Merge tag 'mfd-for-linus-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/lee/mfd
[cascardo/linux.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/module.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <trace/events/kvm.h>
57
58 #include <asm/debugreg.h>
59 #include <asm/msr.h>
60 #include <asm/desc.h>
61 #include <asm/mce.h>
62 #include <linux/kernel_stat.h>
63 #include <asm/fpu/internal.h> /* Ugh! */
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
66 #include <asm/irq_remapping.h>
67
68 #define CREATE_TRACE_POINTS
69 #include "trace.h"
70
71 #define MAX_IO_MSRS 256
72 #define KVM_MAX_MCE_BANKS 32
73 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
74
75 #define emul_to_vcpu(ctxt) \
76         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
77
78 /* EFER defaults:
79  * - enable syscall per default because its emulated by KVM
80  * - enable LME and LMA per default on 64 bit KVM
81  */
82 #ifdef CONFIG_X86_64
83 static
84 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
85 #else
86 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
87 #endif
88
89 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
90 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
91
92 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
93 static void process_nmi(struct kvm_vcpu *vcpu);
94 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
95
96 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
97 EXPORT_SYMBOL_GPL(kvm_x86_ops);
98
99 static bool __read_mostly ignore_msrs = 0;
100 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
101
102 unsigned int min_timer_period_us = 500;
103 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
104
105 static bool __read_mostly kvmclock_periodic_sync = true;
106 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
107
108 bool __read_mostly kvm_has_tsc_control;
109 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
110 u32  __read_mostly kvm_max_guest_tsc_khz;
111 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
112 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
113 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
114 u64  __read_mostly kvm_max_tsc_scaling_ratio;
115 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
116 static u64 __read_mostly kvm_default_tsc_scaling_ratio;
117
118 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
119 static u32 __read_mostly tsc_tolerance_ppm = 250;
120 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
121
122 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
123 unsigned int __read_mostly lapic_timer_advance_ns = 0;
124 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
125
126 static bool __read_mostly vector_hashing = true;
127 module_param(vector_hashing, bool, S_IRUGO);
128
129 static bool __read_mostly backwards_tsc_observed = false;
130
131 #define KVM_NR_SHARED_MSRS 16
132
133 struct kvm_shared_msrs_global {
134         int nr;
135         u32 msrs[KVM_NR_SHARED_MSRS];
136 };
137
138 struct kvm_shared_msrs {
139         struct user_return_notifier urn;
140         bool registered;
141         struct kvm_shared_msr_values {
142                 u64 host;
143                 u64 curr;
144         } values[KVM_NR_SHARED_MSRS];
145 };
146
147 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
148 static struct kvm_shared_msrs __percpu *shared_msrs;
149
150 struct kvm_stats_debugfs_item debugfs_entries[] = {
151         { "pf_fixed", VCPU_STAT(pf_fixed) },
152         { "pf_guest", VCPU_STAT(pf_guest) },
153         { "tlb_flush", VCPU_STAT(tlb_flush) },
154         { "invlpg", VCPU_STAT(invlpg) },
155         { "exits", VCPU_STAT(exits) },
156         { "io_exits", VCPU_STAT(io_exits) },
157         { "mmio_exits", VCPU_STAT(mmio_exits) },
158         { "signal_exits", VCPU_STAT(signal_exits) },
159         { "irq_window", VCPU_STAT(irq_window_exits) },
160         { "nmi_window", VCPU_STAT(nmi_window_exits) },
161         { "halt_exits", VCPU_STAT(halt_exits) },
162         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
163         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
164         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
165         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
166         { "hypercalls", VCPU_STAT(hypercalls) },
167         { "request_irq", VCPU_STAT(request_irq_exits) },
168         { "irq_exits", VCPU_STAT(irq_exits) },
169         { "host_state_reload", VCPU_STAT(host_state_reload) },
170         { "efer_reload", VCPU_STAT(efer_reload) },
171         { "fpu_reload", VCPU_STAT(fpu_reload) },
172         { "insn_emulation", VCPU_STAT(insn_emulation) },
173         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
174         { "irq_injections", VCPU_STAT(irq_injections) },
175         { "nmi_injections", VCPU_STAT(nmi_injections) },
176         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
177         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
178         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
179         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
180         { "mmu_flooded", VM_STAT(mmu_flooded) },
181         { "mmu_recycled", VM_STAT(mmu_recycled) },
182         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
183         { "mmu_unsync", VM_STAT(mmu_unsync) },
184         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
185         { "largepages", VM_STAT(lpages) },
186         { NULL }
187 };
188
189 u64 __read_mostly host_xcr0;
190
191 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
192
193 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
194 {
195         int i;
196         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
197                 vcpu->arch.apf.gfns[i] = ~0;
198 }
199
200 static void kvm_on_user_return(struct user_return_notifier *urn)
201 {
202         unsigned slot;
203         struct kvm_shared_msrs *locals
204                 = container_of(urn, struct kvm_shared_msrs, urn);
205         struct kvm_shared_msr_values *values;
206
207         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
208                 values = &locals->values[slot];
209                 if (values->host != values->curr) {
210                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
211                         values->curr = values->host;
212                 }
213         }
214         locals->registered = false;
215         user_return_notifier_unregister(urn);
216 }
217
218 static void shared_msr_update(unsigned slot, u32 msr)
219 {
220         u64 value;
221         unsigned int cpu = smp_processor_id();
222         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
223
224         /* only read, and nobody should modify it at this time,
225          * so don't need lock */
226         if (slot >= shared_msrs_global.nr) {
227                 printk(KERN_ERR "kvm: invalid MSR slot!");
228                 return;
229         }
230         rdmsrl_safe(msr, &value);
231         smsr->values[slot].host = value;
232         smsr->values[slot].curr = value;
233 }
234
235 void kvm_define_shared_msr(unsigned slot, u32 msr)
236 {
237         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
238         shared_msrs_global.msrs[slot] = msr;
239         if (slot >= shared_msrs_global.nr)
240                 shared_msrs_global.nr = slot + 1;
241 }
242 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
243
244 static void kvm_shared_msr_cpu_online(void)
245 {
246         unsigned i;
247
248         for (i = 0; i < shared_msrs_global.nr; ++i)
249                 shared_msr_update(i, shared_msrs_global.msrs[i]);
250 }
251
252 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
253 {
254         unsigned int cpu = smp_processor_id();
255         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
256         int err;
257
258         if (((value ^ smsr->values[slot].curr) & mask) == 0)
259                 return 0;
260         smsr->values[slot].curr = value;
261         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
262         if (err)
263                 return 1;
264
265         if (!smsr->registered) {
266                 smsr->urn.on_user_return = kvm_on_user_return;
267                 user_return_notifier_register(&smsr->urn);
268                 smsr->registered = true;
269         }
270         return 0;
271 }
272 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
273
274 static void drop_user_return_notifiers(void)
275 {
276         unsigned int cpu = smp_processor_id();
277         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
278
279         if (smsr->registered)
280                 kvm_on_user_return(&smsr->urn);
281 }
282
283 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
284 {
285         return vcpu->arch.apic_base;
286 }
287 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
288
289 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
290 {
291         u64 old_state = vcpu->arch.apic_base &
292                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
293         u64 new_state = msr_info->data &
294                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
295         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
296                 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
297
298         if (!msr_info->host_initiated &&
299             ((msr_info->data & reserved_bits) != 0 ||
300              new_state == X2APIC_ENABLE ||
301              (new_state == MSR_IA32_APICBASE_ENABLE &&
302               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
303              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
304               old_state == 0)))
305                 return 1;
306
307         kvm_lapic_set_base(vcpu, msr_info->data);
308         return 0;
309 }
310 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
311
312 asmlinkage __visible void kvm_spurious_fault(void)
313 {
314         /* Fault while not rebooting.  We want the trace. */
315         BUG();
316 }
317 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
318
319 #define EXCPT_BENIGN            0
320 #define EXCPT_CONTRIBUTORY      1
321 #define EXCPT_PF                2
322
323 static int exception_class(int vector)
324 {
325         switch (vector) {
326         case PF_VECTOR:
327                 return EXCPT_PF;
328         case DE_VECTOR:
329         case TS_VECTOR:
330         case NP_VECTOR:
331         case SS_VECTOR:
332         case GP_VECTOR:
333                 return EXCPT_CONTRIBUTORY;
334         default:
335                 break;
336         }
337         return EXCPT_BENIGN;
338 }
339
340 #define EXCPT_FAULT             0
341 #define EXCPT_TRAP              1
342 #define EXCPT_ABORT             2
343 #define EXCPT_INTERRUPT         3
344
345 static int exception_type(int vector)
346 {
347         unsigned int mask;
348
349         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
350                 return EXCPT_INTERRUPT;
351
352         mask = 1 << vector;
353
354         /* #DB is trap, as instruction watchpoints are handled elsewhere */
355         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
356                 return EXCPT_TRAP;
357
358         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
359                 return EXCPT_ABORT;
360
361         /* Reserved exceptions will result in fault */
362         return EXCPT_FAULT;
363 }
364
365 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
366                 unsigned nr, bool has_error, u32 error_code,
367                 bool reinject)
368 {
369         u32 prev_nr;
370         int class1, class2;
371
372         kvm_make_request(KVM_REQ_EVENT, vcpu);
373
374         if (!vcpu->arch.exception.pending) {
375         queue:
376                 if (has_error && !is_protmode(vcpu))
377                         has_error = false;
378                 vcpu->arch.exception.pending = true;
379                 vcpu->arch.exception.has_error_code = has_error;
380                 vcpu->arch.exception.nr = nr;
381                 vcpu->arch.exception.error_code = error_code;
382                 vcpu->arch.exception.reinject = reinject;
383                 return;
384         }
385
386         /* to check exception */
387         prev_nr = vcpu->arch.exception.nr;
388         if (prev_nr == DF_VECTOR) {
389                 /* triple fault -> shutdown */
390                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
391                 return;
392         }
393         class1 = exception_class(prev_nr);
394         class2 = exception_class(nr);
395         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
396                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
397                 /* generate double fault per SDM Table 5-5 */
398                 vcpu->arch.exception.pending = true;
399                 vcpu->arch.exception.has_error_code = true;
400                 vcpu->arch.exception.nr = DF_VECTOR;
401                 vcpu->arch.exception.error_code = 0;
402         } else
403                 /* replace previous exception with a new one in a hope
404                    that instruction re-execution will regenerate lost
405                    exception */
406                 goto queue;
407 }
408
409 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
410 {
411         kvm_multiple_exception(vcpu, nr, false, 0, false);
412 }
413 EXPORT_SYMBOL_GPL(kvm_queue_exception);
414
415 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
416 {
417         kvm_multiple_exception(vcpu, nr, false, 0, true);
418 }
419 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
420
421 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
422 {
423         if (err)
424                 kvm_inject_gp(vcpu, 0);
425         else
426                 kvm_x86_ops->skip_emulated_instruction(vcpu);
427 }
428 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
429
430 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
431 {
432         ++vcpu->stat.pf_guest;
433         vcpu->arch.cr2 = fault->address;
434         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
435 }
436 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
437
438 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
439 {
440         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
441                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
442         else
443                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
444
445         return fault->nested_page_fault;
446 }
447
448 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
449 {
450         atomic_inc(&vcpu->arch.nmi_queued);
451         kvm_make_request(KVM_REQ_NMI, vcpu);
452 }
453 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
454
455 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
456 {
457         kvm_multiple_exception(vcpu, nr, true, error_code, false);
458 }
459 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
460
461 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
462 {
463         kvm_multiple_exception(vcpu, nr, true, error_code, true);
464 }
465 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
466
467 /*
468  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
469  * a #GP and return false.
470  */
471 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
472 {
473         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
474                 return true;
475         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
476         return false;
477 }
478 EXPORT_SYMBOL_GPL(kvm_require_cpl);
479
480 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
481 {
482         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
483                 return true;
484
485         kvm_queue_exception(vcpu, UD_VECTOR);
486         return false;
487 }
488 EXPORT_SYMBOL_GPL(kvm_require_dr);
489
490 /*
491  * This function will be used to read from the physical memory of the currently
492  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
493  * can read from guest physical or from the guest's guest physical memory.
494  */
495 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
496                             gfn_t ngfn, void *data, int offset, int len,
497                             u32 access)
498 {
499         struct x86_exception exception;
500         gfn_t real_gfn;
501         gpa_t ngpa;
502
503         ngpa     = gfn_to_gpa(ngfn);
504         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
505         if (real_gfn == UNMAPPED_GVA)
506                 return -EFAULT;
507
508         real_gfn = gpa_to_gfn(real_gfn);
509
510         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
511 }
512 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
513
514 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
515                                void *data, int offset, int len, u32 access)
516 {
517         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
518                                        data, offset, len, access);
519 }
520
521 /*
522  * Load the pae pdptrs.  Return true is they are all valid.
523  */
524 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
525 {
526         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
527         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
528         int i;
529         int ret;
530         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
531
532         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
533                                       offset * sizeof(u64), sizeof(pdpte),
534                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
535         if (ret < 0) {
536                 ret = 0;
537                 goto out;
538         }
539         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
540                 if (is_present_gpte(pdpte[i]) &&
541                     (pdpte[i] &
542                      vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
543                         ret = 0;
544                         goto out;
545                 }
546         }
547         ret = 1;
548
549         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
550         __set_bit(VCPU_EXREG_PDPTR,
551                   (unsigned long *)&vcpu->arch.regs_avail);
552         __set_bit(VCPU_EXREG_PDPTR,
553                   (unsigned long *)&vcpu->arch.regs_dirty);
554 out:
555
556         return ret;
557 }
558 EXPORT_SYMBOL_GPL(load_pdptrs);
559
560 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
561 {
562         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
563         bool changed = true;
564         int offset;
565         gfn_t gfn;
566         int r;
567
568         if (is_long_mode(vcpu) || !is_pae(vcpu))
569                 return false;
570
571         if (!test_bit(VCPU_EXREG_PDPTR,
572                       (unsigned long *)&vcpu->arch.regs_avail))
573                 return true;
574
575         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
576         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
577         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
578                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
579         if (r < 0)
580                 goto out;
581         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
582 out:
583
584         return changed;
585 }
586
587 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
588 {
589         unsigned long old_cr0 = kvm_read_cr0(vcpu);
590         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
591
592         cr0 |= X86_CR0_ET;
593
594 #ifdef CONFIG_X86_64
595         if (cr0 & 0xffffffff00000000UL)
596                 return 1;
597 #endif
598
599         cr0 &= ~CR0_RESERVED_BITS;
600
601         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
602                 return 1;
603
604         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
605                 return 1;
606
607         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
608 #ifdef CONFIG_X86_64
609                 if ((vcpu->arch.efer & EFER_LME)) {
610                         int cs_db, cs_l;
611
612                         if (!is_pae(vcpu))
613                                 return 1;
614                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
615                         if (cs_l)
616                                 return 1;
617                 } else
618 #endif
619                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
620                                                  kvm_read_cr3(vcpu)))
621                         return 1;
622         }
623
624         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
625                 return 1;
626
627         kvm_x86_ops->set_cr0(vcpu, cr0);
628
629         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
630                 kvm_clear_async_pf_completion_queue(vcpu);
631                 kvm_async_pf_hash_reset(vcpu);
632         }
633
634         if ((cr0 ^ old_cr0) & update_bits)
635                 kvm_mmu_reset_context(vcpu);
636
637         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
638             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
639             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
640                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
641
642         return 0;
643 }
644 EXPORT_SYMBOL_GPL(kvm_set_cr0);
645
646 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
647 {
648         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
649 }
650 EXPORT_SYMBOL_GPL(kvm_lmsw);
651
652 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
653 {
654         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
655                         !vcpu->guest_xcr0_loaded) {
656                 /* kvm_set_xcr() also depends on this */
657                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
658                 vcpu->guest_xcr0_loaded = 1;
659         }
660 }
661
662 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
663 {
664         if (vcpu->guest_xcr0_loaded) {
665                 if (vcpu->arch.xcr0 != host_xcr0)
666                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
667                 vcpu->guest_xcr0_loaded = 0;
668         }
669 }
670
671 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
672 {
673         u64 xcr0 = xcr;
674         u64 old_xcr0 = vcpu->arch.xcr0;
675         u64 valid_bits;
676
677         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
678         if (index != XCR_XFEATURE_ENABLED_MASK)
679                 return 1;
680         if (!(xcr0 & XFEATURE_MASK_FP))
681                 return 1;
682         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
683                 return 1;
684
685         /*
686          * Do not allow the guest to set bits that we do not support
687          * saving.  However, xcr0 bit 0 is always set, even if the
688          * emulated CPU does not support XSAVE (see fx_init).
689          */
690         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
691         if (xcr0 & ~valid_bits)
692                 return 1;
693
694         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
695             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
696                 return 1;
697
698         if (xcr0 & XFEATURE_MASK_AVX512) {
699                 if (!(xcr0 & XFEATURE_MASK_YMM))
700                         return 1;
701                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
702                         return 1;
703         }
704         vcpu->arch.xcr0 = xcr0;
705
706         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
707                 kvm_update_cpuid(vcpu);
708         return 0;
709 }
710
711 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
712 {
713         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
714             __kvm_set_xcr(vcpu, index, xcr)) {
715                 kvm_inject_gp(vcpu, 0);
716                 return 1;
717         }
718         return 0;
719 }
720 EXPORT_SYMBOL_GPL(kvm_set_xcr);
721
722 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
723 {
724         unsigned long old_cr4 = kvm_read_cr4(vcpu);
725         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
726                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
727
728         if (cr4 & CR4_RESERVED_BITS)
729                 return 1;
730
731         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
732                 return 1;
733
734         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
735                 return 1;
736
737         if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
738                 return 1;
739
740         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
741                 return 1;
742
743         if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
744                 return 1;
745
746         if (is_long_mode(vcpu)) {
747                 if (!(cr4 & X86_CR4_PAE))
748                         return 1;
749         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
750                    && ((cr4 ^ old_cr4) & pdptr_bits)
751                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
752                                    kvm_read_cr3(vcpu)))
753                 return 1;
754
755         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
756                 if (!guest_cpuid_has_pcid(vcpu))
757                         return 1;
758
759                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
760                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
761                         return 1;
762         }
763
764         if (kvm_x86_ops->set_cr4(vcpu, cr4))
765                 return 1;
766
767         if (((cr4 ^ old_cr4) & pdptr_bits) ||
768             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
769                 kvm_mmu_reset_context(vcpu);
770
771         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
772                 kvm_update_cpuid(vcpu);
773
774         return 0;
775 }
776 EXPORT_SYMBOL_GPL(kvm_set_cr4);
777
778 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
779 {
780 #ifdef CONFIG_X86_64
781         cr3 &= ~CR3_PCID_INVD;
782 #endif
783
784         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
785                 kvm_mmu_sync_roots(vcpu);
786                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
787                 return 0;
788         }
789
790         if (is_long_mode(vcpu)) {
791                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
792                         return 1;
793         } else if (is_pae(vcpu) && is_paging(vcpu) &&
794                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
795                 return 1;
796
797         vcpu->arch.cr3 = cr3;
798         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
799         kvm_mmu_new_cr3(vcpu);
800         return 0;
801 }
802 EXPORT_SYMBOL_GPL(kvm_set_cr3);
803
804 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
805 {
806         if (cr8 & CR8_RESERVED_BITS)
807                 return 1;
808         if (lapic_in_kernel(vcpu))
809                 kvm_lapic_set_tpr(vcpu, cr8);
810         else
811                 vcpu->arch.cr8 = cr8;
812         return 0;
813 }
814 EXPORT_SYMBOL_GPL(kvm_set_cr8);
815
816 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
817 {
818         if (lapic_in_kernel(vcpu))
819                 return kvm_lapic_get_cr8(vcpu);
820         else
821                 return vcpu->arch.cr8;
822 }
823 EXPORT_SYMBOL_GPL(kvm_get_cr8);
824
825 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
826 {
827         int i;
828
829         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
830                 for (i = 0; i < KVM_NR_DB_REGS; i++)
831                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
832                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
833         }
834 }
835
836 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
837 {
838         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
839                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
840 }
841
842 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
843 {
844         unsigned long dr7;
845
846         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
847                 dr7 = vcpu->arch.guest_debug_dr7;
848         else
849                 dr7 = vcpu->arch.dr7;
850         kvm_x86_ops->set_dr7(vcpu, dr7);
851         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
852         if (dr7 & DR7_BP_EN_MASK)
853                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
854 }
855
856 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
857 {
858         u64 fixed = DR6_FIXED_1;
859
860         if (!guest_cpuid_has_rtm(vcpu))
861                 fixed |= DR6_RTM;
862         return fixed;
863 }
864
865 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
866 {
867         switch (dr) {
868         case 0 ... 3:
869                 vcpu->arch.db[dr] = val;
870                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
871                         vcpu->arch.eff_db[dr] = val;
872                 break;
873         case 4:
874                 /* fall through */
875         case 6:
876                 if (val & 0xffffffff00000000ULL)
877                         return -1; /* #GP */
878                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
879                 kvm_update_dr6(vcpu);
880                 break;
881         case 5:
882                 /* fall through */
883         default: /* 7 */
884                 if (val & 0xffffffff00000000ULL)
885                         return -1; /* #GP */
886                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
887                 kvm_update_dr7(vcpu);
888                 break;
889         }
890
891         return 0;
892 }
893
894 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
895 {
896         if (__kvm_set_dr(vcpu, dr, val)) {
897                 kvm_inject_gp(vcpu, 0);
898                 return 1;
899         }
900         return 0;
901 }
902 EXPORT_SYMBOL_GPL(kvm_set_dr);
903
904 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
905 {
906         switch (dr) {
907         case 0 ... 3:
908                 *val = vcpu->arch.db[dr];
909                 break;
910         case 4:
911                 /* fall through */
912         case 6:
913                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
914                         *val = vcpu->arch.dr6;
915                 else
916                         *val = kvm_x86_ops->get_dr6(vcpu);
917                 break;
918         case 5:
919                 /* fall through */
920         default: /* 7 */
921                 *val = vcpu->arch.dr7;
922                 break;
923         }
924         return 0;
925 }
926 EXPORT_SYMBOL_GPL(kvm_get_dr);
927
928 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
929 {
930         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
931         u64 data;
932         int err;
933
934         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
935         if (err)
936                 return err;
937         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
938         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
939         return err;
940 }
941 EXPORT_SYMBOL_GPL(kvm_rdpmc);
942
943 /*
944  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
945  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
946  *
947  * This list is modified at module load time to reflect the
948  * capabilities of the host cpu. This capabilities test skips MSRs that are
949  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
950  * may depend on host virtualization features rather than host cpu features.
