3948                 set_bit(vcpu->arch.interrupt.nr,
3949                         (unsigned long *)sregs->interrupt_bitmap);
3950
3951         vcpu_put(vcpu);
3952
3953         return 0;
3954 }
3955
3956 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3957                                     struct kvm_mp_state *mp_state)
3958 {
3959         vcpu_load(vcpu);
3960         mp_state->mp_state = vcpu->arch.mp_state;
3961         vcpu_put(vcpu);
3962         return 0;
3963 }
3964
3965 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3966                                     struct kvm_mp_state *mp_state)
3967 {
3968         vcpu_load(vcpu);
3969         vcpu->arch.mp_state = mp_state->mp_state;
3970         vcpu_put(vcpu);
3971         return 0;
3972 }
3973
3974 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3975                         struct kvm_segment *var, int seg)
3976 {
3977         kvm_x86_ops->set_segment(vcpu, var, seg);
3978 }
3979
3980 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
3981                                    struct kvm_segment *kvm_desct)
3982 {
3983         kvm_desct->base = get_desc_base(seg_desc);
3984         kvm_desct->limit = get_desc_limit(seg_desc);
3985         if (seg_desc->g) {
3986                 kvm_desct->limit <<= 12;
3987                 kvm_desct->limit |= 0xfff;
3988         }
3989         kvm_desct->selector = selector;
3990         kvm_desct->type = seg_desc->type;
3991         kvm_desct->present = seg_desc->p;
3992         kvm_desct->dpl = seg_desc->dpl;
3993         kvm_desct->db = seg_desc->d;
3994         kvm_desct->s = seg_desc->s;
3995         kvm_desct->l = seg_desc->l;
3996         kvm_desct->g = seg_desc->g;
3997         kvm_desct->avl = seg_desc->avl;
3998         if (!selector)
3999                 kvm_desct->unusable = 1;
4000         else
4001                 kvm_desct->unusable = 0;
4002         kvm_desct->padding = 0;
4003 }
4004
4005 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
4006                                           u16 selector,
4007                                           struct descriptor_table *dtable)
4008 {
4009         if (selector & 1 << 2) {
4010                 struct kvm_segment kvm_seg;
4011
4012                 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
4013
4014                 if (kvm_seg.unusable)
4015                         dtable->limit = 0;
4016                 else
4017                         dtable->limit = kvm_seg.limit;
4018                 dtable->base = kvm_seg.base;
4019         }
4020         else
4021                 kvm_x86_ops->get_gdt(vcpu, dtable);
4022 }
4023
4024 /* allowed just for 8 bytes segments */
4025 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4026                                          struct desc_struct *seg_desc)
4027 {
4028         struct descriptor_table dtable;
4029         u16 index = selector >> 3;
4030
4031         get_segment_descriptor_dtable(vcpu, selector, &dtable);
4032
4033         if (dtable.limit < index * 8 + 7) {
4034                 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
4035                 return 1;
4036         }
4037         return kvm_read_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
4038 }
4039
4040 /* allowed just for 8 bytes segments */
4041 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4042                                          struct desc_struct *seg_desc)
4043 {
4044         struct descriptor_table dtable;
4045         u16 index = selector >> 3;
4046
4047         get_segment_descriptor_dtable(vcpu, selector, &dtable);
4048
4049         if (dtable.limit < index * 8 + 7)
4050                 return 1;
4051         return kvm_write_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
4052 }
4053
4054 static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
4055                              struct desc_struct *seg_desc)
4056 {
4057         u32 base_addr = get_desc_base(seg_desc);
4058
4059         return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
4060 }
4061
4062 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
4063 {
4064         struct kvm_segment kvm_seg;
4065
4066         kvm_get_segment(vcpu, &kvm_seg, seg);
4067         return kvm_seg.selector;
4068 }
4069
4070 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
4071                                                 u16 selector,
4072                                                 struct kvm_segment *kvm_seg)
4073 {
4074         struct desc_struct seg_desc;
4075
4076         if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
4077                 return 1;
4078         seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
4079         return 0;
4080 }
4081
4082 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
4083 {
4084         struct kvm_segment segvar = {
4085                 .base = selector << 4,
4086                 .limit = 0xffff,
4087                 .selector = selector,
4088                 .type = 3,
4089                 .present = 1,
4090                 .dpl = 3,
4091                 .db = 0,
4092                 .s = 1,
4093                 .l = 0,
4094                 .g = 0,
4095                 .avl = 0,
4096                 .unusable = 0,
4097         };
4098         kvm_x86_ops->set_segment(vcpu, &segvar, seg);
4099         return 0;
4100 }
4101
4102 static int is_vm86_segment(struct kvm_vcpu *vcpu, int seg)
4103 {
4104         return (seg != VCPU_SREG_LDTR) &&
4105                 (seg != VCPU_SREG_TR) &&
4106                 (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_VM);
4107 }
4108
4109 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4110                                 int type_bits, int seg)
4111 {
4112         struct kvm_segment kvm_seg;
4113