951  */
952
953 static u32 msrs_to_save[] = {
954         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
955         MSR_STAR,
956 #ifdef CONFIG_X86_64
957         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
958 #endif
959         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
960         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
961 };
962
963 static unsigned num_msrs_to_save;
964
965 static u32 emulated_msrs[] = {
966         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
967         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
968         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
969         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
970         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
971         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
972         HV_X64_MSR_RESET,
973         HV_X64_MSR_VP_INDEX,
974         HV_X64_MSR_VP_RUNTIME,
975         HV_X64_MSR_SCONTROL,
976         HV_X64_MSR_STIMER0_CONFIG,
977         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
978         MSR_KVM_PV_EOI_EN,
979
980         MSR_IA32_TSC_ADJUST,
981         MSR_IA32_TSCDEADLINE,
982         MSR_IA32_MISC_ENABLE,
983         MSR_IA32_MCG_STATUS,
984         MSR_IA32_MCG_CTL,
985         MSR_IA32_SMBASE,
986 };
987
988 static unsigned num_emulated_msrs;
989
990 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
991 {
992         if (efer & efer_reserved_bits)
993                 return false;
994
995         if (efer & EFER_FFXSR) {
996                 struct kvm_cpuid_entry2 *feat;
997
998                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
999                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
1000                         return false;
1001         }
1002
1003         if (efer & EFER_SVME) {
1004                 struct kvm_cpuid_entry2 *feat;
1005
1006                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1007                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1008                         return false;
1009         }
1010
1011         return true;
1012 }
1013 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1014
1015 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1016 {
1017         u64 old_efer = vcpu->arch.efer;
1018
1019         if (!kvm_valid_efer(vcpu, efer))
1020                 return 1;
1021
1022         if (is_paging(vcpu)
1023             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1024                 return 1;
1025
1026         efer &= ~EFER_LMA;
1027         efer |= vcpu->arch.efer & EFER_LMA;
1028
1029         kvm_x86_ops->set_efer(vcpu, efer);
1030
1031         /* Update reserved bits */
1032         if ((efer ^ old_efer) & EFER_NX)
1033                 kvm_mmu_reset_context(vcpu);
1034
1035         return 0;
1036 }
1037
1038 void kvm_enable_efer_bits(u64 mask)
1039 {
1040        efer_reserved_bits &= ~mask;
1041 }
1042 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1043
1044 /*
1045  * Writes msr value into into the appropriate "register".
1046  * Returns 0 on success, non-0 otherwise.
1047  * Assumes vcpu_load() was already called.
1048  */
1049 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1050 {
1051         switch (msr->index) {
1052         case MSR_FS_BASE:
1053         case MSR_GS_BASE:
1054         case MSR_KERNEL_GS_BASE:
1055         case MSR_CSTAR:
1056         case MSR_LSTAR:
1057                 if (is_noncanonical_address(msr->data))
1058                         return 1;
1059                 break;
1060         case MSR_IA32_SYSENTER_EIP:
1061         case MSR_IA32_SYSENTER_ESP:
1062                 /*
1063                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1064                  * non-canonical address is written on Intel but not on
1065                  * AMD (which ignores the top 32-bits, because it does
1066                  * not implement 64-bit SYSENTER).
1067                  *
1068                  * 64-bit code should hence be able to write a non-canonical
1069                  * value on AMD.  Making the address canonical ensures that
1070                  * vmentry does not fail on Intel after writing a non-canonical
1071                  * value, and that something deterministic happens if the guest
1072                  * invokes 64-bit SYSENTER.
1073                  */
1074                 msr->data = get_canonical(msr->data);
1075         }
1076         return kvm_x86_ops->set_msr(vcpu, msr);
1077 }
1078 EXPORT_SYMBOL_GPL(kvm_set_msr);
1079
1080 /*
1081  * Adapt set_msr() to msr_io()'s calling convention
1082  */
1083 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1084 {
1085         struct msr_data msr;
1086         int r;
1087
1088         msr.index = index;
1089         msr.host_initiated = true;
1090         r = kvm_get_msr(vcpu, &msr);
1091         if (r)
1092                 return r;
1093
1094         *data = msr.data;
1095         return 0;
1096 }
1097
1098 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1099 {
1100         struct msr_data msr;
1101
1102         msr.data = *data;
1103         msr.index = index;
1104         msr.host_initiated = true;
1105         return kvm_set_msr(vcpu, &msr);
1106 }
1107
1108 #ifdef CONFIG_X86_64
1109 struct pvclock_gtod_data {
1110         seqcount_t      seq;
1111
1112         struct { /* extract of a clocksource struct */
1113                 int vclock_mode;
1114                 cycle_t cycle_last;
1115                 cycle_t mask;
1116                 u32     mult;
1117                 u32     shift;
1118         } clock;
1119
1120         u64             boot_ns;
1121         u64             nsec_base;
1122 };
1123
1124 static struct pvclock_gtod_data pvclock_gtod_data;
1125
1126 static void update_pvclock_gtod(struct timekeeper *tk)
1127 {
1128         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1129         u64 boot_ns;
1130
1131         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1132
1133         write_seqcount_begin(&vdata->seq);
1134
1135         /* copy pvclock gtod data */
1136         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1137         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1138         vdata->clock.mask               = tk->tkr_mono.mask;
1139         vdata->clock.mult               = tk->tkr_mono.mult;
1140         vdata->clock.shift              = tk->tkr_mono.shift;
1141
1142         vdata->boot_ns                  = boot_ns;
1143         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1144
1145         write_seqcount_end(&vdata->seq);
1146 }
1147 #endif
1148
1149 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1150 {
1151         /*
1152          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1153          * vcpu_enter_guest.  This function is only called from
1154          * the physical CPU that is running vcpu.
1155          */
1156         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1157 }
1158
1159 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1160 {
1161         int version;
1162         int r;
1163         struct pvclock_wall_clock wc;
1164         struct timespec boot;
1165
1166         if (!wall_clock)
1167                 return;
1168
1169         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1170         if (r)
1171                 return;
1172
1173         if (version & 1)
1174                 ++version;  /* first time write, random junk */
1175
1176         ++version;
1177
1178         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1179                 return;
1180
1181         /*
1182          * The guest calculates current wall clock time by adding
1183          * system time (updated by kvm_guest_time_update below) to the
1184          * wall clock specified here.  guest system time equals host
1185          * system time for us, thus we must fill in host boot time here.
1186          */
1187         getboottime(&boot);
1188
1189         if (kvm->arch.kvmclock_offset) {
1190                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1191                 boot = timespec_sub(boot, ts);
1192         }
1193         wc.sec = boot.tv_sec;
1194         wc.nsec = boot.tv_nsec;
1195         wc.version = version;
1196
1197         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1198
1199         version++;
1200         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1201 }
1202
1203 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1204 {
1205         do_shl32_div32(dividend, divisor);
1206         return dividend;
1207 }
1208
1209 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1210                                s8 *pshift, u32 *pmultiplier)
1211 {
1212         uint64_t scaled64;
1213         int32_t  shift = 0;
1214         uint64_t tps64;
1215         uint32_t tps32;
1216
1217         tps64 = base_hz;
1218         scaled64 = scaled_hz;
1219         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1220                 tps64 >>= 1;
1221                 shift--;
1222         }
1223
1224         tps32 = (uint32_t)tps64;
1225         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1226                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1227                         scaled64 >>= 1;
1228                 else
1229                         tps32 <<= 1;
1230                 shift++;
1231         }
1232
1233         *pshift = shift;
1234         *pmultiplier = div_frac(scaled64, tps32);
1235
1236         pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1237                  __func__, base_hz, scaled_hz, shift, *pmultiplier);
1238 }
1239
1240 #ifdef CONFIG_X86_64
1241 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1242 #endif
1243
1244 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1245 static unsigned long max_tsc_khz;
1246
1247 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1248 {
1249         u64 v = (u64)khz * (1000000 + ppm);
1250         do_div(v, 1000000);
1251         return v;
1252 }
1253
1254 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1255 {
1256         u64 ratio;
1257
1258         /* Guest TSC same frequency as host TSC? */
1259         if (!scale) {
1260                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1261                 return 0;
1262         }
1263
1264         /* TSC scaling supported? */
1265         if (!kvm_has_tsc_control) {
1266                 if (user_tsc_khz > tsc_khz) {
1267                         vcpu->arch.tsc_catchup = 1;
1268                         vcpu->arch.tsc_always_catchup = 1;
1269                         return 0;
1270                 } else {
1271                         WARN(1, "user requested TSC rate below hardware speed\n");
1272                         return -1;
1273                 }
1274         }
1275
1276         /* TSC scaling required  - calculate ratio */
1277         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1278                                 user_tsc_khz, tsc_khz);
1279
1280         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1281                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1282                           user_tsc_khz);
1283                 return -1;
1284         }
1285
1286         vcpu->arch.tsc_scaling_ratio = ratio;
1287         return 0;
1288 }
1289
1290 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1291 {
1292         u32 thresh_lo, thresh_hi;
1293         int use_scaling = 0;
1294
1295         /* tsc_khz can be zero if TSC calibration fails */
1296         if (user_tsc_khz == 0) {
1297                 /* set tsc_scaling_ratio to a safe value */
1298                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1299                 return -1;
1300         }
1301
1302         /* Compute a scale to convert nanoseconds in TSC cycles */
1303         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1304                            &vcpu->arch.virtual_tsc_shift,
1305                            &vcpu->arch.virtual_tsc_mult);
1306         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1307
1308         /*
1309          * Compute the variation in TSC rate which is acceptable
1310          * within the range of tolerance and decide if the
1311          * rate being applied is within that bounds of the hardware
1312          * rate.  If so, no scaling or compensation need be done.
1313          */
1314         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1315         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1316         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1317                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1318                 use_scaling = 1;
1319         }
1320         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1321 }
1322
1323 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1324 {
1325         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1326                                       vcpu->arch.virtual_tsc_mult,
1327                                       vcpu->arch.virtual_tsc_shift);
1328         tsc += vcpu->arch.this_tsc_write;
1329         return tsc;
1330 }
1331
1332 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1333 {
1334 #ifdef CONFIG_X86_64
1335         bool vcpus_matched;
1336         struct kvm_arch *ka = &vcpu->kvm->arch;
1337         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1338
1339         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1340                          atomic_read(&vcpu->kvm->online_vcpus));
1341
1342         /*
1343          * Once the masterclock is enabled, always perform request in
1344          * order to update it.
1345          *
1346          * In order to enable masterclock, the host clocksource must be TSC
1347          * and the vcpus need to have matched TSCs.  When that happens,
1348          * perform request to enable masterclock.
1349          */
1350         if (ka->use_master_clock ||
1351             (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1352                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1353
1354         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1355                             atomic_read(&vcpu->kvm->online_vcpus),
1356                             ka->use_master_clock, gtod->clock.vclock_mode);
1357 #endif
1358 }
1359
1360 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1361 {
1362         u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1363         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1364 }
1365
1366 /*
1367  * Multiply tsc by a fixed point number represented by ratio.
1368  *
1369  * The most significant 64-N bits (mult) of ratio represent the
1370  * integral part of the fixed point number; the remaining N bits
1371  * (frac) represent the fractional part, ie. ratio represents a fixed
1372  * point number (mult + frac * 2^(-N)).
1373  *
1374  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1375  */
1376 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1377 {
1378         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1379 }
1380
1381 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1382 {
1383         u64 _tsc = tsc;
1384         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1385
1386         if (ratio != kvm_default_tsc_scaling_ratio)
1387                 _tsc = __scale_tsc(ratio, tsc);
1388
1389         return _tsc;
1390 }
1391 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1392
1393 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1394 {
1395         u64 tsc;
1396
1397         tsc = kvm_scale_tsc(vcpu, rdtsc());
1398
1399         return target_tsc - tsc;
1400 }
1401
1402 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1403 {
1404         return kvm_x86_ops->read_l1_tsc(vcpu, kvm_scale_tsc(vcpu, host_tsc));
1405 }
1406 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1407
1408 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1409 {
1410         struct kvm *kvm = vcpu->kvm;
1411         u64 offset, ns, elapsed;
1412         unsigned long flags;
1413         s64 usdiff;
1414         bool matched;
1415         bool already_matched;
1416         u64 data = msr->data;
1417
1418         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1419         offset = kvm_compute_tsc_offset(vcpu, data);
1420         ns = get_kernel_ns();
1421         elapsed = ns - kvm->arch.last_tsc_nsec;
1422
1423         if (vcpu->arch.virtual_tsc_khz) {
1424                 int faulted = 0;
1425
1426                 /* n.b - signed multiplication and division required */
1427                 usdiff = data - kvm->arch.last_tsc_write;
1428 #ifdef CONFIG_X86_64
1429                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1430 #else
1431                 /* do_div() only does unsigned */
1432                 asm("1: idivl %[divisor]\n"
1433                     "2: xor %%edx, %%edx\n"
1434                     "   movl $0, %[faulted]\n"
1435                     "3:\n"
1436                     ".section .fixup,\"ax\"\n"
1437                     "4: movl $1, %[faulted]\n"
1438                     "   jmp  3b\n"
1439                     ".previous\n"
1440
1441                 _ASM_EXTABLE(1b, 4b)
1442
1443                 : "=A"(usdiff), [faulted] "=r" (faulted)
1444                 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1445
1446 #endif
1447                 do_div(elapsed, 1000);
1448                 usdiff -= elapsed;
1449                 if (usdiff < 0)
1450                         usdiff = -usdiff;
1451
1452                 /* idivl overflow => difference is larger than USEC_PER_SEC */
1453                 if (faulted)
1454                         usdiff = USEC_PER_SEC;
1455         } else
1456                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1457
1458         /*
1459          * Special case: TSC write with a small delta (1 second) of virtual
1460          * cycle time against real time is interpreted as an attempt to
1461          * synchronize the CPU.
1462          *
1463          * For a reliable TSC, we can match TSC offsets, and for an unstable
1464          * TSC, we add elapsed time in this computation.  We could let the
1465          * compensation code attempt to catch up if we fall behind, but
1466          * it's better to try to match offsets from the beginning.
1467          */
1468         if (usdiff < USEC_PER_SEC &&
1469             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1470                 if (!check_tsc_unstable()) {
1471                         offset = kvm->arch.cur_tsc_offset;
1472                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1473                 } else {
1474                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1475                         data += delta;
1476                         offset = kvm_compute_tsc_offset(vcpu, data);
1477                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1478                 }
1479                 matched = true;
1480                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1481         } else {
1482                 /*
1483                  * We split periods of matched TSC writes into generations.
1484                  * For each generation, we track the original measured
1485                  * nanosecond time, offset, and write, so if TSCs are in
1486                  * sync, we can match exact offset, and if not, we can match
1487                  * exact software computation in compute_guest_tsc()
1488                  *
1489                  * These values are tracked in kvm->arch.cur_xxx variables.
1490                  */
1491                 kvm->arch.cur_tsc_generation++;
1492                 kvm->arch.cur_tsc_nsec = ns;
1493                 kvm->arch.cur_tsc_write = data;
1494                 kvm->arch.cur_tsc_offset = offset;
1495                 matched = false;
1496                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1497                          kvm->arch.cur_tsc_generation, data);
1498         }
1499
1500         /*
1501          * We also track th most recent recorded KHZ, write and time to
1502          * allow the matching interval to be extended at each write.
1503          */
1504         kvm->arch.last_tsc_nsec = ns;
1505         kvm->arch.last_tsc_write = data;
1506         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1507
1508         vcpu->arch.last_guest_tsc = data;
1509
1510         /* Keep track of which generation this VCPU has synchronized to */
1511         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1512         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1513         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1514
1515         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1516                 update_ia32_tsc_adjust_msr(vcpu, offset);
1517         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1518         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1519
1520         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1521         if (!matched) {
1522                 kvm->arch.nr_vcpus_matched_tsc = 0;
1523         } else if (!already_matched) {
1524                 kvm->arch.nr_vcpus_matched_tsc++;
1525         }
1526
1527         kvm_track_tsc_matching(vcpu);
1528         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1529 }
1530
1531 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1532
1533 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1534                                            s64 adjustment)
1535 {
1536         kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1537 }
1538
1539 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1540 {
1541         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1542                 WARN_ON(adjustment < 0);
1543         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1544         kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1545 }
1546
1547 #ifdef CONFIG_X86_64
1548
1549 static cycle_t read_tsc(void)
1550 {
1551         cycle_t ret = (cycle_t)rdtsc_ordered();
1552         u64 last = pvclock_gtod_data.clock.cycle_last;
1553
1554         if (likely(ret >= last))
1555                 return ret;
1556
1557         /*
1558          * GCC likes to generate cmov here, but this branch is extremely
1559          * predictable (it's just a function of time and the likely is
1560          * very likely) and there's a data dependence, so force GCC
1561          * to generate a branch instead.  I don't barrier() because
1562          * we don't actually need a barrier, and if this function
1563          * ever gets inlined it will generate worse code.
1564          */
1565         asm volatile ("");
1566         return last;
1567 }
1568
1569 static inline u64 vgettsc(cycle_t *cycle_now)
1570 {
1571         long v;
1572         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1573
1574         *cycle_now = read_tsc();
1575
1576         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1577         return v * gtod->clock.mult;
1578 }
1579
1580 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1581 {
1582         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1583         unsigned long seq;
1584         int mode;
1585         u64 ns;
1586
1587         do {
1588                 seq = read_seqcount_begin(&gtod->seq);
1589                 mode = gtod->clock.vclock_mode;
1590                 ns = gtod->nsec_base;
1591                 ns += vgettsc(cycle_now);
1592                 ns >>= gtod->clock.shift;
1593                 ns += gtod->boot_ns;
1594         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1595         *t = ns;
1596
1597         return mode;
1598 }
1599
1600 /* returns true if host is using tsc clocksource */
1601 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1602 {
1603         /* checked again under seqlock below */
1604         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1605                 return false;
1606
1607         return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1608 }
1609 #endif
1610
1611 /*
1612  *
1613  * Assuming a stable TSC across physical CPUS, and a stable TSC
1614  * across virtual CPUs, the following condition is possible.
1615  * Each numbered line represents an event visible to both
1616  * CPUs at the next numbered event.
1617  *
1618  * "timespecX" represents host monotonic time. "tscX" represents
1619  * RDTSC value.
1620  *
1621  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1622  *
1623  * 1.  read timespec0,tsc0
1624  * 2.                                   | timespec1 = timespec0 + N
1625  *                                      | tsc1 = tsc0 + M
1626  * 3. transition to guest               | transition to guest
1627  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1628  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1629  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1630  *
1631  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1632  *
1633  *      - ret0 < ret1
1634  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1635  *              ...
1636  *      - 0 < N - M => M < N
1637  *
1638  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1639  * always the case (the difference between two distinct xtime instances
1640  * might be smaller then the difference between corresponding TSC reads,
1641  * when updating guest vcpus pvclock areas).
1642  *
1643  * To avoid that problem, do not allow visibility of distinct
1644  * system_timestamp/tsc_timestamp values simultaneously: use a master
1645  * copy of host monotonic time values. Update that master copy
1646  * in lockstep.