4114         if (is_vm86_segment(vcpu, seg) || !(vcpu->arch.cr0 & X86_CR0_PE))
4115                 return kvm_load_realmode_segment(vcpu, selector, seg);
4116         if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
4117                 return 1;
4118         kvm_seg.type |= type_bits;
4119
4120         if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
4121             seg != VCPU_SREG_LDTR)
4122                 if (!kvm_seg.s)
4123                         kvm_seg.unusable = 1;
4124
4125         kvm_set_segment(vcpu, &kvm_seg, seg);
4126         return 0;
4127 }
4128
4129 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
4130                                 struct tss_segment_32 *tss)
4131 {
4132         tss->cr3 = vcpu->arch.cr3;
4133         tss->eip = kvm_rip_read(vcpu);
4134         tss->eflags = kvm_x86_ops->get_rflags(vcpu);
4135         tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4136         tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4137         tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4138         tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4139         tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4140         tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4141         tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4142         tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4143         tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4144         tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4145         tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4146         tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4147         tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
4148         tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
4149         tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4150 }
4151
4152 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
4153                                   struct tss_segment_32 *tss)
4154 {
4155         kvm_set_cr3(vcpu, tss->cr3);
4156
4157         kvm_rip_write(vcpu, tss->eip);
4158         kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
4159
4160         kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
4161         kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
4162         kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
4163         kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
4164         kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
4165         kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
4166         kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
4167         kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
4168
4169         if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
4170                 return 1;
4171
4172         if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4173                 return 1;
4174
4175         if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4176                 return 1;
4177
4178         if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4179                 return 1;
4180
4181         if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4182                 return 1;
4183
4184         if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
4185                 return 1;
4186
4187         if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
4188                 return 1;
4189         return 0;
4190 }
4191
4192 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
4193                                 struct tss_segment_16 *tss)
4194 {
4195         tss->ip = kvm_rip_read(vcpu);
4196         tss->flag = kvm_x86_ops->get_rflags(vcpu);
4197         tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4198         tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4199         tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4200         tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4201         tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4202         tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4203         tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
4204         tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
4205
4206         tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4207         tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4208         tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4209         tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4210         tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4211         tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
4212 }
4213
4214 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
4215                                  struct tss_segment_16 *tss)
4216 {
4217         kvm_rip_write(vcpu, tss->ip);
4218         kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
4219         kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
4220         kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
4221         kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
4222         kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
4223         kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
4224         kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
4225         kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
4226         kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
4227
4228         if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
4229                 return 1;
4230
4231         if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4232                 return 1;
4233
4234         if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4235                 return 1;
4236
4237         if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4238                 return 1;
4239
4240         if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4241                 return 1;
4242         return 0;
4243 }
4244
4245 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
4246                               u16 old_tss_sel, u32 old_tss_base,
4247                               struct desc_struct *nseg_desc)
4248 {
4249         struct tss_segment_16 tss_segment_16;
4250         int ret = 0;
4251
4252         if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4253                            sizeof tss_segment_16))
4254                 goto out;
4255
4256         save_state_to_tss16(vcpu, &tss_segment_16);
4257
4258         if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4259                             sizeof tss_segment_16))
4260                 goto out;
4261
4262         if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4263                            &tss_segment_16, sizeof tss_segment_16))
4264                 goto out;
4265
4266         if (old_tss_sel != 0xffff) {
4267                 tss_segment_16.prev_task_link = old_tss_sel;
4268
4269                 if (kvm_write_guest(vcpu->kvm,
4270                                     get_tss_base_addr(vcpu, nseg_desc),
4271                                     &tss_segment_16.prev_task_link,
4272                                     sizeof tss_segment_16.prev_task_link))
4273                         goto out;
4274         }
4275
4276         if (load_state_from_tss16(vcpu, &tss_segment_16))
4277                 goto out;
4278
4279         ret = 1;
4280 out:
4281         return ret;
4282 }
4283
4284 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
4285                        u16 old_tss_sel, u32 old_tss_base,
4286                        struct desc_struct *nseg_desc)
4287 {
4288         struct tss_segment_32 tss_segment_32;
4289         int ret = 0;
4290
4291         if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4292                            sizeof tss_segment_32))
4293                 goto out;
4294
4295         save_state_to_tss32(vcpu, &tss_segment_32);
4296
4297         if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4298                             sizeof tss_segment_32))
4299                 goto out;
4300
4301         if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4302                            &tss_segment_32, sizeof tss_segment_32))
4303                 goto out;
4304
4305         if (old_tss_sel != 0xffff) {
4306                 tss_segment_32.prev_task_link = old_tss_sel;
4307
4308                 if (kvm_write_guest(vcpu->kvm,
4309                                     get_tss_base_addr(vcpu, nseg_desc),
4310                                     &tss_segment_32.prev_task_link,
4311                                     sizeof tss_segment_32.prev_task_link))
4312                         goto out;
4313         }
4314
4315         if (load_state_from_tss32(vcpu, &tss_segment_32))
4316                 goto out;
4317
4318         ret = 1;
4319 out:
4320         return ret;
4321 }
4322
4323 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
4324 {
4325         struct kvm_segment tr_seg;
4326         struct desc_struct cseg_desc;
4327         struct desc_struct nseg_desc;
4328         int ret = 0;
4329         u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
4330         u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
4331
4332         old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
4333
4334         /* FIXME: Handle errors. Failure to read either TSS or their
4335          * descriptors should generate a pagefault.
4336          */
4337         if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
4338                 goto out;
4339
4340         if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
4341                 goto out;
4342
4343         if (reason != TASK_SWITCH_IRET) {
4344                 int cpl;
4345
4346                 cpl = kvm_x86_ops->get_cpl(vcpu);
4347                 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
4348                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4349                         return 1;
4350                 }
4351         }
4352
4353         if (!nseg_desc.p || get_desc_limit(&nseg_desc) < 0x67) {
4354                 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
4355                 return 1;
4356         }
4357
4358         if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
4359                 cseg_desc.type &= ~(1 << 1); //clear the B flag
4360                 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
4361         }
4362
4363         if (reason == TASK_SWITCH_IRET) {
4364                 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
4365                 kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
4366         }
4367
4368         /* set back link to prev task only if NT bit is set in eflags
4369            note that old_tss_sel is not used afetr this point */
4370         if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4371                 old_tss_sel = 0xffff;
4372
4373         /* set back link to prev task only if NT bit is set in eflags
4374            note that old_tss_sel is not used afetr this point */
4375         if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4376                 old_tss_sel = 0xffff;
4377
4378         if (nseg_desc.type & 8)
4379                 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
4380                                          old_tss_base, &nseg_desc);
4381         else
4382                 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
4383                                          old_tss_base, &nseg_desc);
4384
4385         if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