1647  *
1648  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1649  *
1650  */
1651
1652 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1653 {
1654 #ifdef CONFIG_X86_64
1655         struct kvm_arch *ka = &kvm->arch;
1656         int vclock_mode;
1657         bool host_tsc_clocksource, vcpus_matched;
1658
1659         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1660                         atomic_read(&kvm->online_vcpus));
1661
1662         /*
1663          * If the host uses TSC clock, then passthrough TSC as stable
1664          * to the guest.
1665          */
1666         host_tsc_clocksource = kvm_get_time_and_clockread(
1667                                         &ka->master_kernel_ns,
1668                                         &ka->master_cycle_now);
1669
1670         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1671                                 && !backwards_tsc_observed
1672                                 && !ka->boot_vcpu_runs_old_kvmclock;
1673
1674         if (ka->use_master_clock)
1675                 atomic_set(&kvm_guest_has_master_clock, 1);
1676
1677         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1678         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1679                                         vcpus_matched);
1680 #endif
1681 }
1682
1683 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1684 {
1685         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1686 }
1687
1688 static void kvm_gen_update_masterclock(struct kvm *kvm)
1689 {
1690 #ifdef CONFIG_X86_64
1691         int i;
1692         struct kvm_vcpu *vcpu;
1693         struct kvm_arch *ka = &kvm->arch;
1694
1695         spin_lock(&ka->pvclock_gtod_sync_lock);
1696         kvm_make_mclock_inprogress_request(kvm);
1697         /* no guest entries from this point */
1698         pvclock_update_vm_gtod_copy(kvm);
1699
1700         kvm_for_each_vcpu(i, vcpu, kvm)
1701                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1702
1703         /* guest entries allowed */
1704         kvm_for_each_vcpu(i, vcpu, kvm)
1705                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1706
1707         spin_unlock(&ka->pvclock_gtod_sync_lock);
1708 #endif
1709 }
1710
1711 static int kvm_guest_time_update(struct kvm_vcpu *v)
1712 {
1713         unsigned long flags, tgt_tsc_khz;
1714         struct kvm_vcpu_arch *vcpu = &v->arch;
1715         struct kvm_arch *ka = &v->kvm->arch;
1716         s64 kernel_ns;
1717         u64 tsc_timestamp, host_tsc;
1718         struct pvclock_vcpu_time_info guest_hv_clock;
1719         u8 pvclock_flags;
1720         bool use_master_clock;
1721
1722         kernel_ns = 0;
1723         host_tsc = 0;
1724
1725         /*
1726          * If the host uses TSC clock, then passthrough TSC as stable
1727          * to the guest.
1728          */
1729         spin_lock(&ka->pvclock_gtod_sync_lock);
1730         use_master_clock = ka->use_master_clock;
1731         if (use_master_clock) {
1732                 host_tsc = ka->master_cycle_now;
1733                 kernel_ns = ka->master_kernel_ns;
1734         }
1735         spin_unlock(&ka->pvclock_gtod_sync_lock);
1736
1737         /* Keep irq disabled to prevent changes to the clock */
1738         local_irq_save(flags);
1739         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1740         if (unlikely(tgt_tsc_khz == 0)) {
1741                 local_irq_restore(flags);
1742                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1743                 return 1;
1744         }
1745         if (!use_master_clock) {
1746                 host_tsc = rdtsc();
1747                 kernel_ns = get_kernel_ns();
1748         }
1749
1750         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1751
1752         /*
1753          * We may have to catch up the TSC to match elapsed wall clock
1754          * time for two reasons, even if kvmclock is used.
1755          *   1) CPU could have been running below the maximum TSC rate
1756          *   2) Broken TSC compensation resets the base at each VCPU
1757          *      entry to avoid unknown leaps of TSC even when running
1758          *      again on the same CPU.  This may cause apparent elapsed
1759          *      time to disappear, and the guest to stand still or run
1760          *      very slowly.
1761          */
1762         if (vcpu->tsc_catchup) {
1763                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1764                 if (tsc > tsc_timestamp) {
1765                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1766                         tsc_timestamp = tsc;
1767                 }
1768         }
1769
1770         local_irq_restore(flags);
1771
1772         if (!vcpu->pv_time_enabled)
1773                 return 0;
1774
1775         if (kvm_has_tsc_control)
1776                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1777
1778         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1779                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1780                                    &vcpu->hv_clock.tsc_shift,
1781                                    &vcpu->hv_clock.tsc_to_system_mul);
1782                 vcpu->hw_tsc_khz = tgt_tsc_khz;
1783         }
1784
1785         /* With all the info we got, fill in the values */
1786         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1787         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1788         vcpu->last_guest_tsc = tsc_timestamp;
1789
1790         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1791                 &guest_hv_clock, sizeof(guest_hv_clock))))
1792                 return 0;
1793
1794         /* This VCPU is paused, but it's legal for a guest to read another
1795          * VCPU's kvmclock, so we really have to follow the specification where
1796          * it says that version is odd if data is being modified, and even after
1797          * it is consistent.
1798          *
1799          * Version field updates must be kept separate.  This is because
1800          * kvm_write_guest_cached might use a "rep movs" instruction, and
1801          * writes within a string instruction are weakly ordered.  So there
1802          * are three writes overall.
1803          *
1804          * As a small optimization, only write the version field in the first
1805          * and third write.  The vcpu->pv_time cache is still valid, because the
1806          * version field is the first in the struct.
1807          */
1808         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1809
1810         vcpu->hv_clock.version = guest_hv_clock.version + 1;
1811         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1812                                 &vcpu->hv_clock,
1813                                 sizeof(vcpu->hv_clock.version));
1814
1815         smp_wmb();
1816
1817         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1818         pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1819
1820         if (vcpu->pvclock_set_guest_stopped_request) {
1821                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1822                 vcpu->pvclock_set_guest_stopped_request = false;
1823         }
1824
1825         /* If the host uses TSC clocksource, then it is stable */
1826         if (use_master_clock)
1827                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1828
1829         vcpu->hv_clock.flags = pvclock_flags;
1830
1831         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1832
1833         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1834                                 &vcpu->hv_clock,
1835                                 sizeof(vcpu->hv_clock));
1836
1837         smp_wmb();
1838
1839         vcpu->hv_clock.version++;
1840         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1841                                 &vcpu->hv_clock,
1842                                 sizeof(vcpu->hv_clock.version));
1843         return 0;
1844 }
1845
1846 /*
1847  * kvmclock updates which are isolated to a given vcpu, such as
1848  * vcpu->cpu migration, should not allow system_timestamp from
1849  * the rest of the vcpus to remain static. Otherwise ntp frequency
1850  * correction applies to one vcpu's system_timestamp but not
1851  * the others.
1852  *
1853  * So in those cases, request a kvmclock update for all vcpus.
1854  * We need to rate-limit these requests though, as they can
1855  * considerably slow guests that have a large number of vcpus.
1856  * The time for a remote vcpu to update its kvmclock is bound
1857  * by the delay we use to rate-limit the updates.
1858  */
1859
1860 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1861
1862 static void kvmclock_update_fn(struct work_struct *work)
1863 {
1864         int i;
1865         struct delayed_work *dwork = to_delayed_work(work);
1866         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1867                                            kvmclock_update_work);
1868         struct kvm *kvm = container_of(ka, struct kvm, arch);
1869         struct kvm_vcpu *vcpu;
1870
1871         kvm_for_each_vcpu(i, vcpu, kvm) {
1872                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1873                 kvm_vcpu_kick(vcpu);
1874         }
1875 }
1876
1877 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1878 {
1879         struct kvm *kvm = v->kvm;
1880
1881         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1882         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1883                                         KVMCLOCK_UPDATE_DELAY);
1884 }
1885
1886 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1887
1888 static void kvmclock_sync_fn(struct work_struct *work)
1889 {
1890         struct delayed_work *dwork = to_delayed_work(work);
1891         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1892                                            kvmclock_sync_work);
1893         struct kvm *kvm = container_of(ka, struct kvm, arch);
1894
1895         if (!kvmclock_periodic_sync)
1896                 return;
1897
1898         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1899         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1900                                         KVMCLOCK_SYNC_PERIOD);
1901 }
1902
1903 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1904 {
1905         u64 mcg_cap = vcpu->arch.mcg_cap;
1906         unsigned bank_num = mcg_cap & 0xff;
1907
1908         switch (msr) {
1909         case MSR_IA32_MCG_STATUS:
1910                 vcpu->arch.mcg_status = data;
1911                 break;
1912         case MSR_IA32_MCG_CTL:
1913                 if (!(mcg_cap & MCG_CTL_P))
1914                         return 1;
1915                 if (data != 0 && data != ~(u64)0)
1916                         return -1;
1917                 vcpu->arch.mcg_ctl = data;
1918                 break;
1919         default:
1920                 if (msr >= MSR_IA32_MC0_CTL &&
1921                     msr < MSR_IA32_MCx_CTL(bank_num)) {
1922                         u32 offset = msr - MSR_IA32_MC0_CTL;
1923                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1924                          * some Linux kernels though clear bit 10 in bank 4 to
1925                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1926                          * this to avoid an uncatched #GP in the guest
1927                          */
1928                         if ((offset & 0x3) == 0 &&
1929                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1930                                 return -1;
1931                         vcpu->arch.mce_banks[offset] = data;
1932                         break;
1933                 }
1934                 return 1;
1935         }
1936         return 0;
1937 }
1938
1939 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1940 {
1941         struct kvm *kvm = vcpu->kvm;
1942         int lm = is_long_mode(vcpu);
1943         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1944                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1945         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1946                 : kvm->arch.xen_hvm_config.blob_size_32;
1947         u32 page_num = data & ~PAGE_MASK;
1948         u64 page_addr = data & PAGE_MASK;
1949         u8 *page;
1950         int r;
1951
1952         r = -E2BIG;
1953         if (page_num >= blob_size)
1954                 goto out;
1955         r = -ENOMEM;
1956         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1957         if (IS_ERR(page)) {
1958                 r = PTR_ERR(page);
1959                 goto out;
1960         }
1961         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
1962                 goto out_free;
1963         r = 0;
1964 out_free:
1965         kfree(page);
1966 out:
1967         return r;
1968 }
1969
1970 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1971 {
1972         gpa_t gpa = data & ~0x3f;
1973
1974         /* Bits 2:5 are reserved, Should be zero */
1975         if (data & 0x3c)
1976                 return 1;
1977
1978         vcpu->arch.apf.msr_val = data;
1979
1980         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1981                 kvm_clear_async_pf_completion_queue(vcpu);
1982                 kvm_async_pf_hash_reset(vcpu);
1983                 return 0;
1984         }
1985
1986         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1987                                         sizeof(u32)))
1988                 return 1;
1989
1990         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1991         kvm_async_pf_wakeup_all(vcpu);
1992         return 0;
1993 }
1994
1995 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1996 {
1997         vcpu->arch.pv_time_enabled = false;
1998 }
1999
2000 static void record_steal_time(struct kvm_vcpu *vcpu)
2001 {
2002         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2003                 return;
2004
2005         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2006                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2007                 return;
2008
2009         if (vcpu->arch.st.steal.version & 1)
2010                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2011
2012         vcpu->arch.st.steal.version += 1;
2013
2014         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2015                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2016
2017         smp_wmb();
2018
2019         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2020                 vcpu->arch.st.last_steal;
2021         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2022
2023         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2024                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2025
2026         smp_wmb();
2027
2028         vcpu->arch.st.steal.version += 1;
2029
2030         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2031                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2032 }
2033
2034 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2035 {
2036         bool pr = false;
2037         u32 msr = msr_info->index;
2038         u64 data = msr_info->data;
2039
2040         switch (msr) {
2041         case MSR_AMD64_NB_CFG:
2042         case MSR_IA32_UCODE_REV:
2043         case MSR_IA32_UCODE_WRITE:
2044         case MSR_VM_HSAVE_PA:
2045         case MSR_AMD64_PATCH_LOADER:
2046         case MSR_AMD64_BU_CFG2:
2047                 break;
2048
2049         case MSR_EFER:
2050                 return set_efer(vcpu, data);
2051         case MSR_K7_HWCR:
2052                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2053                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2054                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2055                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2056                 if (data != 0) {
2057                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2058                                     data);
2059                         return 1;
2060                 }
2061                 break;
2062         case MSR_FAM10H_MMIO_CONF_BASE:
2063                 if (data != 0) {
2064                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2065                                     "0x%llx\n", data);
2066                         return 1;
2067                 }
2068                 break;
2069         case MSR_IA32_DEBUGCTLMSR:
2070                 if (!data) {
2071                         /* We support the non-activated case already */
2072                         break;
2073                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2074                         /* Values other than LBR and BTF are vendor-specific,
2075                            thus reserved and should throw a #GP */
2076                         return 1;
2077                 }
2078                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2079                             __func__, data);
2080                 break;
2081         case 0x200 ... 0x2ff:
2082                 return kvm_mtrr_set_msr(vcpu, msr, data);
2083         case MSR_IA32_APICBASE:
2084                 return kvm_set_apic_base(vcpu, msr_info);
2085         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2086                 return kvm_x2apic_msr_write(vcpu, msr, data);
2087         case MSR_IA32_TSCDEADLINE:
2088                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2089                 break;
2090         case MSR_IA32_TSC_ADJUST:
2091                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2092                         if (!msr_info->host_initiated) {
2093                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2094                                 adjust_tsc_offset_guest(vcpu, adj);
2095                         }
2096                         vcpu->arch.ia32_tsc_adjust_msr = data;
2097                 }
2098                 break;
2099         case MSR_IA32_MISC_ENABLE:
2100                 vcpu->arch.ia32_misc_enable_msr = data;
2101                 break;
2102         case MSR_IA32_SMBASE:
2103                 if (!msr_info->host_initiated)
2104                         return 1;
2105                 vcpu->arch.smbase = data;
2106                 break;
2107         case MSR_KVM_WALL_CLOCK_NEW:
2108         case MSR_KVM_WALL_CLOCK:
2109                 vcpu->kvm->arch.wall_clock = data;
2110                 kvm_write_wall_clock(vcpu->kvm, data);
2111                 break;
2112         case MSR_KVM_SYSTEM_TIME_NEW:
2113         case MSR_KVM_SYSTEM_TIME: {
2114                 u64 gpa_offset;
2115                 struct kvm_arch *ka = &vcpu->kvm->arch;
2116
2117                 kvmclock_reset(vcpu);
2118
2119                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2120                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2121
2122                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2123                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2124                                         &vcpu->requests);
2125
2126                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2127                 }
2128
2129                 vcpu->arch.time = data;
2130                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2131
2132                 /* we verify if the enable bit is set... */
2133                 if (!(data & 1))
2134                         break;
2135
2136                 gpa_offset = data & ~(PAGE_MASK | 1);
2137
2138                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2139                      &vcpu->arch.pv_time, data & ~1ULL,
2140                      sizeof(struct pvclock_vcpu_time_info)))
2141                         vcpu->arch.pv_time_enabled = false;
2142                 else
2143                         vcpu->arch.pv_time_enabled = true;
2144
2145                 break;
2146         }
2147         case MSR_KVM_ASYNC_PF_EN:
2148                 if (kvm_pv_enable_async_pf(vcpu, data))
2149                         return 1;
2150                 break;
2151         case MSR_KVM_STEAL_TIME:
2152
2153                 if (unlikely(!sched_info_on()))
2154                         return 1;
2155
2156                 if (data & KVM_STEAL_RESERVED_MASK)
2157                         return 1;
2158
2159                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2160                                                 data & KVM_STEAL_VALID_BITS,
2161                                                 sizeof(struct kvm_steal_time)))
2162                         return 1;
2163
2164                 vcpu->arch.st.msr_val = data;
2165
2166                 if (!(data & KVM_MSR_ENABLED))
2167                         break;
2168
2169                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2170
2171                 break;
2172         case MSR_KVM_PV_EOI_EN:
2173                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2174                         return 1;
2175                 break;
2176
2177         case MSR_IA32_MCG_CTL:
2178         case MSR_IA32_MCG_STATUS:
2179         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2180                 return set_msr_mce(vcpu, msr, data);
2181
2182         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2183         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2184                 pr = true; /* fall through */
2185         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2186         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2187                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2188                         return kvm_pmu_set_msr(vcpu, msr_info);
2189
2190                 if (pr || data != 0)
2191                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2192                                     "0x%x data 0x%llx\n", msr, data);
2193                 break;
2194         case MSR_K7_CLK_CTL:
2195                 /*
2196                  * Ignore all writes to this no longer documented MSR.
2197                  * Writes are only relevant for old K7 processors,
2198                  * all pre-dating SVM, but a recommended workaround from
2199                  * AMD for these chips. It is possible to specify the
2200                  * affected processor models on the command line, hence
2201                  * the need to ignore the workaround.
2202                  */
2203                 break;
2204         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2205         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2206         case HV_X64_MSR_CRASH_CTL:
2207         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2208                 return kvm_hv_set_msr_common(vcpu, msr, data,
2209                                              msr_info->host_initiated);
2210         case MSR_IA32_BBL_CR_CTL3:
2211                 /* Drop writes to this legacy MSR -- see rdmsr
2212                  * counterpart for further detail.
2213                  */
2214                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2215                 break;
2216         case MSR_AMD64_OSVW_ID_LENGTH:
2217                 if (!guest_cpuid_has_osvw(vcpu))
2218                         return 1;
2219                 vcpu->arch.osvw.length = data;
2220                 break;
2221         case MSR_AMD64_OSVW_STATUS:
2222                 if (!guest_cpuid_has_osvw(vcpu))
2223                         return 1;
2224                 vcpu->arch.osvw.status = data;
2225                 break;
2226         default:
2227                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2228                         return xen_hvm_config(vcpu, data);
2229                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2230                         return kvm_pmu_set_msr(vcpu, msr_info);
2231                 if (!ignore_msrs) {
2232                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2233                                     msr, data);
2234                         return 1;
2235                 } else {
2236                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2237                                     msr, data);
2238                         break;
2239                 }
2240         }
2241         return 0;
2242 }
2243 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2244
2245
2246 /*
2247  * Reads an msr value (of 'msr_index') into 'pdata'.
2248  * Returns 0 on success, non-0 otherwise.
2249  * Assumes vcpu_load() was already called.
2250  */
2251 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2252 {
2253         return kvm_x86_ops->get_msr(vcpu, msr);
2254 }
2255 EXPORT_SYMBOL_GPL(kvm_get_msr);
2256
2257 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2258 {
2259         u64 data;
2260         u64 mcg_cap = vcpu->arch.mcg_cap;
2261         unsigned bank_num = mcg_cap & 0xff;
2262
2263         switch (msr) {
2264         case MSR_IA32_P5_MC_ADDR:
2265         case MSR_IA32_P5_MC_TYPE:
2266                 data = 0;
2267                 break;
2268         case MSR_IA32_MCG_CAP:
2269                 data = vcpu->arch.mcg_cap;
2270                 break;
2271         case MSR_IA32_MCG_CTL:
2272                 if (!(mcg_cap & MCG_CTL_P))
2273                         return 1;
2274                 data = vcpu->arch.mcg_ctl;
2275                 break;
2276         case MSR_IA32_MCG_STATUS:
2277                 data = vcpu->arch.mcg_status;
2278                 break;
2279         default:
2280                 if (msr >= MSR_IA32_MC0_CTL &&
2281                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2282                         u32 offset = msr - MSR_IA32_MC0_CTL;
2283                         data = vcpu->arch.mce_banks[offset];
2284                         break;
2285                 }
2286                 return 1;
2287         }
2288         *pdata = data;
2289         return 0;
2290 }
2291
2292 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2293 {
2294         switch (msr_info->index) {
2295         case MSR_IA32_PLATFORM_ID:
2296         case MSR_IA32_EBL_CR_POWERON:
2297         case MSR_IA32_DEBUGCTLMSR:
2298         case MSR_IA32_LASTBRANCHFROMIP:
2299         case MSR_IA32_LASTBRANCHTOIP:
2300         case MSR_IA32_LASTINTFROMIP:
2301         case MSR_IA32_LASTINTTOIP:
2302         case MSR_K8_SYSCFG:
2303         case MSR_K8_TSEG_ADDR:
2304         case MSR_K8_TSEG_MASK:
2305         case MSR_K7_HWCR:
2306         case MSR_VM_HSAVE_PA:
2307         case MSR_K8_INT_PENDING_MSG:
2308         case MSR_AMD64_NB_CFG:
2309         case MSR_FAM10H_MMIO_CONF_BASE:
2310         case MSR_AMD64_BU_CFG2:
2311         case MSR_IA32_PERF_CTL:
2312                 msr_info->data = 0;
2313                 break;
2314         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2315         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2316         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2317         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2318                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2319                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2320                 msr_info->data = 0;
2321                 break;
2322         case MSR_IA32_UCODE_REV:
2323                 msr_info->data = 0x100000000ULL;
2324                 break;
2325         case MSR_MTRRcap:
2326         case 0x200 ... 0x2ff:
2327                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2328         case 0xcd: /* fsb frequency */
2329                 msr_info->data = 3;
2330                 break;
2331                 /*
2332                  * MSR_EBC_FREQUENCY_ID
2333                  * Conservative value valid for even the basic CPU models.
2334                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2335                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2336                  * and 266MHz for model 3, or 4. Set Core Clock
2337                  * Frequency to System Bus Frequency Ratio to 1 (bits
2338                  * 31:24) even though these are only valid for CPU
2339                  * models > 2, however guests may end up dividing or
2340                  * multiplying by zero otherwise.
2341                  */
2342         case MSR_EBC_FREQUENCY_ID:
2343                 msr_info->data = 1 << 24;
2344                 break;
2345         case MSR_IA32_APICBASE:
2346                 msr_info->data = kvm_get_apic_base(vcpu);
2347                 break;
2348         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2349                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2350                 break;
2351         case MSR_IA32_TSCDEADLINE:
2352                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2353                 break;
2354         case MSR_IA32_TSC_ADJUST:
2355                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2356                 break;
2357         case MSR_IA32_MISC_ENABLE:
2358                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2359                 break;
2360         case MSR_IA32_SMBASE:
2361                 if (!msr_info->host_initiated)
2362                         return 1;
2363                 msr_info->data = vcpu->arch.smbase;
2364                 break;
2365         case MSR_IA32_PERF_STATUS:
2366                 /* TSC increment by tick */
2367                 msr_info->data = 1000ULL;
2368                 /* CPU multiplier */
2369                 msr_info->data |= (((uint64_t)4ULL) << 40);
2370                 break;
2371         case MSR_EFER:
2372                 msr_info->data = vcpu->arch.efer;
2373                 break;
2374         case MSR_KVM_WALL_CLOCK:
2375         case MSR_KVM_WALL_CLOCK_NEW:
2376                 msr_info->data = vcpu->kvm->arch.wall_clock;
2377                 break;
2378         case MSR_KVM_SYSTEM_TIME:
2379         case MSR_KVM_SYSTEM_TIME_NEW:
2380                 msr_info->data = vcpu->arch.time;
2381                 break;
2382         case MSR_KVM_ASYNC_PF_EN:
2383                 msr_info->data = vcpu->arch.apf.msr_val;
2384                 break;
2385         case MSR_KVM_STEAL_TIME:
2386                 msr_info->data = vcpu->arch.st.msr_val;
2387                 break;
2388         case MSR_KVM_PV_EOI_EN:
2389                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2390                 break;
2391         case MSR_IA32_P5_MC_ADDR:
2392         case MSR_IA32_P5_MC_TYPE:
2393         case MSR_IA32_MCG_CAP:
2394         case MSR_IA32_MCG_CTL:
2395         case MSR_IA32_MCG_STATUS:
2396         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2397                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2398         case MSR_K7_CLK_CTL:
2399                 /*
2400                  * Provide expected ramp-up count for K7. All other
2401                  * are set to zero, indicating minimum divisors for
2402                  * every field.
2403                  *
2404                  * This prevents guest kernels on AMD host with CPU
2405                  * type 6, model 8 and higher from exploding due to
2406                  * the rdmsr failing.
2407                  */
2408                 msr_info->data = 0x20000000;
2409                 break;
2410         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2411         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2412         case HV_X64_MSR_CRASH_CTL:
2413         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2414                 return kvm_hv_get_msr_common(vcpu,
2415                                              msr_info->index, &msr_info->data);
2416                 break;
2417         case MSR_IA32_BBL_CR_CTL3:
2418                 /* This legacy MSR exists but isn't fully documented in current
2419                  * silicon.  It is however accessed by winxp in very narrow
2420                  * scenarios where it sets bit #19, itself documented as
2421                  * a "reserved" bit.  Best effort attempt to source coherent
2422                  * read data here should the balance of the register be
2423                  * interpreted by the guest:
2424                  *
2425                  * L2 cache control register 3: 64GB range, 256KB size,
2426                  * enabled, latency 0x1, configured
2427                  */
2428                 msr_info->data = 0xbe702111;
2429                 break;
2430         case MSR_AMD64_OSVW_ID_LENGTH:
2431                 if (!guest_cpuid_has_osvw(vcpu))
2432                         return 1;
2433                 msr_info->data = vcpu->arch.osvw.length;
2434                 break;
2435         case MSR_AMD64_OSVW_STATUS:
2436                 if (!guest_cpuid_has_osvw(vcpu))
2437                         return 1;
2438                 msr_info->data = vcpu->arch.osvw.status;
2439                 break;
2440         default:
2441                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2442                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2443                 if (!ignore_msrs) {
2444                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2445                         return 1;
2446                 } else {
2447                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2448                         msr_info->data = 0;
2449                 }
2450                 break;
2451         }
2452         return 0;
2453 }
2454 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2455
2456 /*
2457  * Read or write a bunch of msrs. All parameters are kernel addresses.
2458  *
2459  * @return number of msrs set successfully.
2460  */
2461 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2462                     struct kvm_msr_entry *entries,
2463                     int (*do_msr)(struct kvm_vcpu *vcpu,
2464                                   unsigned index, u64 *data))
2465 {
2466         int i, idx;
2467
2468         idx = srcu_read_lock(&vcpu->kvm->srcu);
2469         for (i = 0; i < msrs->nmsrs; ++i)
2470                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2471                         break;
2472         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2473
2474         return i;
2475 }
2476
2477 /*
2478  * Read or write a bunch of msrs. Parameters are user addresses.
2479  *
2480  * @return number of msrs set successfully.
2481  */
2482 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2483                   int (*do_msr)(struct kvm_vcpu *vcpu,
2484                                 unsigned index, u64 *data),
2485                   int writeback)
2486 {
2487         struct kvm_msrs msrs;
2488         struct kvm_msr_entry *entries;
2489         int r, n;
2490         unsigned size;
2491
2492         r = -EFAULT;
2493         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2494                 goto out;
2495
2496         r = -E2BIG;
2497         if (msrs.nmsrs >= MAX_IO_MSRS)
2498                 goto out;
2499
2500         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2501         entries = memdup_user(user_msrs->entries, size);
2502         if (IS_ERR(entries)) {
2503                 r = PTR_ERR(entries);
2504                 goto out;
2505         }
2506
2507         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2508         if (r < 0)
2509                 goto out_free;
2510
2511         r = -EFAULT;
2512         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2513                 goto out_free;
2514
2515         r = n;
2516
2517 out_free:
2518         kfree(entries);
2519 out:
2520         return r;
2521 }
2522
2523 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2524 {
2525         int r;
2526
2527         switch (ext) {
2528         case KVM_CAP_IRQCHIP:
2529         case KVM_CAP_HLT:
2530         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2531         case KVM_CAP_SET_TSS_ADDR:
2532         case KVM_CAP_EXT_CPUID:
2533         case KVM_CAP_EXT_EMUL_CPUID:
2534         case KVM_CAP_CLOCKSOURCE:
2535         case KVM_CAP_PIT:
2536         case KVM_CAP_NOP_IO_DELAY:
2537         case KVM_CAP_MP_STATE:
2538         case KVM_CAP_SYNC_MMU:
2539         case KVM_CAP_USER_NMI:
2540         case KVM_CAP_REINJECT_CONTROL:
2541         case KVM_CAP_IRQ_INJECT_STATUS:
2542         case KVM_CAP_IOEVENTFD:
2543         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2544         case KVM_CAP_PIT2:
2545         case KVM_CAP_PIT_STATE2:
2546         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2547         case KVM_CAP_XEN_HVM:
2548         case KVM_CAP_ADJUST_CLOCK:
2549         case KVM_CAP_VCPU_EVENTS:
2550         case KVM_CAP_HYPERV:
2551         case KVM_CAP_HYPERV_VAPIC:
2552         case KVM_CAP_HYPERV_SPIN:
2553         case KVM_CAP_HYPERV_SYNIC:
2554         case KVM_CAP_PCI_SEGMENT:
2555         case KVM_CAP_DEBUGREGS:
2556         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2557         case KVM_CAP_XSAVE:
2558         case KVM_CAP_ASYNC_PF:
2559         case KVM_CAP_GET_TSC_KHZ:
2560         case KVM_CAP_KVMCLOCK_CTRL:
2561         case KVM_CAP_READONLY_MEM:
2562         case KVM_CAP_HYPERV_TIME:
2563         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2564         case KVM_CAP_TSC_DEADLINE_TIMER:
2565         case KVM_CAP_ENABLE_CAP_VM:
2566         case KVM_CAP_DISABLE_QUIRKS:
2567         case KVM_CAP_SET_BOOT_CPU_ID:
2568         case KVM_CAP_SPLIT_IRQCHIP:
2569 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2570         case KVM_CAP_ASSIGN_DEV_IRQ:
2571         case KVM_CAP_PCI_2_3:
2572 #endif
2573                 r = 1;
2574                 break;
2575         case KVM_CAP_X86_SMM:
2576                 /* SMBASE is usually relocated above 1M on modern chipsets,
2577                  * and SMM handlers might indeed rely on 4G segment limits,
2578                  * so do not report SMM to be available if real mode is
2579                  * emulated via vm86 mode.  Still, do not go to great lengths
2580                  * to avoid userspace's usage of the feature, because it is a
2581                  * fringe case that is not enabled except via specific settings
2582                  * of the module parameters.
2583                  */
2584                 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2585                 break;
2586         case KVM_CAP_COALESCED_MMIO:
2587                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2588                 break;
2589         case KVM_CAP_VAPIC:
2590                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2591                 break;
2592         case KVM_CAP_NR_VCPUS:
2593                 r = KVM_SOFT_MAX_VCPUS;
2594                 break;
2595         case KVM_CAP_MAX_VCPUS:
2596                 r = KVM_MAX_VCPUS;
2597                 break;
2598         case KVM_CAP_NR_MEMSLOTS:
2599                 r = KVM_USER_MEM_SLOTS;
2600                 break;
2601         case KVM_CAP_PV_MMU:    /* obsolete */
2602                 r = 0;
2603                 break;
2604 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2605         case KVM_CAP_IOMMU:
2606                 r = iommu_present(&pci_bus_type);
2607                 break;
2608 #endif
2609         case KVM_CAP_MCE:
2610                 r = KVM_MAX_MCE_BANKS;
2611                 break;
2612         case KVM_CAP_XCRS:
2613                 r = boot_cpu_has(X86_FEATURE_XSAVE);
2614                 break;
2615         case KVM_CAP_TSC_CONTROL:
2616                 r = kvm_has_tsc_control;
2617                 break;
2618         default:
2619                 r = 0;
2620                 break;
2621         }
2622         return r;
2623
2624 }
2625
2626 long kvm_arch_dev_ioctl(struct file *filp,
2627                         unsigned int ioctl, unsigned long arg)
2628 {
2629         void __user *argp = (void __user *)arg;
2630         long r;
2631
2632         switch (ioctl) {
2633         case KVM_GET_MSR_INDEX_LIST: {
2634                 struct kvm_msr_list __user *user_msr_list = argp;
2635                 struct kvm_msr_list msr_list;
2636                 unsigned n;
2637
2638                 r = -EFAULT;
2639                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2640                         goto out;
2641                 n = msr_list.nmsrs;
2642                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2643                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2644                         goto out;
2645                 r = -E2BIG;
2646                 if (n < msr_list.nmsrs)
2647                         goto out;
2648                 r = -EFAULT;
2649                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2650                                  num_msrs_to_save * sizeof(u32)))
2651                         goto out;
2652                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2653                                  &emulated_msrs,
2654                                  num_emulated_msrs * sizeof(u32)))
2655                         goto out;
2656                 r = 0;
2657                 break;
2658         }
2659         case KVM_GET_SUPPORTED_CPUID:
2660         case KVM_GET_EMULATED_CPUID: {
2661                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2662                 struct kvm_cpuid2 cpuid;
2663
2664                 r = -EFAULT;
2665                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2666                         goto out;
2667
2668                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2669                                             ioctl);
2670                 if (r)
2671                         goto out;
2672
2673                 r = -EFAULT;
2674                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2675                         goto out;
2676                 r = 0;
2677                 break;
2678         }
2679         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2680                 u64 mce_cap;
2681
2682                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2683                 r = -EFAULT;
2684                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2685                         goto out;
2686                 r = 0;
2687                 break;
2688         }
2689         default:
2690                 r = -EINVAL;
2691         }
2692 out:
2693         return r;
2694 }
2695
2696 static void wbinvd_ipi(void *garbage)
2697 {
2698         wbinvd();
2699 }
2700
2701 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2702 {
2703         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2704 }
2705
2706 static inline void kvm_migrate_timers(struct kvm_vcpu *vcpu)
2707 {
2708         set_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests);
2709 }
2710
2711 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2712 {
2713         /* Address WBINVD may be executed by guest */
2714         if (need_emulate_wbinvd(vcpu)) {
2715                 if (kvm_x86_ops->has_wbinvd_exit())
2716                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2717                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2718                         smp_call_function_single(vcpu->cpu,
2719                                         wbinvd_ipi, NULL, 1);
2720         }
2721
2722         kvm_x86_ops->vcpu_load(vcpu, cpu);
2723
2724         /* Apply any externally detected TSC adjustments (due to suspend) */
2725         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2726                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2727                 vcpu->arch.tsc_offset_adjustment = 0;
2728                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2729         }
2730
2731         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2732                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2733                                 rdtsc() - vcpu->arch.last_host_tsc;
2734                 if (tsc_delta < 0)
2735                         mark_tsc_unstable("KVM discovered backwards TSC");
2736                 if (check_tsc_unstable()) {
2737                         u64 offset = kvm_compute_tsc_offset(vcpu,
2738                                                 vcpu->arch.last_guest_tsc);
2739                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2740                         vcpu->arch.tsc_catchup = 1;
2741                 }
2742                 /*
2743                  * On a host with synchronized TSC, there is no need to update
2744                  * kvmclock on vcpu->cpu migration
2745                  */
2746                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2747                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2748                 if (vcpu->cpu != cpu)
2749                         kvm_migrate_timers(vcpu);
2750                 vcpu->cpu = cpu;
2751         }
2752
2753         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2754 }
2755
2756 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2757 {
2758         kvm_x86_ops->vcpu_put(vcpu);
2759         kvm_put_guest_fpu(vcpu);
2760         vcpu->arch.last_host_tsc = rdtsc();
2761 }
2762
2763 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2764                                     struct kvm_lapic_state *s)
2765 {
2766         if (vcpu->arch.apicv_active)
2767                 kvm_x86_ops->sync_pir_to_irr(vcpu);
2768
2769         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2770
2771         return 0;
2772 }
2773
2774 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2775                                     struct kvm_lapic_state *s)
2776 {
2777         kvm_apic_post_state_restore(vcpu, s);
2778         update_cr8_intercept(vcpu);
2779
2780         return 0;
2781 }
2782
2783 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2784 {
2785         return (!lapic_in_kernel(vcpu) ||
2786                 kvm_apic_accept_pic_intr(vcpu));
2787 }
2788
2789 /*
2790  * if userspace requested an interrupt window, check that the
2791  * interrupt window is open.
2792  *
2793  * No need to exit to userspace if we already have an interrupt queued.
2794  */
2795 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2796 {
2797         return kvm_arch_interrupt_allowed(vcpu) &&
2798                 !kvm_cpu_has_interrupt(vcpu) &&
2799                 !kvm_event_needs_reinjection(vcpu) &&
2800                 kvm_cpu_accept_dm_intr(vcpu);
2801 }
2802
2803 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2804                                     struct kvm_interrupt *irq)
2805 {
2806         if (irq->irq >= KVM_NR_INTERRUPTS)
2807                 return -EINVAL;
2808
2809         if (!irqchip_in_kernel(vcpu->kvm)) {
2810                 kvm_queue_interrupt(vcpu, irq->irq, false);
2811                 kvm_make_request(KVM_REQ_EVENT, vcpu);
2812                 return 0;
2813         }
2814
2815         /*
2816          * With in-kernel LAPIC, we only use this to inject EXTINT, so
2817          * fail for in-kernel 8259.
2818          */
2819         if (pic_in_kernel(vcpu->kvm))
2820                 return -ENXIO;
2821
2822         if (vcpu->arch.pending_external_vector != -1)
2823                 return -EEXIST;
2824
2825         vcpu->arch.pending_external_vector = irq->irq;
2826         kvm_make_request(KVM_REQ_EVENT, vcpu);
2827         return 0;
2828 }
2829
2830 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2831 {
2832         kvm_inject_nmi(vcpu);
2833
2834         return 0;
2835 }
2836
2837 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2838 {
2839         kvm_make_request(KVM_REQ_SMI, vcpu);
2840
2841         return 0;
2842 }
2843
2844 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2845                                            struct kvm_tpr_access_ctl *tac)
2846 {
2847         if (tac->flags)
2848                 return -EINVAL;
2849         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2850         return 0;
2851 }
2852
2853 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2854                                         u64 mcg_cap)
2855 {
2856         int r;
2857         unsigned bank_num = mcg_cap & 0xff, bank;
2858
2859         r = -EINVAL;
2860         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2861                 goto out;
2862         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2863                 goto out;
2864         r = 0;
2865         vcpu->arch.mcg_cap = mcg_cap;
2866         /* Init IA32_MCG_CTL to all 1s */
2867         if (mcg_cap & MCG_CTL_P)
2868                 vcpu->arch.mcg_ctl = ~(u64)0;
2869         /* Init IA32_MCi_CTL to all 1s */
2870         for (bank = 0; bank < bank_num; bank++)
2871                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2872 out:
2873         return r;
2874 }
2875
2876 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2877                                       struct kvm_x86_mce *mce)
2878 {
2879         u64 mcg_cap = vcpu->arch.mcg_cap;
2880         unsigned bank_num = mcg_cap & 0xff;
2881         u64 *banks = vcpu->arch.mce_banks;
2882
2883         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2884                 return -EINVAL;
2885         /*
2886          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2887          * reporting is disabled
2888          */
2889         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2890             vcpu->arch.mcg_ctl != ~(u64)0)
2891                 return 0;
2892         banks += 4 * mce->bank;
2893         /*
2894          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2895          * reporting is disabled for the bank
2896          */
2897         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2898                 return 0;
2899         if (mce->status & MCI_STATUS_UC) {
2900                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2901                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2902                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2903                         return 0;
2904                 }
2905                 if (banks[1] & MCI_STATUS_VAL)
2906                         mce->status |= MCI_STATUS_OVER;
2907                 banks[2] = mce->addr;
2908                 banks[3] = mce->misc;
2909                 vcpu->arch.mcg_status = mce->mcg_status;
2910                 banks[1] = mce->status;
2911                 kvm_queue_exception(vcpu, MC_VECTOR);
2912         } else if (!(banks[1] & MCI_STATUS_VAL)
2913                    || !(banks[1] & MCI_STATUS_UC)) {
2914                 if (banks[1] & MCI_STATUS_VAL)
2915                         mce->status |= MCI_STATUS_OVER;
2916                 banks[2] = mce->addr;
2917                 banks[3] = mce->misc;
2918                 banks[1] = mce->status;
2919         } else
2920                 banks[1] |= MCI_STATUS_OVER;
2921         return 0;
2922 }
2923
2924 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2925                                                struct kvm_vcpu_events *events)
2926 {
2927         process_nmi(vcpu);
2928         events->exception.injected =
2929                 vcpu->arch.exception.pending &&
2930                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2931         events->exception.nr = vcpu->arch.exception.nr;
2932         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2933         events->exception.pad = 0;
2934         events->exception.error_code = vcpu->arch.exception.error_code;
2935
2936         events->interrupt.injected =
2937                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2938         events->interrupt.nr = vcpu->arch.interrupt.nr;
2939         events->interrupt.soft = 0;
2940         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
2941
2942         events->nmi.injected = vcpu->arch.nmi_injected;
2943         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2944         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2945         events->nmi.pad = 0;
2946
2947         events->sipi_vector = 0; /* never valid when reporting to user space */
2948
2949         events->smi.smm = is_smm(vcpu);
2950         events->smi.pending = vcpu->arch.smi_pending;
2951         events->smi.smm_inside_nmi =
2952                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
2953         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
2954
2955         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2956                          | KVM_VCPUEVENT_VALID_SHADOW
2957                          | KVM_VCPUEVENT_VALID_SMM);
2958         memset(&events->reserved, 0, sizeof(events->reserved));
2959 }
2960
2961 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2962                                               struct kvm_vcpu_events *events)
2963 {
2964         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2965                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2966                               | KVM_VCPUEVENT_VALID_SHADOW
2967                               | KVM_VCPUEVENT_VALID_SMM))
2968                 return -EINVAL;
2969
2970         if (events->exception.injected &&
2971             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
2972                 return -EINVAL;
2973
2974         process_nmi(vcpu);
2975         vcpu->arch.exception.pending = events->exception.injected;
2976         vcpu->arch.exception.nr = events->exception.nr;
2977         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2978         vcpu->arch.exception.error_code = events->exception.error_code;
2979
2980         vcpu->arch.interrupt.pending = events->interrupt.injected;
2981         vcpu->arch.interrupt.nr = events->interrupt.nr;
2982         vcpu->arch.interrupt.soft = events->interrupt.soft;
2983         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2984                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2985                                                   events->interrupt.shadow);
2986
2987         vcpu->arch.nmi_injected = events->nmi.injected;
2988         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2989                 vcpu->arch.nmi_pending = events->nmi.pending;
2990         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2991
2992         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2993             lapic_in_kernel(vcpu))
2994                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
2995
2996         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
2997                 if (events->smi.smm)
2998                         vcpu->arch.hflags |= HF_SMM_MASK;
2999                 else
3000                         vcpu->arch.hflags &= ~HF_SMM_MASK;
3001                 vcpu->arch.smi_pending = events->smi.pending;
3002                 if (events->smi.smm_inside_nmi)
3003                         vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3004                 else
3005                         vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3006                 if (lapic_in_kernel(vcpu)) {
3007                         if (events->smi.latched_init)
3008                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3009                         else
3010                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3011                 }
3012         }
3013
3014         kvm_make_request(KVM_REQ_EVENT, vcpu);
3015
3016         return 0;
3017 }
3018
3019 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3020                                              struct kvm_debugregs *dbgregs)
3021 {
3022         unsigned long val;
3023
3024         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3025         kvm_get_dr(vcpu, 6, &val);
3026         dbgregs->dr6 = val;
3027         dbgregs->dr7 = vcpu->arch.dr7;
3028         dbgregs->flags = 0;
3029         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3030 }
3031
3032 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3033                                             struct kvm_debugregs *dbgregs)
3034 {
3035         if (dbgregs->flags)
3036                 return -EINVAL;
3037
3038         if (dbgregs->dr6 & ~0xffffffffull)
3039                 return -EINVAL;
3040         if (dbgregs->dr7 & ~0xffffffffull)
3041                 return -EINVAL;
3042
3043         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3044         kvm_update_dr0123(vcpu);
3045         vcpu->arch.dr6 = dbgregs->dr6;
3046         kvm_update_dr6(vcpu);
3047         vcpu->arch.dr7 = dbgregs->dr7;
3048         kvm_update_dr7(vcpu);
3049
3050         return 0;
3051 }
3052
3053 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3054
3055 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3056 {
3057         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3058         u64 xstate_bv = xsave->header.xfeatures;
3059         u64 valid;
3060
3061         /*
3062          * Copy legacy XSAVE area, to avoid complications with CPUID
3063          * leaves 0 and 1 in the loop below.