4386                 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
4387                 kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
4388         }
4389
4390         if (reason != TASK_SWITCH_IRET) {
4391                 nseg_desc.type |= (1 << 1);
4392                 save_guest_segment_descriptor(vcpu, tss_selector,
4393                                               &nseg_desc);
4394         }
4395
4396         kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
4397         seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
4398         tr_seg.type = 11;
4399         kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
4400 out:
4401         return ret;
4402 }
4403 EXPORT_SYMBOL_GPL(kvm_task_switch);
4404
4405 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
4406                                   struct kvm_sregs *sregs)
4407 {
4408         int mmu_reset_needed = 0;
4409         int pending_vec, max_bits;
4410         struct descriptor_table dt;
4411
4412         vcpu_load(vcpu);
4413
4414         dt.limit = sregs->idt.limit;
4415         dt.base = sregs->idt.base;
4416         kvm_x86_ops->set_idt(vcpu, &dt);
4417         dt.limit = sregs->gdt.limit;
4418         dt.base = sregs->gdt.base;
4419         kvm_x86_ops->set_gdt(vcpu, &dt);
4420
4421         vcpu->arch.cr2 = sregs->cr2;
4422         mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
4423         vcpu->arch.cr3 = sregs->cr3;
4424
4425         kvm_set_cr8(vcpu, sregs->cr8);
4426
4427         mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
4428         kvm_x86_ops->set_efer(vcpu, sregs->efer);
4429         kvm_set_apic_base(vcpu, sregs->apic_base);
4430
4431         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
4432
4433         mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
4434         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
4435         vcpu->arch.cr0 = sregs->cr0;
4436
4437         mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
4438         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
4439         if (!is_long_mode(vcpu) && is_pae(vcpu))
4440                 load_pdptrs(vcpu, vcpu->arch.cr3);
4441
4442         if (mmu_reset_needed)
4443                 kvm_mmu_reset_context(vcpu);
4444
4445         max_bits = (sizeof sregs->interrupt_bitmap) << 3;
4446         pending_vec = find_first_bit(
4447                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
4448         if (pending_vec < max_bits) {
4449                 kvm_queue_interrupt(vcpu, pending_vec, false);
4450                 pr_debug("Set back pending irq %d\n", pending_vec);
4451                 if (irqchip_in_kernel(vcpu->kvm))
4452                         kvm_pic_clear_isr_ack(vcpu->kvm);
4453         }
4454
4455         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4456         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4457         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4458         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4459         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4460         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4461
4462         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4463         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4464
4465         update_cr8_intercept(vcpu);
4466
4467         /* Older userspace won't unhalt the vcpu on reset. */
4468         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
4469             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
4470             !(vcpu->arch.cr0 & X86_CR0_PE))
4471                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4472
4473         vcpu_put(vcpu);
4474
4475         return 0;
4476 }
4477
4478 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
4479                                         struct kvm_guest_debug *dbg)
4480 {
4481         int i, r;
4482
4483         vcpu_load(vcpu);
4484
4485         if ((dbg->control & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) ==
4486             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) {
4487                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
4488                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
4489                 vcpu->arch.switch_db_regs =
4490                         (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
4491         } else {
4492                 for (i = 0; i < KVM_NR_DB_REGS; i++)
4493                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
4494                 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
4495         }
4496
4497         r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
4498
4499         if (dbg->control & KVM_GUESTDBG_INJECT_DB)
4500                 kvm_queue_exception(vcpu, DB_VECTOR);
4501         else if (dbg->control & KVM_GUESTDBG_INJECT_BP)
4502                 kvm_queue_exception(vcpu, BP_VECTOR);
4503
4504         vcpu_put(vcpu);
4505
4506         return r;
4507 }
4508
4509 /*
4510  * fxsave fpu state.  Taken from x86_64/processor.h.  To be killed when
4511  * we have asm/x86/processor.h
4512  */
4513 struct fxsave {
4514         u16     cwd;
4515         u16     swd;
4516         u16     twd;
4517         u16     fop;
4518         u64     rip;
4519         u64     rdp;
4520         u32     mxcsr;
4521         u32     mxcsr_mask;
4522         u32     st_space[32];   /* 8*16 bytes for each FP-reg = 128 bytes */
4523 #ifdef CONFIG_X86_64
4524         u32     xmm_space[64];  /* 16*16 bytes for each XMM-reg = 256 bytes */
4525 #else
4526         u32     xmm_space[32];  /* 8*16 bytes for each XMM-reg = 128 bytes */
4527 #endif
4528 };
4529
4530 /*
4531  * Translate a guest virtual address to a guest physical address.