3064          */
3065         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3066
3067         /* Set XSTATE_BV */
3068         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3069
3070         /*
3071          * Copy each region from the possibly compacted offset to the
3072          * non-compacted offset.
3073          */
3074         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3075         while (valid) {
3076                 u64 feature = valid & -valid;
3077                 int index = fls64(feature) - 1;
3078                 void *src = get_xsave_addr(xsave, feature);
3079
3080                 if (src) {
3081                         u32 size, offset, ecx, edx;
3082                         cpuid_count(XSTATE_CPUID, index,
3083                                     &size, &offset, &ecx, &edx);
3084                         memcpy(dest + offset, src, size);
3085                 }
3086
3087                 valid -= feature;
3088         }
3089 }
3090
3091 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3092 {
3093         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3094         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3095         u64 valid;
3096
3097         /*
3098          * Copy legacy XSAVE area, to avoid complications with CPUID
3099          * leaves 0 and 1 in the loop below.
3100          */
3101         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3102
3103         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3104         xsave->header.xfeatures = xstate_bv;
3105         if (boot_cpu_has(X86_FEATURE_XSAVES))
3106                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3107
3108         /*
3109          * Copy each region from the non-compacted offset to the
3110          * possibly compacted offset.
3111          */
3112         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3113         while (valid) {
3114                 u64 feature = valid & -valid;
3115                 int index = fls64(feature) - 1;
3116                 void *dest = get_xsave_addr(xsave, feature);
3117
3118                 if (dest) {
3119                         u32 size, offset, ecx, edx;
3120                         cpuid_count(XSTATE_CPUID, index,
3121                                     &size, &offset, &ecx, &edx);
3122                         memcpy(dest, src + offset, size);
3123                 }
3124
3125                 valid -= feature;
3126         }
3127 }
3128
3129 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3130                                          struct kvm_xsave *guest_xsave)
3131 {
3132         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3133                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3134                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3135         } else {
3136                 memcpy(guest_xsave->region,
3137                         &vcpu->arch.guest_fpu.state.fxsave,
3138                         sizeof(struct fxregs_state));
3139                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3140                         XFEATURE_MASK_FPSSE;
3141         }
3142 }
3143
3144 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3145                                         struct kvm_xsave *guest_xsave)
3146 {
3147         u64 xstate_bv =
3148                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3149
3150         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3151                 /*
3152                  * Here we allow setting states that are not present in
3153                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3154                  * with old userspace.
3155                  */
3156                 if (xstate_bv & ~kvm_supported_xcr0())
3157                         return -EINVAL;
3158                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3159         } else {
3160                 if (xstate_bv & ~XFEATURE_MASK_FPSSE)
3161                         return -EINVAL;
3162                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3163                         guest_xsave->region, sizeof(struct fxregs_state));
3164         }
3165         return 0;
3166 }
3167
3168 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3169                                         struct kvm_xcrs *guest_xcrs)
3170 {
3171         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3172                 guest_xcrs->nr_xcrs = 0;
3173                 return;
3174         }
3175
3176         guest_xcrs->nr_xcrs = 1;
3177         guest_xcrs->flags = 0;
3178         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3179         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3180 }
3181
3182 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3183                                        struct kvm_xcrs *guest_xcrs)
3184 {
3185         int i, r = 0;
3186
3187         if (!boot_cpu_has(X86_FEATURE_XSAVE))
3188                 return -EINVAL;
3189
3190         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3191                 return -EINVAL;
3192
3193         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3194                 /* Only support XCR0 currently */
3195                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3196                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3197                                 guest_xcrs->xcrs[i].value);
3198                         break;
3199                 }
3200         if (r)
3201                 r = -EINVAL;
3202         return r;
3203 }
3204
3205 /*
3206  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3207  * stopped by the hypervisor.  This function will be called from the host only.
3208  * EINVAL is returned when the host attempts to set the flag for a guest that
3209  * does not support pv clocks.
3210  */
3211 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3212 {
3213         if (!vcpu->arch.pv_time_enabled)
3214                 return -EINVAL;
3215         vcpu->arch.pvclock_set_guest_stopped_request = true;
3216         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3217         return 0;
3218 }
3219
3220 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3221                                      struct kvm_enable_cap *cap)
3222 {
3223         if (cap->flags)
3224                 return -EINVAL;
3225
3226         switch (cap->cap) {
3227         case KVM_CAP_HYPERV_SYNIC:
3228                 return kvm_hv_activate_synic(vcpu);
3229         default:
3230                 return -EINVAL;
3231         }
3232 }
3233
3234 long kvm_arch_vcpu_ioctl(struct file *filp,
3235                          unsigned int ioctl, unsigned long arg)
3236 {
3237         struct kvm_vcpu *vcpu = filp->private_data;
3238         void __user *argp = (void __user *)arg;
3239         int r;
3240         union {
3241                 struct kvm_lapic_state *lapic;
3242                 struct kvm_xsave *xsave;
3243                 struct kvm_xcrs *xcrs;
3244                 void *buffer;
3245         } u;
3246
3247         u.buffer = NULL;
3248         switch (ioctl) {
3249         case KVM_GET_LAPIC: {
3250                 r = -EINVAL;
3251                 if (!lapic_in_kernel(vcpu))
3252                         goto out;
3253                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3254
3255                 r = -ENOMEM;
3256                 if (!u.lapic)
3257                         goto out;
3258                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3259                 if (r)
3260                         goto out;
3261                 r = -EFAULT;
3262                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3263                         goto out;
3264                 r = 0;
3265                 break;
3266         }
3267         case KVM_SET_LAPIC: {
3268                 r = -EINVAL;
3269                 if (!lapic_in_kernel(vcpu))
3270                         goto out;
3271                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3272                 if (IS_ERR(u.lapic))
3273                         return PTR_ERR(u.lapic);
3274
3275                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3276                 break;
3277         }
3278         case KVM_INTERRUPT: {
3279                 struct kvm_interrupt irq;
3280
3281                 r = -EFAULT;
3282                 if (copy_from_user(&irq, argp, sizeof irq))
3283                         goto out;
3284                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3285                 break;
3286         }
3287         case KVM_NMI: {
3288                 r = kvm_vcpu_ioctl_nmi(vcpu);
3289                 break;
3290         }
3291         case KVM_SMI: {
3292                 r = kvm_vcpu_ioctl_smi(vcpu);
3293                 break;
3294         }
3295         case KVM_SET_CPUID: {
3296                 struct kvm_cpuid __user *cpuid_arg = argp;
3297                 struct kvm_cpuid cpuid;
3298
3299                 r = -EFAULT;
3300                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3301                         goto out;
3302                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3303                 break;
3304         }
3305         case KVM_SET_CPUID2: {
3306                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3307                 struct kvm_cpuid2 cpuid;
3308
3309                 r = -EFAULT;
3310                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3311                         goto out;
3312                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3313                                               cpuid_arg->entries);
3314                 break;
3315         }
3316         case KVM_GET_CPUID2: {
3317                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3318                 struct kvm_cpuid2 cpuid;
3319
3320                 r = -EFAULT;
3321                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3322                         goto out;
3323                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3324                                               cpuid_arg->entries);
3325                 if (r)
3326                         goto out;
3327                 r = -EFAULT;
3328                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3329                         goto out;
3330                 r = 0;
3331                 break;
3332         }
3333         case KVM_GET_MSRS:
3334                 r = msr_io(vcpu, argp, do_get_msr, 1);
3335                 break;
3336         case KVM_SET_MSRS:
3337                 r = msr_io(vcpu, argp, do_set_msr, 0);
3338                 break;
3339         case KVM_TPR_ACCESS_REPORTING: {
3340                 struct kvm_tpr_access_ctl tac;
3341
3342                 r = -EFAULT;
3343                 if (copy_from_user(&tac, argp, sizeof tac))
3344                         goto out;
3345                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3346                 if (r)
3347                         goto out;
3348                 r = -EFAULT;
3349                 if (copy_to_user(argp, &tac, sizeof tac))
3350                         goto out;
3351                 r = 0;
3352                 break;
3353         };
3354         case KVM_SET_VAPIC_ADDR: {
3355                 struct kvm_vapic_addr va;
3356
3357                 r = -EINVAL;
3358                 if (!lapic_in_kernel(vcpu))
3359                         goto out;
3360                 r = -EFAULT;
3361                 if (copy_from_user(&va, argp, sizeof va))
3362                         goto out;
3363                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3364                 break;
3365         }
3366         case KVM_X86_SETUP_MCE: {
3367                 u64 mcg_cap;
3368
3369                 r = -EFAULT;
3370                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3371                         goto out;
3372                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3373                 break;
3374         }
3375         case KVM_X86_SET_MCE: {
3376                 struct kvm_x86_mce mce;
3377
3378                 r = -EFAULT;
3379                 if (copy_from_user(&mce, argp, sizeof mce))
3380                         goto out;
3381                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3382                 break;
3383         }
3384         case KVM_GET_VCPU_EVENTS: {
3385                 struct kvm_vcpu_events events;
3386
3387                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3388
3389                 r = -EFAULT;
3390                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3391                         break;
3392                 r = 0;
3393                 break;
3394         }
3395         case KVM_SET_VCPU_EVENTS: {
3396                 struct kvm_vcpu_events events;
3397
3398                 r = -EFAULT;
3399                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3400                         break;
3401
3402                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3403                 break;
3404         }
3405         case KVM_GET_DEBUGREGS: {
3406                 struct kvm_debugregs dbgregs;
3407
3408                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3409
3410                 r = -EFAULT;
3411                 if (copy_to_user(argp, &dbgregs,
3412                                  sizeof(struct kvm_debugregs)))
3413                         break;
3414                 r = 0;
3415                 break;
3416         }
3417         case KVM_SET_DEBUGREGS: {
3418                 struct kvm_debugregs dbgregs;
3419
3420                 r = -EFAULT;
3421                 if (copy_from_user(&dbgregs, argp,
3422                                    sizeof(struct kvm_debugregs)))
3423                         break;
3424
3425                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3426                 break;
3427         }
3428         case KVM_GET_XSAVE: {
3429                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3430                 r = -ENOMEM;
3431                 if (!u.xsave)
3432                         break;
3433
3434                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3435
3436                 r = -EFAULT;
3437                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3438                         break;
3439                 r = 0;
3440                 break;
3441         }
3442         case KVM_SET_XSAVE: {
3443                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3444                 if (IS_ERR(u.xsave))
3445                         return PTR_ERR(u.xsave);
3446
3447                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3448                 break;
3449         }
3450         case KVM_GET_XCRS: {
3451                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3452                 r = -ENOMEM;
3453                 if (!u.xcrs)
3454                         break;
3455
3456                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3457
3458                 r = -EFAULT;
3459                 if (copy_to_user(argp, u.xcrs,
3460                                  sizeof(struct kvm_xcrs)))
3461                         break;
3462                 r = 0;
3463                 break;
3464         }
3465         case KVM_SET_XCRS: {
3466                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3467                 if (IS_ERR(u.xcrs))
3468                         return PTR_ERR(u.xcrs);
3469
3470                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3471                 break;
3472         }
3473         case KVM_SET_TSC_KHZ: {
3474                 u32 user_tsc_khz;
3475
3476                 r = -EINVAL;
3477                 user_tsc_khz = (u32)arg;
3478
3479                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3480                         goto out;
3481
3482                 if (user_tsc_khz == 0)
3483                         user_tsc_khz = tsc_khz;
3484
3485                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3486                         r = 0;
3487
3488                 goto out;
3489         }
3490         case KVM_GET_TSC_KHZ: {
3491                 r = vcpu->arch.virtual_tsc_khz;
3492                 goto out;
3493         }
3494         case KVM_KVMCLOCK_CTRL: {
3495                 r = kvm_set_guest_paused(vcpu);
3496                 goto out;
3497         }
3498         case KVM_ENABLE_CAP: {
3499                 struct kvm_enable_cap cap;
3500
3501                 r = -EFAULT;
3502                 if (copy_from_user(&cap, argp, sizeof(cap)))
3503                         goto out;
3504                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3505                 break;
3506         }
3507         default:
3508                 r = -EINVAL;
3509         }
3510 out:
3511         kfree(u.buffer);
3512         return r;
3513 }
3514
3515 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3516 {
3517         return VM_FAULT_SIGBUS;
3518 }
3519
3520 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3521 {
3522         int ret;
3523
3524         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3525                 return -EINVAL;
3526         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3527         return ret;
3528 }
3529
3530 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3531                                               u64 ident_addr)
3532 {
3533         kvm->arch.ept_identity_map_addr = ident_addr;
3534         return 0;
3535 }
3536
3537 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3538                                           u32 kvm_nr_mmu_pages)
3539 {
3540         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3541                 return -EINVAL;
3542
3543         mutex_lock(&kvm->slots_lock);
3544
3545         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3546         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3547
3548         mutex_unlock(&kvm->slots_lock);
3549         return 0;
3550 }
3551
3552 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3553 {
3554         return kvm->arch.n_max_mmu_pages;
3555 }
3556
3557 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3558 {
3559         int r;
3560
3561         r = 0;
3562         switch (chip->chip_id) {
3563         case KVM_IRQCHIP_PIC_MASTER:
3564                 memcpy(&chip->chip.pic,
3565                         &pic_irqchip(kvm)->pics[0],
3566                         sizeof(struct kvm_pic_state));
3567                 break;
3568         case KVM_IRQCHIP_PIC_SLAVE:
3569                 memcpy(&chip->chip.pic,
3570                         &pic_irqchip(kvm)->pics[1],
3571                         sizeof(struct kvm_pic_state));
3572                 break;
3573         case KVM_IRQCHIP_IOAPIC:
3574                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3575                 break;
3576         default:
3577                 r = -EINVAL;
3578                 break;
3579         }
3580         return r;
3581 }
3582
3583 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3584 {
3585         int r;
3586
3587         r = 0;
3588         switch (chip->chip_id) {
3589         case KVM_IRQCHIP_PIC_MASTER:
3590                 spin_lock(&pic_irqchip(kvm)->lock);
3591                 memcpy(&pic_irqchip(kvm)->pics[0],
3592                         &chip->chip.pic,
3593                         sizeof(struct kvm_pic_state));
3594                 spin_unlock(&pic_irqchip(kvm)->lock);
3595                 break;
3596         case KVM_IRQCHIP_PIC_SLAVE:
3597                 spin_lock(&pic_irqchip(kvm)->lock);
3598                 memcpy(&pic_irqchip(kvm)->pics[1],
3599                         &chip->chip.pic,
3600                         sizeof(struct kvm_pic_state));
3601                 spin_unlock(&pic_irqchip(kvm)->lock);
3602                 break;
3603         case KVM_IRQCHIP_IOAPIC:
3604                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3605                 break;
3606         default:
3607                 r = -EINVAL;
3608                 break;
3609         }
3610         kvm_pic_update_irq(pic_irqchip(kvm));
3611         return r;
3612 }
3613
3614 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3615 {
3616         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3617
3618         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3619
3620         mutex_lock(&kps->lock);
3621         memcpy(ps, &kps->channels, sizeof(*ps));
3622         mutex_unlock(&kps->lock);
3623         return 0;
3624 }
3625
3626 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3627 {
3628         int i;
3629         struct kvm_pit *pit = kvm->arch.vpit;
3630
3631         mutex_lock(&pit->pit_state.lock);
3632         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3633         for (i = 0; i < 3; i++)
3634                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3635         mutex_unlock(&pit->pit_state.lock);
3636         return 0;
3637 }
3638
3639 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3640 {
3641         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3642         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3643                 sizeof(ps->channels));
3644         ps->flags = kvm->arch.vpit->pit_state.flags;
3645         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3646         memset(&ps->reserved, 0, sizeof(ps->reserved));
3647         return 0;
3648 }
3649
3650 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3651 {
3652         int start = 0;
3653         int i;
3654         u32 prev_legacy, cur_legacy;
3655         struct kvm_pit *pit = kvm->arch.vpit;
3656
3657         mutex_lock(&pit->pit_state.lock);
3658         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3659         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3660         if (!prev_legacy && cur_legacy)
3661                 start = 1;
3662         memcpy(&pit->pit_state.channels, &ps->channels,
3663                sizeof(pit->pit_state.channels));
3664         pit->pit_state.flags = ps->flags;
3665         for (i = 0; i < 3; i++)
3666                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3667                                    start && i == 0);
3668         mutex_unlock(&pit->pit_state.lock);
3669         return 0;
3670 }
3671
3672 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3673                                  struct kvm_reinject_control *control)
3674 {
3675         struct kvm_pit *pit = kvm->arch.vpit;
3676
3677         if (!pit)
3678                 return -ENXIO;
3679
3680         /* pit->pit_state.lock was overloaded to prevent userspace from getting
3681          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3682          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
3683          */
3684         mutex_lock(&pit->pit_state.lock);
3685         kvm_pit_set_reinject(pit, control->pit_reinject);
3686         mutex_unlock(&pit->pit_state.lock);
3687
3688         return 0;
3689 }
3690
3691 /**
3692  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3693  * @kvm: kvm instance
3694  * @log: slot id and address to which we copy the log
3695  *
3696  * Steps 1-4 below provide general overview of dirty page logging. See
3697  * kvm_get_dirty_log_protect() function description for additional details.
3698  *
3699  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3700  * always flush the TLB (step 4) even if previous step failed  and the dirty
3701  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3702  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3703  * writes will be marked dirty for next log read.
3704  *
3705  *   1. Take a snapshot of the bit and clear it if needed.
3706  *   2. Write protect the corresponding page.
3707  *   3. Copy the snapshot to the userspace.
3708  *   4. Flush TLB's if needed.
3709  */
3710 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3711 {
3712         bool is_dirty = false;
3713         int r;
3714
3715         mutex_lock(&kvm->slots_lock);
3716
3717         /*
3718          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3719          */
3720         if (kvm_x86_ops->flush_log_dirty)
3721                 kvm_x86_ops->flush_log_dirty(kvm);
3722
3723         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3724
3725         /*
3726          * All the TLBs can be flushed out of mmu lock, see the comments in
3727          * kvm_mmu_slot_remove_write_access().
3728          */
3729         lockdep_assert_held(&kvm->slots_lock);
3730         if (is_dirty)
3731                 kvm_flush_remote_tlbs(kvm);
3732
3733         mutex_unlock(&kvm->slots_lock);
3734         return r;
3735 }
3736
3737 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3738                         bool line_status)
3739 {
3740         if (!irqchip_in_kernel(kvm))
3741                 return -ENXIO;
3742
3743         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3744                                         irq_event->irq, irq_event->level,
3745                                         line_status);
3746         return 0;
3747 }
3748
3749 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3750                                    struct kvm_enable_cap *cap)
3751 {
3752         int r;
3753
3754         if (cap->flags)
3755                 return -EINVAL;
3756
3757         switch (cap->cap) {
3758         case KVM_CAP_DISABLE_QUIRKS:
3759                 kvm->arch.disabled_quirks = cap->args[0];
3760                 r = 0;
3761                 break;
3762         case KVM_CAP_SPLIT_IRQCHIP: {
3763                 mutex_lock(&kvm->lock);
3764                 r = -EINVAL;
3765                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3766                         goto split_irqchip_unlock;
3767                 r = -EEXIST;
3768                 if (irqchip_in_kernel(kvm))
3769                         goto split_irqchip_unlock;
3770                 if (atomic_read(&kvm->online_vcpus))
3771                         goto split_irqchip_unlock;
3772                 r = kvm_setup_empty_irq_routing(kvm);
3773                 if (r)
3774                         goto split_irqchip_unlock;
3775                 /* Pairs with irqchip_in_kernel. */
3776                 smp_wmb();
3777                 kvm->arch.irqchip_split = true;
3778                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3779                 r = 0;
3780 split_irqchip_unlock:
3781                 mutex_unlock(&kvm->lock);
3782                 break;
3783         }
3784         default:
3785                 r = -EINVAL;
3786                 break;
3787         }
3788         return r;
3789 }
3790
3791 long kvm_arch_vm_ioctl(struct file *filp,
3792                        unsigned int ioctl, unsigned long arg)
3793 {
3794         struct kvm *kvm = filp->private_data;
3795         void __user *argp = (void __user *)arg;
3796         int r = -ENOTTY;
3797         /*
3798          * This union makes it completely explicit to gcc-3.x
3799          * that these two variables' stack usage should be
3800          * combined, not added together.
3801          */
3802         union {
3803                 struct kvm_pit_state ps;
3804                 struct kvm_pit_state2 ps2;
3805                 struct kvm_pit_config pit_config;
3806         } u;
3807
3808         switch (ioctl) {
3809         case KVM_SET_TSS_ADDR:
3810                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3811                 break;
3812         case KVM_SET_IDENTITY_MAP_ADDR: {
3813                 u64 ident_addr;
3814
3815                 r = -EFAULT;
3816                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3817                         goto out;
3818                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3819                 break;
3820         }
3821         case KVM_SET_NR_MMU_PAGES:
3822                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3823                 break;
3824         case KVM_GET_NR_MMU_PAGES:
3825                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3826                 break;
3827         case KVM_CREATE_IRQCHIP: {
3828                 struct kvm_pic *vpic;
3829
3830                 mutex_lock(&kvm->lock);
3831                 r = -EEXIST;
3832                 if (kvm->arch.vpic)
3833                         goto create_irqchip_unlock;
3834                 r = -EINVAL;
3835                 if (atomic_read(&kvm->online_vcpus))
3836                         goto create_irqchip_unlock;
3837                 r = -ENOMEM;
3838                 vpic = kvm_create_pic(kvm);
3839                 if (vpic) {
3840                         r = kvm_ioapic_init(kvm);
3841                         if (r) {
3842                                 mutex_lock(&kvm->slots_lock);
3843                                 kvm_destroy_pic(vpic);
3844                                 mutex_unlock(&kvm->slots_lock);
3845                                 goto create_irqchip_unlock;
3846                         }
3847                 } else
3848                         goto create_irqchip_unlock;
3849                 r = kvm_setup_default_irq_routing(kvm);
3850                 if (r) {
3851                         mutex_lock(&kvm->slots_lock);
3852                         mutex_lock(&kvm->irq_lock);
3853                         kvm_ioapic_destroy(kvm);
3854                         kvm_destroy_pic(vpic);
3855                         mutex_unlock(&kvm->irq_lock);
3856                         mutex_unlock(&kvm->slots_lock);
3857                         goto create_irqchip_unlock;
3858                 }
3859                 /* Write kvm->irq_routing before kvm->arch.vpic.  */
3860                 smp_wmb();
3861                 kvm->arch.vpic = vpic;
3862         create_irqchip_unlock:
3863                 mutex_unlock(&kvm->lock);
3864                 break;
3865         }
3866         case KVM_CREATE_PIT:
3867                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3868                 goto create_pit;
3869         case KVM_CREATE_PIT2:
3870                 r = -EFAULT;
3871                 if (copy_from_user(&u.pit_config, argp,
3872                                    sizeof(struct kvm_pit_config)))
3873                         goto out;
3874         create_pit:
3875                 mutex_lock(&kvm->slots_lock);
3876                 r = -EEXIST;
3877                 if (kvm->arch.vpit)
3878                         goto create_pit_unlock;
3879                 r = -ENOMEM;
3880                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3881                 if (kvm->arch.vpit)
3882                         r = 0;
3883         create_pit_unlock:
3884                 mutex_unlock(&kvm->slots_lock);
3885                 break;
3886         case KVM_GET_IRQCHIP: {
3887                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3888                 struct kvm_irqchip *chip;
3889
3890                 chip = memdup_user(argp, sizeof(*chip));
3891                 if (IS_ERR(chip)) {
3892                         r = PTR_ERR(chip);
3893                         goto out;
3894                 }
3895
3896                 r = -ENXIO;
3897                 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3898                         goto get_irqchip_out;
3899                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3900                 if (r)
3901                         goto get_irqchip_out;
3902                 r = -EFAULT;
3903                 if (copy_to_user(argp, chip, sizeof *chip))
3904                         goto get_irqchip_out;
3905                 r = 0;
3906         get_irqchip_out:
3907                 kfree(chip);
3908                 break;
3909         }
3910         case KVM_SET_IRQCHIP: {
3911                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3912                 struct kvm_irqchip *chip;
3913
3914                 chip = memdup_user(argp, sizeof(*chip));
3915                 if (IS_ERR(chip)) {
3916                         r = PTR_ERR(chip);
3917                         goto out;
3918                 }
3919
3920                 r = -ENXIO;
3921                 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3922                         goto set_irqchip_out;
3923                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3924                 if (r)
3925                         goto set_irqchip_out;
3926                 r = 0;
3927         set_irqchip_out:
3928                 kfree(chip);
3929                 break;
3930         }
3931         case KVM_GET_PIT: {
3932                 r = -EFAULT;
3933                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3934                         goto out;
3935                 r = -ENXIO;
3936                 if (!kvm->arch.vpit)
3937                         goto out;
3938                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3939                 if (r)
3940                         goto out;
3941                 r = -EFAULT;
3942                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3943                         goto out;
3944                 r = 0;
3945                 break;
3946         }
3947         case KVM_SET_PIT: {
3948                 r = -EFAULT;
3949                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3950                         goto out;
3951                 r = -ENXIO;
3952                 if (!kvm->arch.vpit)
3953                         goto out;
3954                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3955                 break;
3956         }
3957         case KVM_GET_PIT2: {
3958                 r = -ENXIO;
3959                 if (!kvm->arch.vpit)
3960                         goto out;
3961                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3962                 if (r)
3963                         goto out;
3964                 r = -EFAULT;
3965                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3966                         goto out;
3967                 r = 0;
3968                 break;
3969         }
3970         case KVM_SET_PIT2: {
3971                 r = -EFAULT;
3972                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3973                         goto out;
3974                 r = -ENXIO;
3975                 if (!kvm->arch.vpit)
3976                         goto out;
3977                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3978                 break;
3979         }
3980         case KVM_REINJECT_CONTROL: {
3981                 struct kvm_reinject_control control;
3982                 r =  -EFAULT;
3983                 if (copy_from_user(&control, argp, sizeof(control)))
3984                         goto out;
3985                 r = kvm_vm_ioctl_reinject(kvm, &control);
3986                 break;
3987         }
3988         case KVM_SET_BOOT_CPU_ID:
3989                 r = 0;
3990                 mutex_lock(&kvm->lock);
3991                 if (atomic_read(&kvm->online_vcpus) != 0)
3992                         r = -EBUSY;
3993                 else
3994                         kvm->arch.bsp_vcpu_id = arg;
3995                 mutex_unlock(&kvm->lock);
3996                 break;
3997         case KVM_XEN_HVM_CONFIG: {
3998                 r = -EFAULT;
3999                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4000                                    sizeof(struct kvm_xen_hvm_config)))
4001                         goto out;
4002                 r = -EINVAL;
4003                 if (kvm->arch.xen_hvm_config.flags)
4004                         goto out;
4005                 r = 0;
4006                 break;
4007         }
4008         case KVM_SET_CLOCK: {
4009                 struct kvm_clock_data user_ns;
4010                 u64 now_ns;
4011                 s64 delta;
4012
4013                 r = -EFAULT;
4014                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4015                         goto out;
4016
4017                 r = -EINVAL;
4018                 if (user_ns.flags)
4019                         goto out;
4020
4021                 r = 0;
4022                 local_irq_disable();
4023                 now_ns = get_kernel_ns();
4024                 delta = user_ns.clock - now_ns;
4025                 local_irq_enable();
4026                 kvm->arch.kvmclock_offset = delta;
4027                 kvm_gen_update_masterclock(kvm);
4028                 break;
4029         }
4030         case KVM_GET_CLOCK: {
4031                 struct kvm_clock_data user_ns;
4032                 u64 now_ns;
4033
4034                 local_irq_disable();
4035                 now_ns = get_kernel_ns();
4036                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
4037                 local_irq_enable();
4038                 user_ns.flags = 0;
4039                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4040
4041                 r = -EFAULT;
4042                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4043                         goto out;
4044                 r = 0;
4045                 break;
4046         }
4047         case KVM_ENABLE_CAP: {
4048                 struct kvm_enable_cap cap;
4049
4050                 r = -EFAULT;
4051                 if (copy_from_user(&cap, argp, sizeof(cap)))
4052                         goto out;
4053                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4054                 break;
4055         }
4056         default:
4057                 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4058         }
4059 out:
4060         return r;
4061 }
4062
4063 static void kvm_init_msr_list(void)
4064 {
4065         u32 dummy[2];
4066         unsigned i, j;
4067
4068         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4069                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4070                         continue;
4071
4072                 /*
4073                  * Even MSRs that are valid in the host may not be exposed
4074                  * to the guests in some cases.
4075                  */
4076                 switch (msrs_to_save[i]) {
4077                 case MSR_IA32_BNDCFGS:
4078                         if (!kvm_x86_ops->mpx_supported())
4079                                 continue;
4080                         break;
4081                 case MSR_TSC_AUX:
4082                         if (!kvm_x86_ops->rdtscp_supported())
4083                                 continue;
4084                         break;
4085                 default:
4086                         break;
4087                 }
4088
4089                 if (j < i)
4090                         msrs_to_save[j] = msrs_to_save[i];
4091                 j++;
4092         }
4093         num_msrs_to_save = j;
4094
4095         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4096                 switch (emulated_msrs[i]) {
4097                 case MSR_IA32_SMBASE:
4098                         if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4099                                 continue;
4100                         break;
4101                 default:
4102                         break;
4103                 }
4104
4105                 if (j < i)
4106                         emulated_msrs[j] = emulated_msrs[i];
4107                 j++;
4108         }
4109         num_emulated_msrs = j;
4110 }
4111
4112 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4113                            const void *v)
4114 {
4115         int handled = 0;
4116         int n;
4117
4118         do {
4119                 n = min(len, 8);
4120                 if (!(lapic_in_kernel(vcpu) &&
4121                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4122                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4123                         break;
4124                 handled += n;
4125                 addr += n;
4126                 len -= n;
4127                 v += n;
4128         } while (len);
4129
4130         return handled;
4131 }
4132
4133 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4134 {
4135         int handled = 0;
4136         int n;
4137
4138         do {
4139                 n = min(len, 8);
4140                 if (!(lapic_in_kernel(vcpu) &&
4141                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4142                                          addr, n, v))
4143                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4144                         break;
4145                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4146                 handled += n;
4147                 addr += n;
4148                 len -= n;
4149                 v += n;
4150         } while (len);
4151
4152         return handled;
4153 }
4154
4155 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4156                         struct kvm_segment *var, int seg)
4157 {
4158         kvm_x86_ops->set_segment(vcpu, var, seg);
4159 }
4160
4161 void kvm_get_segment(struct kvm_vcpu *vcpu,
4162                      struct kvm_segment *var, int seg)
4163 {
4164         kvm_x86_ops->get_segment(vcpu, var, seg);
4165 }
4166
4167 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4168                            struct x86_exception *exception)
4169 {
4170         gpa_t t_gpa;
4171
4172         BUG_ON(!mmu_is_nested(vcpu));
4173
4174         /* NPT walks are always user-walks */
4175         access |= PFERR_USER_MASK;
4176         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4177
4178         return t_gpa;
4179 }
4180
4181 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4182                               struct x86_exception *exception)
4183 {
4184         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4185         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4186 }
4187
4188  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4189                                 struct x86_exception *exception)
4190 {
4191         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4192         access |= PFERR_FETCH_MASK;
4193         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4194 }
4195
4196 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4197                                struct x86_exception *exception)
4198 {
4199         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4200         access |= PFERR_WRITE_MASK;
4201         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4202 }
4203
4204 /* uses this to access any guest's mapped memory without checking CPL */
4205 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4206                                 struct x86_exception *exception)
4207 {
4208         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4209 }
4210
4211 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4212                                       struct kvm_vcpu *vcpu, u32 access,
4213                                       struct x86_exception *exception)
4214 {
4215         void *data = val;
4216         int r = X86EMUL_CONTINUE;
4217
4218         while (bytes) {
4219                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4220                                                             exception);
4221                 unsigned offset = addr & (PAGE_SIZE-1);
4222                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4223                 int ret;
4224
4225                 if (gpa == UNMAPPED_GVA)
4226                         return X86EMUL_PROPAGATE_FAULT;
4227                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4228                                                offset, toread);
4229                 if (ret < 0) {
4230                         r = X86EMUL_IO_NEEDED;
4231                         goto out;
4232                 }
4233
4234                 bytes -= toread;
4235                 data += toread;
4236                 addr += toread;
4237         }
4238 out:
4239         return r;
4240 }
4241
4242 /* used for instruction fetching */
4243 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4244                                 gva_t addr, void *val, unsigned int bytes,
4245                                 struct x86_exception *exception)
4246 {
4247         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4248         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4249         unsigned offset;
4250         int ret;
4251
4252         /* Inline kvm_read_guest_virt_helper for speed.  */
4253         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4254                                                     exception);
4255         if (unlikely(gpa == UNMAPPED_GVA))
4256                 return X86EMUL_PROPAGATE_FAULT;
4257
4258         offset = addr & (PAGE_SIZE-1);
4259         if (WARN_ON(offset + bytes > PAGE_SIZE))
4260                 bytes = (unsigned)PAGE_SIZE - offset;
4261         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4262                                        offset, bytes);
4263         if (unlikely(ret < 0))
4264                 return X86EMUL_IO_NEEDED;
4265
4266         return X86EMUL_CONTINUE;
4267 }
4268
4269 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4270                                gva_t addr, void *val, unsigned int bytes,
4271                                struct x86_exception *exception)
4272 {
4273         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4274         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4275
4276         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4277                                           exception);
4278 }
4279 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4280
4281 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4282                                       gva_t addr, void *val, unsigned int bytes,
4283                                       struct x86_exception *exception)
4284 {
4285         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4286         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4287 }
4288
4289 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4290                 unsigned long addr, void *val, unsigned int bytes)
4291 {
4292         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4293         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4294
4295         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4296 }
4297
4298 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4299                                        gva_t addr, void *val,
4300                                        unsigned int bytes,
4301                                        struct x86_exception *exception)
4302 {
4303         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4304         void *data = val;
4305         int r = X86EMUL_CONTINUE;
4306
4307         while (bytes) {
4308                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4309                                                              PFERR_WRITE_MASK,
4310                                                              exception);
4311                 unsigned offset = addr & (PAGE_SIZE-1);
4312                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4313                 int ret;
4314
4315                 if (gpa == UNMAPPED_GVA)
4316                         return X86EMUL_PROPAGATE_FAULT;
4317                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4318                 if (ret < 0) {
4319                         r = X86EMUL_IO_NEEDED;
4320                         goto out;
4321                 }
4322
4323                 bytes -= towrite;
4324                 data += towrite;
4325                 addr += towrite;
4326         }
4327 out:
4328         return r;
4329 }
4330 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4331
4332 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4333                                 gpa_t *gpa, struct x86_exception *exception,
4334                                 bool write)
4335 {
4336         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4337                 | (write ? PFERR_WRITE_MASK : 0);
4338
4339         /*
4340          * currently PKRU is only applied to ept enabled guest so
4341          * there is no pkey in EPT page table for L1 guest or EPT
4342          * shadow page table for L2 guest.
4343          */
4344         if (vcpu_match_mmio_gva(vcpu, gva)
4345             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4346                                  vcpu->arch.access, 0, access)) {
4347                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4348                                         (gva & (PAGE_SIZE - 1));
4349                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4350                 return 1;
4351         }
4352
4353         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4354
4355         if (*gpa == UNMAPPED_GVA)
4356                 return -1;
4357
4358         /* For APIC access vmexit */
4359         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4360                 return 1;
4361
4362         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4363                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4364                 return 1;
4365         }
4366
4367         return 0;
4368 }
4369
4370 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4371                         const void *val, int bytes)
4372 {
4373         int ret;
4374
4375         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4376         if (ret < 0)
4377                 return 0;
4378         kvm_page_track_write(vcpu, gpa, val, bytes);
4379         return 1;
4380 }
4381
4382 struct read_write_emulator_ops {
4383         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4384                                   int bytes);
4385         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4386                                   void *val, int bytes);
4387         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4388                                int bytes, void *val);
4389         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4390                                     void *val, int bytes);
4391         bool write;
4392 };
4393
4394 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4395 {
4396         if (vcpu->mmio_read_completed) {
4397                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4398                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4399                 vcpu->mmio_read_completed = 0;
4400                 return 1;
4401         }
4402
4403         return 0;
4404 }
4405
4406 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4407                         void *val, int bytes)
4408 {
4409         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4410 }
4411
4412 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4413                          void *val, int bytes)
4414 {
4415         return emulator_write_phys(vcpu, gpa, val, bytes);
4416 }
4417
4418 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4419 {
4420         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4421         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4422 }
4423
4424 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4425                           void *val, int bytes)
4426 {
4427         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4428         return X86EMUL_IO_NEEDED;
4429 }
4430
4431 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4432                            void *val, int bytes)
4433 {
4434         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4435
4436         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4437         return X86EMUL_CONTINUE;
4438 }
4439
4440 static const struct read_write_emulator_ops read_emultor = {
4441         .read_write_prepare = read_prepare,
4442         .read_write_emulate = read_emulate,
4443         .read_write_mmio = vcpu_mmio_read,
4444         .read_write_exit_mmio = read_exit_mmio,
4445 };
4446
4447 static const struct read_write_emulator_ops write_emultor = {
4448         .read_write_emulate = write_emulate,
4449         .read_write_mmio = write_mmio,
4450         .read_write_exit_mmio = write_exit_mmio,
4451         .write = true,
4452 };
4453
4454 static int emulator_read_write_onepage(unsigned long addr, void *val,
4455                                        unsigned int bytes,
4456                                        struct x86_exception *exception,
4457                                        struct kvm_vcpu *vcpu,
4458                                        const struct read_write_emulator_ops *ops)
4459 {
4460         gpa_t gpa;
4461         int handled, ret;
4462         bool write = ops->write;
4463         struct kvm_mmio_fragment *frag;
4464
4465         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4466
4467         if (ret < 0)
4468                 return X86EMUL_PROPAGATE_FAULT;
4469
4470         /* For APIC access vmexit */
4471         if (ret)
4472                 goto mmio;
4473
4474         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4475                 return X86EMUL_CONTINUE;
4476
4477 mmio:
4478         /*
4479          * Is this MMIO handled locally?