4532  */
4533 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
4534                                     struct kvm_translation *tr)
4535 {
4536         unsigned long vaddr = tr->linear_address;
4537         gpa_t gpa;
4538
4539         vcpu_load(vcpu);
4540         down_read(&vcpu->kvm->slots_lock);
4541         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
4542         up_read(&vcpu->kvm->slots_lock);
4543         tr->physical_address = gpa;
4544         tr->valid = gpa != UNMAPPED_GVA;
4545         tr->writeable = 1;
4546         tr->usermode = 0;
4547         vcpu_put(vcpu);
4548
4549         return 0;
4550 }
4551
4552 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4553 {
4554         struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4555
4556         vcpu_load(vcpu);
4557
4558         memcpy(fpu->fpr, fxsave->st_space, 128);
4559         fpu->fcw = fxsave->cwd;
4560         fpu->fsw = fxsave->swd;
4561         fpu->ftwx = fxsave->twd;
4562         fpu->last_opcode = fxsave->fop;
4563         fpu->last_ip = fxsave->rip;
4564         fpu->last_dp = fxsave->rdp;
4565         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
4566
4567         vcpu_put(vcpu);
4568
4569         return 0;
4570 }
4571
4572 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4573 {
4574         struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4575
4576         vcpu_load(vcpu);
4577
4578         memcpy(fxsave->st_space, fpu->fpr, 128);
4579         fxsave->cwd = fpu->fcw;
4580         fxsave->swd = fpu->fsw;
4581         fxsave->twd = fpu->ftwx;
4582         fxsave->fop = fpu->last_opcode;
4583         fxsave->rip = fpu->last_ip;
4584         fxsave->rdp = fpu->last_dp;
4585         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
4586
4587         vcpu_put(vcpu);
4588
4589         return 0;
4590 }
4591
4592 void fx_init(struct kvm_vcpu *vcpu)
4593 {
4594         unsigned after_mxcsr_mask;
4595
4596         /*
4597          * Touch the fpu the first time in non atomic context as if
4598          * this is the first fpu instruction the exception handler
4599          * will fire before the instruction returns and it'll have to
4600          * allocate ram with GFP_KERNEL.
4601          */
4602         if (!used_math())
4603                 kvm_fx_save(&vcpu->arch.host_fx_image);
4604
4605         /* Initialize guest FPU by resetting ours and saving into guest's */
4606         preempt_disable();
4607         kvm_fx_save(&vcpu->arch.host_fx_image);
4608         kvm_fx_finit();
4609         kvm_fx_save(&vcpu->arch.guest_fx_image);
4610         kvm_fx_restore(&vcpu->arch.host_fx_image);
4611         preempt_enable();
4612
4613         vcpu->arch.cr0 |= X86_CR0_ET;
4614         after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
4615         vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
4616         memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
4617                0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
4618 }
4619 EXPORT_SYMBOL_GPL(fx_init);
4620
4621 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
4622 {
4623         if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
4624                 return;
4625
4626         vcpu->guest_fpu_loaded = 1;
4627         kvm_fx_save(&vcpu->arch.host_fx_image);
4628         kvm_fx_restore(&vcpu->arch.guest_fx_image);
4629 }
4630 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
4631
4632 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
4633 {
4634         if (!vcpu->guest_fpu_loaded)
4635                 return;
4636
4637         vcpu->guest_fpu_loaded = 0;
4638         kvm_fx_save(&vcpu->arch.guest_fx_image);
4639         kvm_fx_restore(&vcpu->arch.host_fx_image);
4640         ++vcpu->stat.fpu_reload;
4641 }
4642 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
4643
4644 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
4645 {
4646         if (vcpu->arch.time_page) {
4647                 kvm_release_page_dirty(vcpu->arch.time_page);
4648                 vcpu->arch.time_page = NULL;
4649         }
4650
4651         kvm_x86_ops->vcpu_free(vcpu);
4652 }
4653
4654 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
4655                                                 unsigned int id)
4656 {
4657         return kvm_x86_ops->vcpu_create(kvm, id);
4658 }
4659
4660 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
4661 {
4662         int r;
4663
4664         /* We do fxsave: this must be aligned. */