4480          */
4481         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4482         if (handled == bytes)
4483                 return X86EMUL_CONTINUE;
4484
4485         gpa += handled;
4486         bytes -= handled;
4487         val += handled;
4488
4489         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4490         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4491         frag->gpa = gpa;
4492         frag->data = val;
4493         frag->len = bytes;
4494         return X86EMUL_CONTINUE;
4495 }
4496
4497 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4498                         unsigned long addr,
4499                         void *val, unsigned int bytes,
4500                         struct x86_exception *exception,
4501                         const struct read_write_emulator_ops *ops)
4502 {
4503         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4504         gpa_t gpa;
4505         int rc;
4506
4507         if (ops->read_write_prepare &&
4508                   ops->read_write_prepare(vcpu, val, bytes))
4509                 return X86EMUL_CONTINUE;
4510
4511         vcpu->mmio_nr_fragments = 0;
4512
4513         /* Crossing a page boundary? */
4514         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4515                 int now;
4516
4517                 now = -addr & ~PAGE_MASK;
4518                 rc = emulator_read_write_onepage(addr, val, now, exception,
4519                                                  vcpu, ops);
4520
4521                 if (rc != X86EMUL_CONTINUE)
4522                         return rc;
4523                 addr += now;
4524                 if (ctxt->mode != X86EMUL_MODE_PROT64)
4525                         addr = (u32)addr;
4526                 val += now;
4527                 bytes -= now;
4528         }
4529
4530         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4531                                          vcpu, ops);
4532         if (rc != X86EMUL_CONTINUE)
4533                 return rc;
4534
4535         if (!vcpu->mmio_nr_fragments)
4536                 return rc;
4537
4538         gpa = vcpu->mmio_fragments[0].gpa;
4539
4540         vcpu->mmio_needed = 1;
4541         vcpu->mmio_cur_fragment = 0;
4542
4543         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4544         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4545         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4546         vcpu->run->mmio.phys_addr = gpa;
4547
4548         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4549 }
4550
4551 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4552                                   unsigned long addr,
4553                                   void *val,
4554                                   unsigned int bytes,
4555                                   struct x86_exception *exception)
4556 {
4557         return emulator_read_write(ctxt, addr, val, bytes,
4558                                    exception, &read_emultor);
4559 }
4560
4561 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4562                             unsigned long addr,
4563                             const void *val,
4564                             unsigned int bytes,
4565                             struct x86_exception *exception)
4566 {
4567         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4568                                    exception, &write_emultor);
4569 }
4570
4571 #define CMPXCHG_TYPE(t, ptr, old, new) \
4572         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4573
4574 #ifdef CONFIG_X86_64
4575 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4576 #else
4577 #  define CMPXCHG64(ptr, old, new) \
4578         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4579 #endif
4580
4581 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4582                                      unsigned long addr,
4583                                      const void *old,
4584                                      const void *new,
4585                                      unsigned int bytes,
4586                                      struct x86_exception *exception)
4587 {
4588         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4589         gpa_t gpa;
4590         struct page *page;
4591         char *kaddr;
4592         bool exchanged;
4593
4594         /* guests cmpxchg8b have to be emulated atomically */
4595         if (bytes > 8 || (bytes & (bytes - 1)))
4596                 goto emul_write;
4597
4598         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4599
4600         if (gpa == UNMAPPED_GVA ||
4601             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4602                 goto emul_write;
4603
4604         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4605                 goto emul_write;
4606
4607         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4608         if (is_error_page(page))
4609                 goto emul_write;
4610
4611         kaddr = kmap_atomic(page);
4612         kaddr += offset_in_page(gpa);
4613         switch (bytes) {
4614         case 1:
4615                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4616                 break;
4617         case 2:
4618                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4619                 break;
4620         case 4:
4621                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4622                 break;
4623         case 8:
4624                 exchanged = CMPXCHG64(kaddr, old, new);
4625                 break;
4626         default:
4627                 BUG();
4628         }
4629         kunmap_atomic(kaddr);
4630         kvm_release_page_dirty(page);
4631
4632         if (!exchanged)
4633                 return X86EMUL_CMPXCHG_FAILED;
4634
4635         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4636         kvm_page_track_write(vcpu, gpa, new, bytes);
4637
4638         return X86EMUL_CONTINUE;
4639
4640 emul_write:
4641         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4642
4643         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4644 }
4645
4646 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4647 {
4648         /* TODO: String I/O for in kernel device */
4649         int r;
4650
4651         if (vcpu->arch.pio.in)
4652                 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4653                                     vcpu->arch.pio.size, pd);
4654         else
4655                 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4656                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4657                                      pd);
4658         return r;
4659 }
4660
4661 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4662                                unsigned short port, void *val,
4663                                unsigned int count, bool in)
4664 {
4665         vcpu->arch.pio.port = port;
4666         vcpu->arch.pio.in = in;
4667         vcpu->arch.pio.count  = count;
4668         vcpu->arch.pio.size = size;
4669
4670         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4671                 vcpu->arch.pio.count = 0;
4672                 return 1;
4673         }
4674
4675         vcpu->run->exit_reason = KVM_EXIT_IO;
4676         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4677         vcpu->run->io.size = size;
4678         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4679         vcpu->run->io.count = count;
4680         vcpu->run->io.port = port;
4681
4682         return 0;
4683 }
4684
4685 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4686                                     int size, unsigned short port, void *val,
4687                                     unsigned int count)
4688 {
4689         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4690         int ret;
4691
4692         if (vcpu->arch.pio.count)
4693                 goto data_avail;
4694
4695         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4696         if (ret) {
4697 data_avail:
4698                 memcpy(val, vcpu->arch.pio_data, size * count);
4699                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4700                 vcpu->arch.pio.count = 0;
4701                 return 1;
4702         }
4703
4704         return 0;
4705 }
4706
4707 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4708                                      int size, unsigned short port,
4709                                      const void *val, unsigned int count)
4710 {
4711         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4712
4713         memcpy(vcpu->arch.pio_data, val, size * count);
4714         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4715         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4716 }
4717
4718 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4719 {
4720         return kvm_x86_ops->get_segment_base(vcpu, seg);
4721 }
4722
4723 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4724 {
4725         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4726 }
4727
4728 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4729 {
4730         if (!need_emulate_wbinvd(vcpu))
4731                 return X86EMUL_CONTINUE;
4732
4733         if (kvm_x86_ops->has_wbinvd_exit()) {
4734                 int cpu = get_cpu();
4735
4736                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4737                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4738                                 wbinvd_ipi, NULL, 1);
4739                 put_cpu();
4740                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4741         } else
4742                 wbinvd();
4743         return X86EMUL_CONTINUE;
4744 }
4745
4746 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4747 {
4748         kvm_x86_ops->skip_emulated_instruction(vcpu);
4749         return kvm_emulate_wbinvd_noskip(vcpu);
4750 }
4751 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4752
4753
4754
4755 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4756 {
4757         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4758 }
4759
4760 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4761                            unsigned long *dest)
4762 {
4763         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4764 }
4765
4766 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4767                            unsigned long value)
4768 {
4769
4770         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4771 }
4772
4773 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4774 {
4775         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4776 }
4777
4778 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4779 {
4780         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4781         unsigned long value;
4782
4783         switch (cr) {
4784         case 0:
4785                 value = kvm_read_cr0(vcpu);
4786                 break;
4787         case 2:
4788                 value = vcpu->arch.cr2;
4789                 break;
4790         case 3:
4791                 value = kvm_read_cr3(vcpu);
4792                 break;
4793         case 4:
4794                 value = kvm_read_cr4(vcpu);
4795                 break;
4796         case 8:
4797                 value = kvm_get_cr8(vcpu);
4798                 break;
4799         default:
4800                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4801                 return 0;
4802         }
4803
4804         return value;
4805 }
4806
4807 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4808 {
4809         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4810         int res = 0;
4811
4812         switch (cr) {
4813         case 0:
4814                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4815                 break;
4816         case 2:
4817                 vcpu->arch.cr2 = val;
4818                 break;
4819         case 3:
4820                 res = kvm_set_cr3(vcpu, val);
4821                 break;
4822         case 4:
4823                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4824                 break;
4825         case 8:
4826                 res = kvm_set_cr8(vcpu, val);
4827                 break;
4828         default:
4829                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4830                 res = -1;
4831         }
4832
4833         return res;
4834 }
4835
4836 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4837 {
4838         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4839 }
4840
4841 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4842 {
4843         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4844 }
4845
4846 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4847 {
4848         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4849 }
4850
4851 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4852 {
4853         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4854 }
4855
4856 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4857 {
4858         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4859 }
4860
4861 static unsigned long emulator_get_cached_segment_base(
4862         struct x86_emulate_ctxt *ctxt, int seg)
4863 {
4864         return get_segment_base(emul_to_vcpu(ctxt), seg);
4865 }
4866
4867 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4868                                  struct desc_struct *desc, u32 *base3,
4869                                  int seg)
4870 {
4871         struct kvm_segment var;
4872
4873         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4874         *selector = var.selector;
4875
4876         if (var.unusable) {
4877                 memset(desc, 0, sizeof(*desc));
4878                 return false;
4879         }
4880
4881         if (var.g)
4882                 var.limit >>= 12;
4883         set_desc_limit(desc, var.limit);
4884         set_desc_base(desc, (unsigned long)var.base);
4885 #ifdef CONFIG_X86_64
4886         if (base3)
4887                 *base3 = var.base >> 32;
4888 #endif
4889         desc->type = var.type;
4890         desc->s = var.s;
4891         desc->dpl = var.dpl;
4892         desc->p = var.present;
4893         desc->avl = var.avl;
4894         desc->l = var.l;
4895         desc->d = var.db;
4896         desc->g = var.g;
4897
4898         return true;
4899 }
4900
4901 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4902                                  struct desc_struct *desc, u32 base3,
4903                                  int seg)
4904 {
4905         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4906         struct kvm_segment var;
4907
4908         var.selector = selector;
4909         var.base = get_desc_base(desc);
4910 #ifdef CONFIG_X86_64
4911         var.base |= ((u64)base3) << 32;
4912 #endif
4913         var.limit = get_desc_limit(desc);
4914         if (desc->g)
4915                 var.limit = (var.limit << 12) | 0xfff;
4916         var.type = desc->type;
4917         var.dpl = desc->dpl;
4918         var.db = desc->d;
4919         var.s = desc->s;
4920         var.l = desc->l;
4921         var.g = desc->g;
4922         var.avl = desc->avl;
4923         var.present = desc->p;
4924         var.unusable = !var.present;
4925         var.padding = 0;
4926
4927         kvm_set_segment(vcpu, &var, seg);
4928         return;
4929 }
4930
4931 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4932                             u32 msr_index, u64 *pdata)
4933 {
4934         struct msr_data msr;
4935         int r;
4936
4937         msr.index = msr_index;
4938         msr.host_initiated = false;
4939         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
4940         if (r)
4941                 return r;
4942
4943         *pdata = msr.data;
4944         return 0;
4945 }
4946
4947 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4948                             u32 msr_index, u64 data)
4949 {
4950         struct msr_data msr;
4951
4952         msr.data = data;
4953         msr.index = msr_index;
4954         msr.host_initiated = false;
4955         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4956 }
4957
4958 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
4959 {
4960         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4961
4962         return vcpu->arch.smbase;
4963 }
4964
4965 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
4966 {
4967         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4968
4969         vcpu->arch.smbase = smbase;
4970 }
4971
4972 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4973                               u32 pmc)
4974 {
4975         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
4976 }
4977
4978 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4979                              u32 pmc, u64 *pdata)
4980 {
4981         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
4982 }
4983
4984 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4985 {
4986         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4987 }
4988
4989 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4990 {
4991         preempt_disable();
4992         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4993         /*
4994          * CR0.TS may reference the host fpu state, not the guest fpu state,
4995          * so it may be clear at this point.
4996          */
4997         clts();
4998 }
4999
5000 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5001 {
5002         preempt_enable();
5003 }
5004
5005 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5006                               struct x86_instruction_info *info,
5007                               enum x86_intercept_stage stage)
5008 {
5009         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5010 }
5011
5012 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5013                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5014 {
5015         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5016 }
5017
5018 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5019 {
5020         return kvm_register_read(emul_to_vcpu(ctxt), reg);
5021 }
5022
5023 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5024 {
5025         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5026 }
5027
5028 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5029 {
5030         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5031 }
5032
5033 static const struct x86_emulate_ops emulate_ops = {
5034         .read_gpr            = emulator_read_gpr,
5035         .write_gpr           = emulator_write_gpr,
5036         .read_std            = kvm_read_guest_virt_system,
5037         .write_std           = kvm_write_guest_virt_system,
5038         .read_phys           = kvm_read_guest_phys_system,
5039         .fetch               = kvm_fetch_guest_virt,
5040         .read_emulated       = emulator_read_emulated,
5041         .write_emulated      = emulator_write_emulated,
5042         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5043         .invlpg              = emulator_invlpg,
5044         .pio_in_emulated     = emulator_pio_in_emulated,
5045         .pio_out_emulated    = emulator_pio_out_emulated,
5046         .get_segment         = emulator_get_segment,
5047         .set_segment         = emulator_set_segment,
5048         .get_cached_segment_base = emulator_get_cached_segment_base,
5049         .get_gdt             = emulator_get_gdt,
5050         .get_idt             = emulator_get_idt,
5051         .set_gdt             = emulator_set_gdt,
5052         .set_idt             = emulator_set_idt,
5053         .get_cr              = emulator_get_cr,
5054         .set_cr              = emulator_set_cr,
5055         .cpl                 = emulator_get_cpl,
5056         .get_dr              = emulator_get_dr,
5057         .set_dr              = emulator_set_dr,
5058         .get_smbase          = emulator_get_smbase,
5059         .set_smbase          = emulator_set_smbase,
5060         .set_msr             = emulator_set_msr,
5061         .get_msr             = emulator_get_msr,
5062         .check_pmc           = emulator_check_pmc,
5063         .read_pmc            = emulator_read_pmc,
5064         .halt                = emulator_halt,
5065         .wbinvd              = emulator_wbinvd,
5066         .fix_hypercall       = emulator_fix_hypercall,
5067         .get_fpu             = emulator_get_fpu,
5068         .put_fpu             = emulator_put_fpu,
5069         .intercept           = emulator_intercept,
5070         .get_cpuid           = emulator_get_cpuid,
5071         .set_nmi_mask        = emulator_set_nmi_mask,
5072 };
5073
5074 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5075 {
5076         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5077         /*
5078          * an sti; sti; sequence only disable interrupts for the first
5079          * instruction. So, if the last instruction, be it emulated or
5080          * not, left the system with the INT_STI flag enabled, it
5081          * means that the last instruction is an sti. We should not
5082          * leave the flag on in this case. The same goes for mov ss
5083          */
5084         if (int_shadow & mask)
5085                 mask = 0;
5086         if (unlikely(int_shadow || mask)) {
5087                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5088                 if (!mask)
5089                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5090         }
5091 }
5092
5093 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5094 {
5095         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5096         if (ctxt->exception.vector == PF_VECTOR)
5097                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5098
5099         if (ctxt->exception.error_code_valid)
5100                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5101                                       ctxt->exception.error_code);
5102         else
5103                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5104         return false;
5105 }
5106
5107 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5108 {
5109         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5110         int cs_db, cs_l;
5111
5112         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5113
5114         ctxt->eflags = kvm_get_rflags(vcpu);
5115         ctxt->eip = kvm_rip_read(vcpu);
5116         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5117                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5118                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5119                      cs_db                              ? X86EMUL_MODE_PROT32 :
5120                                                           X86EMUL_MODE_PROT16;
5121         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5122         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5123         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5124         ctxt->emul_flags = vcpu->arch.hflags;
5125
5126         init_decode_cache(ctxt);
5127         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5128 }
5129
5130 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5131 {
5132         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5133         int ret;
5134
5135         init_emulate_ctxt(vcpu);
5136
5137         ctxt->op_bytes = 2;
5138         ctxt->ad_bytes = 2;
5139         ctxt->_eip = ctxt->eip + inc_eip;
5140         ret = emulate_int_real(ctxt, irq);
5141
5142         if (ret != X86EMUL_CONTINUE)
5143                 return EMULATE_FAIL;
5144
5145         ctxt->eip = ctxt->_eip;
5146         kvm_rip_write(vcpu, ctxt->eip);
5147         kvm_set_rflags(vcpu, ctxt->eflags);
5148
5149         if (irq == NMI_VECTOR)
5150                 vcpu->arch.nmi_pending = 0;
5151         else
5152                 vcpu->arch.interrupt.pending = false;
5153
5154         return EMULATE_DONE;
5155 }
5156 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5157
5158 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5159 {
5160         int r = EMULATE_DONE;
5161
5162         ++vcpu->stat.insn_emulation_fail;
5163         trace_kvm_emulate_insn_failed(vcpu);
5164         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5165                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5166                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5167                 vcpu->run->internal.ndata = 0;
5168                 r = EMULATE_FAIL;
5169         }
5170         kvm_queue_exception(vcpu, UD_VECTOR);
5171
5172         return r;
5173 }
5174
5175 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5176                                   bool write_fault_to_shadow_pgtable,
5177                                   int emulation_type)
5178 {
5179         gpa_t gpa = cr2;
5180         kvm_pfn_t pfn;
5181
5182         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5183                 return false;
5184
5185         if (!vcpu->arch.mmu.direct_map) {
5186                 /*
5187                  * Write permission should be allowed since only
5188                  * write access need to be emulated.
5189                  */
5190                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5191
5192                 /*
5193                  * If the mapping is invalid in guest, let cpu retry
5194                  * it to generate fault.
5195                  */
5196                 if (gpa == UNMAPPED_GVA)
5197                         return true;
5198         }
5199
5200         /*
5201          * Do not retry the unhandleable instruction if it faults on the
5202          * readonly host memory, otherwise it will goto a infinite loop:
5203          * retry instruction -> write #PF -> emulation fail -> retry
5204          * instruction -> ...
5205          */
5206         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5207
5208         /*
5209          * If the instruction failed on the error pfn, it can not be fixed,
5210          * report the error to userspace.
5211          */
5212         if (is_error_noslot_pfn(pfn))
5213                 return false;
5214
5215         kvm_release_pfn_clean(pfn);
5216
5217         /* The instructions are well-emulated on direct mmu. */
5218         if (vcpu->arch.mmu.direct_map) {
5219                 unsigned int indirect_shadow_pages;
5220
5221                 spin_lock(&vcpu->kvm->mmu_lock);
5222                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5223                 spin_unlock(&vcpu->kvm->mmu_lock);
5224
5225                 if (indirect_shadow_pages)
5226                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5227
5228                 return true;
5229         }
5230
5231         /*
5232          * if emulation was due to access to shadowed page table
5233          * and it failed try to unshadow page and re-enter the
5234          * guest to let CPU execute the instruction.
5235          */
5236         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5237
5238         /*
5239          * If the access faults on its page table, it can not
5240          * be fixed by unprotecting shadow page and it should
5241          * be reported to userspace.
5242          */
5243         return !write_fault_to_shadow_pgtable;
5244 }
5245
5246 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5247                               unsigned long cr2,  int emulation_type)
5248 {
5249         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5250         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5251
5252         last_retry_eip = vcpu->arch.last_retry_eip;
5253         last_retry_addr = vcpu->arch.last_retry_addr;
5254
5255         /*
5256          * If the emulation is caused by #PF and it is non-page_table
5257          * writing instruction, it means the VM-EXIT is caused by shadow
5258          * page protected, we can zap the shadow page and retry this
5259          * instruction directly.
5260          *
5261          * Note: if the guest uses a non-page-table modifying instruction
5262          * on the PDE that points to the instruction, then we will unmap
5263          * the instruction and go to an infinite loop. So, we cache the
5264          * last retried eip and the last fault address, if we meet the eip
5265          * and the address again, we can break out of the potential infinite
5266          * loop.
5267          */
5268         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5269
5270         if (!(emulation_type & EMULTYPE_RETRY))
5271                 return false;
5272
5273         if (x86_page_table_writing_insn(ctxt))
5274                 return false;
5275
5276         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5277                 return false;
5278
5279         vcpu->arch.last_retry_eip = ctxt->eip;
5280         vcpu->arch.last_retry_addr = cr2;
5281
5282         if (!vcpu->arch.mmu.direct_map)
5283                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5284
5285         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5286
5287         return true;
5288 }
5289
5290 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5291 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5292
5293 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5294 {
5295         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5296                 /* This is a good place to trace that we are exiting SMM.  */
5297                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5298
5299                 if (unlikely(vcpu->arch.smi_pending)) {
5300                         kvm_make_request(KVM_REQ_SMI, vcpu);
5301                         vcpu->arch.smi_pending = 0;
5302                 } else {
5303                         /* Process a latched INIT, if any.  */
5304                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5305                 }
5306         }
5307
5308         kvm_mmu_reset_context(vcpu);
5309 }
5310
5311 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5312 {
5313         unsigned changed = vcpu->arch.hflags ^ emul_flags;
5314
5315         vcpu->arch.hflags = emul_flags;
5316
5317         if (changed & HF_SMM_MASK)
5318                 kvm_smm_changed(vcpu);
5319 }
5320
5321 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5322                                 unsigned long *db)
5323 {
5324         u32 dr6 = 0;
5325         int i;
5326         u32 enable, rwlen;
5327
5328         enable = dr7;
5329         rwlen = dr7 >> 16;
5330         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5331                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5332                         dr6 |= (1 << i);
5333         return dr6;
5334 }
5335
5336 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5337 {
5338         struct kvm_run *kvm_run = vcpu->run;
5339
5340         /*
5341          * rflags is the old, "raw" value of the flags.  The new value has
5342          * not been saved yet.