4665         BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
4666
4667         vcpu->arch.mtrr_state.have_fixed = 1;
4668         vcpu_load(vcpu);
4669         r = kvm_arch_vcpu_reset(vcpu);
4670         if (r == 0)
4671                 r = kvm_mmu_setup(vcpu);
4672         vcpu_put(vcpu);
4673         if (r < 0)
4674                 goto free_vcpu;
4675
4676         return 0;
4677 free_vcpu:
4678         kvm_x86_ops->vcpu_free(vcpu);
4679         return r;
4680 }
4681
4682 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
4683 {
4684         vcpu_load(vcpu);
4685         kvm_mmu_unload(vcpu);
4686         vcpu_put(vcpu);
4687
4688         kvm_x86_ops->vcpu_free(vcpu);
4689 }
4690
4691 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
4692 {
4693         vcpu->arch.nmi_pending = false;
4694         vcpu->arch.nmi_injected = false;
4695
4696         vcpu->arch.switch_db_regs = 0;
4697         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
4698         vcpu->arch.dr6 = DR6_FIXED_1;
4699         vcpu->arch.dr7 = DR7_FIXED_1;
4700
4701         return kvm_x86_ops->vcpu_reset(vcpu);
4702 }
4703
4704 void kvm_arch_hardware_enable(void *garbage)
4705 {
4706         kvm_x86_ops->hardware_enable(garbage);
4707 }
4708
4709 void kvm_arch_hardware_disable(void *garbage)
4710 {
4711         kvm_x86_ops->hardware_disable(garbage);
4712 }
4713
4714 int kvm_arch_hardware_setup(void)
4715 {
4716         return kvm_x86_ops->hardware_setup();
4717 }
4718
4719 void kvm_arch_hardware_unsetup(void)
4720 {
4721         kvm_x86_ops->hardware_unsetup();
4722 }
4723
4724 void kvm_arch_check_processor_compat(void *rtn)
4725 {
4726         kvm_x86_ops->check_processor_compatibility(rtn);
4727 }
4728
4729 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
4730 {
4731         struct page *page;
4732         struct kvm *kvm;
4733         int r;
4734
4735         BUG_ON(vcpu->kvm == NULL);
4736         kvm = vcpu->kvm;
4737
4738         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4739         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
4740                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4741         else
4742                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
4743
4744         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
4745         if (!page) {
4746                 r = -ENOMEM;
4747                 goto fail;
4748         }
4749         vcpu->arch.pio_data = page_address(page);
4750
4751         r = kvm_mmu_create(vcpu);
4752         if (r < 0)
4753                 goto fail_free_pio_data;
4754
4755         if (irqchip_in_kernel(kvm)) {
4756                 r = kvm_create_lapic(vcpu);
4757                 if (r < 0)
4758                         goto fail_mmu_destroy;
4759         }
4760
4761         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
4762                                        GFP_KERNEL);
4763         if (!vcpu->arch.mce_banks) {
4764                 r = -ENOMEM;
4765                 goto fail_mmu_destroy;
4766         }
4767         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
4768
4769         return 0;
4770
4771 fail_mmu_destroy:
4772         kvm_mmu_destroy(vcpu);
4773 fail_free_pio_data:
4774         free_page((unsigned long)vcpu->arch.pio_data);
4775 fail:
4776         return r;
4777 }
4778
4779 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
4780 {
4781         kvm_free_lapic(vcpu);
4782         down_read(&vcpu->kvm->slots_lock);
4783         kvm_mmu_destroy(vcpu);
4784         up_read(&vcpu->kvm->slots_lock);
4785         free_page((unsigned long)vcpu->arch.pio_data);
4786 }
4787
4788 struct  kvm *kvm_arch_create_vm(void)
4789 {
4790         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
4791
4792         if (!kvm)
4793                 return ERR_PTR(-ENOMEM);
4794
4795         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
4796         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
4797
4798         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
4799         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
4800
4801         rdtscll(kvm->arch.vm_init_tsc);
4802
4803         return kvm;
4804 }
4805
4806 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
4807 {
4808         vcpu_load(vcpu);
4809         kvm_mmu_unload(vcpu);
4810         vcpu_put(vcpu);
4811 }
4812
4813 static void kvm_free_vcpus(struct kvm *kvm)
4814 {
4815         unsigned int i;
4816         struct kvm_vcpu *vcpu;
4817
4818         /*
4819          * Unpin any mmu pages first.
4820          */
4821         kvm_for_each_vcpu(i, vcpu, kvm)
4822                 kvm_unload_vcpu_mmu(vcpu);
4823         kvm_for_each_vcpu(i, vcpu, kvm)
4824                 kvm_arch_vcpu_free(vcpu);
4825
4826         mutex_lock(&kvm->lock);
4827         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
4828                 kvm->vcpus[i] = NULL;
4829
4830         atomic_set(&kvm->online_vcpus, 0);
4831         mutex_unlock(&kvm->lock);
4832 }
4833
4834 void kvm_arch_sync_events(struct kvm *kvm)
4835 {
4836         kvm_free_all_assigned_devices(kvm);
4837 }
4838
4839 void kvm_arch_destroy_vm(struct kvm *kvm)
4840 {
4841         kvm_iommu_unmap_guest(kvm);
4842         kvm_free_pit(kvm);
4843         kfree(kvm->arch.vpic);
4844         kfree(kvm->arch.vioapic);
4845         kvm_free_vcpus(kvm);
4846         kvm_free_physmem(kvm);
4847         if (kvm->arch.apic_access_page)
4848                 put_page(kvm->arch.apic_access_page);
4849         if (kvm->arch.ept_identity_pagetable)
4850                 put_page(kvm->arch.ept_identity_pagetable);
4851         kfree(kvm);
4852 }
4853
4854 int kvm_arch_set_memory_region(struct kvm *kvm,
4855                                 struct kvm_userspace_memory_region *mem,
4856                                 struct kvm_memory_slot old,
4857                                 int user_alloc)
4858 {
4859         int npages = mem->memory_size >> PAGE_SHIFT;
4860         struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
4861
4862         /*To keep backward compatibility with older userspace,
4863          *x86 needs to hanlde !user_alloc case.
4864          */
4865         if (!user_alloc) {
4866                 if (npages && !old.rmap) {
4867                         unsigned long userspace_addr;
4868
4869                         down_write(&current->mm->mmap_sem);
4870                         userspace_addr = do_mmap(NULL, 0,
4871                                                  npages * PAGE_SIZE,
4872                                                  PROT_READ | PROT_WRITE,
4873                                                  MAP_PRIVATE | MAP_ANONYMOUS,
4874                                                  0);
4875                         up_write(&current->mm->mmap_sem);
4876
4877                         if (IS_ERR((void *)userspace_addr))
4878                                 return PTR_ERR((void *)userspace_addr);
4879
4880                         /* set userspace_addr atomically for kvm_hva_to_rmapp */
4881                         spin_lock(&kvm->mmu_lock);
4882                         memslot->userspace_addr = userspace_addr;
4883                         spin_unlock(&kvm->mmu_lock);
4884                 } else {
4885                         if (!old.user_alloc && old.rmap) {
4886                                 int ret;
4887
4888                                 down_write(&current->mm->mmap_sem);
4889                                 ret = do_munmap(current->mm, old.userspace_addr,
4890                                                 old.npages * PAGE_SIZE);
4891                                 up_write(&current->mm->mmap_sem);
4892                                 if (ret < 0)
4893                                         printk(KERN_WARNING
4894                                        "kvm_vm_ioctl_set_memory_region: "
4895                                        "failed to munmap memory\n");
4896                         }
4897                 }
4898         }
4899
4900         spin_lock(&kvm->mmu_lock);
4901         if (!kvm->arch.n_requested_mmu_pages) {
4902                 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
4903                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
4904         }
4905
4906         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
4907         spin_unlock(&kvm->mmu_lock);
4908
4909         return 0;
4910 }
4911
4912 void kvm_arch_flush_shadow(struct kvm *kvm)
4913 {
4914         kvm_mmu_zap_all(kvm);
4915         kvm_reload_remote_mmus(kvm);
4916 }
4917
4918 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
4919 {
4920         return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
4921                 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
4922                 || vcpu->arch.nmi_pending ||
4923                 (kvm_arch_interrupt_allowed(vcpu) &&
4924                  kvm_cpu_has_interrupt(vcpu));
4925 }
4926
4927 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
4928 {
4929         int me;
4930         int cpu = vcpu->cpu;
4931
4932         if (waitqueue_active(&vcpu->wq)) {
4933                 wake_up_interruptible(&vcpu->wq);
4934                 ++vcpu->stat.halt_wakeup;
4935         }
4936
4937         me = get_cpu();
4938         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
4939                 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
4940                         smp_send_reschedule(cpu);
4941         put_cpu();
4942 }
4943
4944 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
4945 {
4946         return kvm_x86_ops->interrupt_allowed(vcpu);
4947 }
4948
4949 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
4950 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
4951 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
4952 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
4953 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);