5343          *
5344          * This is correct even for TF set by the guest, because "the
5345          * processor will not generate this exception after the instruction
5346          * that sets the TF flag".
5347          */
5348         if (unlikely(rflags & X86_EFLAGS_TF)) {
5349                 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5350                         kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5351                                                   DR6_RTM;
5352                         kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5353                         kvm_run->debug.arch.exception = DB_VECTOR;
5354                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5355                         *r = EMULATE_USER_EXIT;
5356                 } else {
5357                         vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5358                         /*
5359                          * "Certain debug exceptions may clear bit 0-3.  The
5360                          * remaining contents of the DR6 register are never
5361                          * cleared by the processor".
5362                          */
5363                         vcpu->arch.dr6 &= ~15;
5364                         vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5365                         kvm_queue_exception(vcpu, DB_VECTOR);
5366                 }
5367         }
5368 }
5369
5370 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5371 {
5372         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5373             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5374                 struct kvm_run *kvm_run = vcpu->run;
5375                 unsigned long eip = kvm_get_linear_rip(vcpu);
5376                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5377                                            vcpu->arch.guest_debug_dr7,
5378                                            vcpu->arch.eff_db);
5379
5380                 if (dr6 != 0) {
5381                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5382                         kvm_run->debug.arch.pc = eip;
5383                         kvm_run->debug.arch.exception = DB_VECTOR;
5384                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5385                         *r = EMULATE_USER_EXIT;
5386                         return true;
5387                 }
5388         }
5389
5390         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5391             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5392                 unsigned long eip = kvm_get_linear_rip(vcpu);
5393                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5394                                            vcpu->arch.dr7,
5395                                            vcpu->arch.db);
5396
5397                 if (dr6 != 0) {
5398                         vcpu->arch.dr6 &= ~15;
5399                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5400                         kvm_queue_exception(vcpu, DB_VECTOR);
5401                         *r = EMULATE_DONE;
5402                         return true;
5403                 }
5404         }
5405
5406         return false;
5407 }
5408
5409 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5410                             unsigned long cr2,
5411                             int emulation_type,
5412                             void *insn,
5413                             int insn_len)
5414 {
5415         int r;
5416         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5417         bool writeback = true;
5418         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5419
5420         /*
5421          * Clear write_fault_to_shadow_pgtable here to ensure it is
5422          * never reused.
5423          */
5424         vcpu->arch.write_fault_to_shadow_pgtable = false;
5425         kvm_clear_exception_queue(vcpu);
5426
5427         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5428                 init_emulate_ctxt(vcpu);
5429
5430                 /*
5431                  * We will reenter on the same instruction since
5432                  * we do not set complete_userspace_io.  This does not
5433                  * handle watchpoints yet, those would be handled in
5434                  * the emulate_ops.
5435                  */
5436                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5437                         return r;
5438
5439                 ctxt->interruptibility = 0;
5440                 ctxt->have_exception = false;
5441                 ctxt->exception.vector = -1;
5442                 ctxt->perm_ok = false;
5443
5444                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5445
5446                 r = x86_decode_insn(ctxt, insn, insn_len);
5447
5448                 trace_kvm_emulate_insn_start(vcpu);
5449                 ++vcpu->stat.insn_emulation;
5450                 if (r != EMULATION_OK)  {
5451                         if (emulation_type & EMULTYPE_TRAP_UD)
5452                                 return EMULATE_FAIL;
5453                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5454                                                 emulation_type))
5455                                 return EMULATE_DONE;
5456                         if (emulation_type & EMULTYPE_SKIP)
5457                                 return EMULATE_FAIL;
5458                         return handle_emulation_failure(vcpu);
5459                 }
5460         }
5461
5462         if (emulation_type & EMULTYPE_SKIP) {
5463                 kvm_rip_write(vcpu, ctxt->_eip);
5464                 if (ctxt->eflags & X86_EFLAGS_RF)
5465                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5466                 return EMULATE_DONE;
5467         }
5468
5469         if (retry_instruction(ctxt, cr2, emulation_type))
5470                 return EMULATE_DONE;
5471
5472         /* this is needed for vmware backdoor interface to work since it
5473            changes registers values  during IO operation */
5474         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5475                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5476                 emulator_invalidate_register_cache(ctxt);
5477         }
5478
5479 restart:
5480         r = x86_emulate_insn(ctxt);
5481
5482         if (r == EMULATION_INTERCEPTED)
5483                 return EMULATE_DONE;
5484
5485         if (r == EMULATION_FAILED) {
5486                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5487                                         emulation_type))
5488                         return EMULATE_DONE;
5489
5490                 return handle_emulation_failure(vcpu);
5491         }
5492
5493         if (ctxt->have_exception) {
5494                 r = EMULATE_DONE;
5495                 if (inject_emulated_exception(vcpu))
5496                         return r;
5497         } else if (vcpu->arch.pio.count) {
5498                 if (!vcpu->arch.pio.in) {
5499                         /* FIXME: return into emulator if single-stepping.  */
5500                         vcpu->arch.pio.count = 0;
5501                 } else {
5502                         writeback = false;
5503                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5504                 }
5505                 r = EMULATE_USER_EXIT;
5506         } else if (vcpu->mmio_needed) {
5507                 if (!vcpu->mmio_is_write)
5508                         writeback = false;
5509                 r = EMULATE_USER_EXIT;
5510                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5511         } else if (r == EMULATION_RESTART)
5512                 goto restart;
5513         else
5514                 r = EMULATE_DONE;
5515
5516         if (writeback) {
5517                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5518                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5519                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5520                 if (vcpu->arch.hflags != ctxt->emul_flags)
5521                         kvm_set_hflags(vcpu, ctxt->emul_flags);
5522                 kvm_rip_write(vcpu, ctxt->eip);
5523                 if (r == EMULATE_DONE)
5524                         kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5525                 if (!ctxt->have_exception ||
5526                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5527                         __kvm_set_rflags(vcpu, ctxt->eflags);
5528
5529                 /*
5530                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5531                  * do nothing, and it will be requested again as soon as
5532                  * the shadow expires.  But we still need to check here,
5533                  * because POPF has no interrupt shadow.
5534                  */
5535                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5536                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5537         } else
5538                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5539
5540         return r;
5541 }
5542 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5543
5544 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5545 {
5546         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5547         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5548                                             size, port, &val, 1);
5549         /* do not return to emulator after return from userspace */
5550         vcpu->arch.pio.count = 0;
5551         return ret;
5552 }
5553 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5554
5555 static int kvmclock_cpu_down_prep(unsigned int cpu)
5556 {
5557         __this_cpu_write(cpu_tsc_khz, 0);
5558         return 0;
5559 }
5560
5561 static void tsc_khz_changed(void *data)
5562 {
5563         struct cpufreq_freqs *freq = data;
5564         unsigned long khz = 0;
5565
5566         if (data)
5567                 khz = freq->new;
5568         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5569                 khz = cpufreq_quick_get(raw_smp_processor_id());
5570         if (!khz)
5571                 khz = tsc_khz;
5572         __this_cpu_write(cpu_tsc_khz, khz);
5573 }
5574
5575 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5576                                      void *data)
5577 {
5578         struct cpufreq_freqs *freq = data;
5579         struct kvm *kvm;
5580         struct kvm_vcpu *vcpu;
5581         int i, send_ipi = 0;
5582
5583         /*
5584          * We allow guests to temporarily run on slowing clocks,
5585          * provided we notify them after, or to run on accelerating
5586          * clocks, provided we notify them before.  Thus time never
5587          * goes backwards.
5588          *
5589          * However, we have a problem.  We can't atomically update
5590          * the frequency of a given CPU from this function; it is
5591          * merely a notifier, which can be called from any CPU.
5592          * Changing the TSC frequency at arbitrary points in time
5593          * requires a recomputation of local variables related to
5594          * the TSC for each VCPU.  We must flag these local variables
5595          * to be updated and be sure the update takes place with the
5596          * new frequency before any guests proceed.
5597          *
5598          * Unfortunately, the combination of hotplug CPU and frequency
5599          * change creates an intractable locking scenario; the order
5600          * of when these callouts happen is undefined with respect to
5601          * CPU hotplug, and they can race with each other.  As such,
5602          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5603          * undefined; you can actually have a CPU frequency change take
5604          * place in between the computation of X and the setting of the
5605          * variable.  To protect against this problem, all updates of
5606          * the per_cpu tsc_khz variable are done in an interrupt
5607          * protected IPI, and all callers wishing to update the value
5608          * must wait for a synchronous IPI to complete (which is trivial
5609          * if the caller is on the CPU already).  This establishes the
5610          * necessary total order on variable updates.
5611          *
5612          * Note that because a guest time update may take place
5613          * anytime after the setting of the VCPU's request bit, the
5614          * correct TSC value must be set before the request.  However,
5615          * to ensure the update actually makes it to any guest which
5616          * starts running in hardware virtualization between the set
5617          * and the acquisition of the spinlock, we must also ping the
5618          * CPU after setting the request bit.
5619          *
5620          */
5621
5622         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5623                 return 0;
5624         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5625                 return 0;
5626
5627         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5628
5629         spin_lock(&kvm_lock);
5630         list_for_each_entry(kvm, &vm_list, vm_list) {
5631                 kvm_for_each_vcpu(i, vcpu, kvm) {
5632                         if (vcpu->cpu != freq->cpu)
5633                                 continue;
5634                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5635                         if (vcpu->cpu != smp_processor_id())
5636                                 send_ipi = 1;
5637                 }
5638         }
5639         spin_unlock(&kvm_lock);
5640
5641         if (freq->old < freq->new && send_ipi) {
5642                 /*
5643                  * We upscale the frequency.  Must make the guest
5644                  * doesn't see old kvmclock values while running with
5645                  * the new frequency, otherwise we risk the guest sees
5646                  * time go backwards.
5647                  *
5648                  * In case we update the frequency for another cpu
5649                  * (which might be in guest context) send an interrupt
5650                  * to kick the cpu out of guest context.  Next time
5651                  * guest context is entered kvmclock will be updated,
5652                  * so the guest will not see stale values.
5653                  */
5654                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5655         }
5656         return 0;
5657 }
5658
5659 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5660         .notifier_call  = kvmclock_cpufreq_notifier
5661 };
5662
5663 static int kvmclock_cpu_online(unsigned int cpu)
5664 {
5665         tsc_khz_changed(NULL);
5666         return 0;
5667 }
5668
5669 static void kvm_timer_init(void)
5670 {
5671         int cpu;
5672
5673         max_tsc_khz = tsc_khz;
5674
5675         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5676 #ifdef CONFIG_CPU_FREQ
5677                 struct cpufreq_policy policy;
5678                 memset(&policy, 0, sizeof(policy));
5679                 cpu = get_cpu();
5680                 cpufreq_get_policy(&policy, cpu);
5681                 if (policy.cpuinfo.max_freq)
5682                         max_tsc_khz = policy.cpuinfo.max_freq;
5683                 put_cpu();
5684 #endif
5685                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5686                                           CPUFREQ_TRANSITION_NOTIFIER);
5687         }
5688         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5689
5690         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "AP_X86_KVM_CLK_ONLINE",
5691                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
5692 }
5693
5694 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5695
5696 int kvm_is_in_guest(void)
5697 {
5698         return __this_cpu_read(current_vcpu) != NULL;
5699 }
5700
5701 static int kvm_is_user_mode(void)
5702 {
5703         int user_mode = 3;
5704
5705         if (__this_cpu_read(current_vcpu))
5706                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5707
5708         return user_mode != 0;
5709 }
5710
5711 static unsigned long kvm_get_guest_ip(void)
5712 {
5713         unsigned long ip = 0;
5714
5715         if (__this_cpu_read(current_vcpu))
5716                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5717
5718         return ip;
5719 }
5720
5721 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5722         .is_in_guest            = kvm_is_in_guest,
5723         .is_user_mode           = kvm_is_user_mode,
5724         .get_guest_ip           = kvm_get_guest_ip,
5725 };
5726
5727 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5728 {
5729         __this_cpu_write(current_vcpu, vcpu);
5730 }
5731 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5732
5733 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5734 {
5735         __this_cpu_write(current_vcpu, NULL);
5736 }
5737 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5738
5739 static void kvm_set_mmio_spte_mask(void)
5740 {
5741         u64 mask;
5742         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5743
5744         /*
5745          * Set the reserved bits and the present bit of an paging-structure
5746          * entry to generate page fault with PFER.RSV = 1.
5747          */
5748          /* Mask the reserved physical address bits. */
5749         mask = rsvd_bits(maxphyaddr, 51);
5750
5751         /* Bit 62 is always reserved for 32bit host. */
5752         mask |= 0x3ull << 62;
5753
5754         /* Set the present bit. */
5755         mask |= 1ull;
5756
5757 #ifdef CONFIG_X86_64
5758         /*
5759          * If reserved bit is not supported, clear the present bit to disable
5760          * mmio page fault.
5761          */
5762         if (maxphyaddr == 52)
5763                 mask &= ~1ull;
5764 #endif
5765
5766         kvm_mmu_set_mmio_spte_mask(mask);
5767 }
5768
5769 #ifdef CONFIG_X86_64
5770 static void pvclock_gtod_update_fn(struct work_struct *work)
5771 {
5772         struct kvm *kvm;
5773
5774         struct kvm_vcpu *vcpu;
5775         int i;
5776
5777         spin_lock(&kvm_lock);
5778         list_for_each_entry(kvm, &vm_list, vm_list)
5779                 kvm_for_each_vcpu(i, vcpu, kvm)
5780                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5781         atomic_set(&kvm_guest_has_master_clock, 0);
5782         spin_unlock(&kvm_lock);
5783 }
5784
5785 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5786
5787 /*
5788  * Notification about pvclock gtod data update.
5789  */
5790 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5791                                void *priv)
5792 {
5793         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5794         struct timekeeper *tk = priv;
5795
5796         update_pvclock_gtod(tk);
5797
5798         /* disable master clock if host does not trust, or does not
5799          * use, TSC clocksource
5800          */
5801         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5802             atomic_read(&kvm_guest_has_master_clock) != 0)
5803                 queue_work(system_long_wq, &pvclock_gtod_work);
5804
5805         return 0;
5806 }
5807
5808 static struct notifier_block pvclock_gtod_notifier = {
5809         .notifier_call = pvclock_gtod_notify,
5810 };
5811 #endif
5812
5813 int kvm_arch_init(void *opaque)
5814 {
5815         int r;
5816         struct kvm_x86_ops *ops = opaque;
5817
5818         if (kvm_x86_ops) {
5819                 printk(KERN_ERR "kvm: already loaded the other module\n");
5820                 r = -EEXIST;
5821                 goto out;
5822         }
5823
5824         if (!ops->cpu_has_kvm_support()) {
5825                 printk(KERN_ERR "kvm: no hardware support\n");
5826                 r = -EOPNOTSUPP;
5827                 goto out;
5828         }
5829         if (ops->disabled_by_bios()) {
5830                 printk(KERN_ERR "kvm: disabled by bios\n");
5831                 r = -EOPNOTSUPP;
5832                 goto out;
5833         }
5834
5835         r = -ENOMEM;
5836         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5837         if (!shared_msrs) {
5838                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5839                 goto out;
5840         }
5841
5842         r = kvm_mmu_module_init();
5843         if (r)
5844                 goto out_free_percpu;
5845
5846         kvm_set_mmio_spte_mask();
5847
5848         kvm_x86_ops = ops;
5849
5850         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5851                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5852
5853         kvm_timer_init();
5854
5855         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5856
5857         if (boot_cpu_has(X86_FEATURE_XSAVE))
5858                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5859
5860         kvm_lapic_init();
5861 #ifdef CONFIG_X86_64
5862         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5863 #endif
5864
5865         return 0;
5866
5867 out_free_percpu:
5868         free_percpu(shared_msrs);
5869 out:
5870         return r;
5871 }
5872
5873 void kvm_arch_exit(void)
5874 {
5875         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5876
5877         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5878                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5879                                             CPUFREQ_TRANSITION_NOTIFIER);
5880         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
5881 #ifdef CONFIG_X86_64
5882         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5883 #endif
5884         kvm_x86_ops = NULL;
5885         kvm_mmu_module_exit();
5886         free_percpu(shared_msrs);
5887 }
5888
5889 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5890 {
5891         ++vcpu->stat.halt_exits;
5892         if (lapic_in_kernel(vcpu)) {
5893                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5894                 return 1;
5895         } else {
5896                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5897                 return 0;
5898         }
5899 }
5900 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5901
5902 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5903 {
5904         kvm_x86_ops->skip_emulated_instruction(vcpu);
5905         return kvm_vcpu_halt(vcpu);
5906 }
5907 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5908
5909 /*
5910  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5911  *
5912  * @apicid - apicid of vcpu to be kicked.
5913  */
5914 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5915 {
5916         struct kvm_lapic_irq lapic_irq;
5917
5918         lapic_irq.shorthand = 0;
5919         lapic_irq.dest_mode = 0;
5920         lapic_irq.dest_id = apicid;
5921         lapic_irq.msi_redir_hint = false;
5922
5923         lapic_irq.delivery_mode = APIC_DM_REMRD;
5924         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5925 }
5926
5927 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
5928 {
5929         vcpu->arch.apicv_active = false;
5930         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
5931 }
5932
5933 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5934 {
5935         unsigned long nr, a0, a1, a2, a3, ret;
5936         int op_64_bit, r = 1;
5937
5938         kvm_x86_ops->skip_emulated_instruction(vcpu);
5939
5940         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5941                 return kvm_hv_hypercall(vcpu);
5942
5943         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5944         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5945         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5946         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5947         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5948
5949         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5950
5951         op_64_bit = is_64_bit_mode(vcpu);
5952         if (!op_64_bit) {
5953                 nr &= 0xFFFFFFFF;
5954                 a0 &= 0xFFFFFFFF;
5955                 a1 &= 0xFFFFFFFF;
5956                 a2 &= 0xFFFFFFFF;
5957                 a3 &= 0xFFFFFFFF;
5958         }
5959
5960         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5961                 ret = -KVM_EPERM;
5962                 goto out;
5963         }
5964
5965         switch (nr) {
5966         case KVM_HC_VAPIC_POLL_IRQ:
5967                 ret = 0;
5968                 break;
5969         case KVM_HC_KICK_CPU:
5970                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5971                 ret = 0;
5972                 break;
5973         default:
5974                 ret = -KVM_ENOSYS;
5975                 break;
5976         }
5977 out:
5978         if (!op_64_bit)
5979                 ret = (u32)ret;
5980         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5981         ++vcpu->stat.hypercalls;
5982         return r;
5983 }
5984 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5985
5986 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5987 {
5988         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5989         char instruction[3];
5990         unsigned long rip = kvm_rip_read(vcpu);
5991
5992         kvm_x86_ops->patch_hypercall(vcpu, instruction);
5993
5994         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5995 }
5996
5997 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5998 {
5999         return vcpu->run->request_interrupt_window &&
6000                 likely(!pic_in_kernel(vcpu->kvm));
6001 }
6002
6003 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6004 {
6005         struct kvm_run *kvm_run = vcpu->run;
6006
6007         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6008         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6009         kvm_run->cr8 = kvm_get_cr8(vcpu);
6010         kvm_run->apic_base = kvm_get_apic_base(vcpu);
6011         kvm_run->ready_for_interrupt_injection =
6012                 pic_in_kernel(vcpu->kvm) ||
6013                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6014 }
6015
6016 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6017 {
6018         int max_irr, tpr;
6019
6020         if (!kvm_x86_ops->update_cr8_intercept)
6021                 return;
6022
6023         if (!lapic_in_kernel(vcpu))
6024                 return;
6025
6026         if (vcpu->arch.apicv_active)
6027                 return;
6028
6029         if (!vcpu->arch.apic->vapic_addr)
6030                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6031         else
6032                 max_irr = -1;
6033
6034         if (max_irr != -1)
6035                 max_irr >>= 4;
6036
6037         tpr = kvm_lapic_get_cr8(vcpu);
6038
6039         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6040 }
6041
6042 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6043 {
6044         int r;
6045
6046         /* try to reinject previous events if any */
6047         if (vcpu->arch.exception.pending) {
6048                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6049                                         vcpu->arch.exception.has_error_code,
6050                                         vcpu->arch.exception.error_code);
6051
6052                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6053                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6054                                              X86_EFLAGS_RF);
6055
6056                 if (vcpu->arch.exception.nr == DB_VECTOR &&
6057                     (vcpu->arch.dr7 & DR7_GD)) {
6058                         vcpu->arch.dr7 &= ~DR7_GD;
6059                         kvm_update_dr7(vcpu);
6060                 }
6061
6062                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6063                                           vcpu->arch.exception.has_error_code,
6064                                           vcpu->arch.exception.error_code,
6065                                           vcpu->arch.exception.reinject);
6066                 return 0;
6067         }
6068
6069         if (vcpu->arch.nmi_injected) {
6070                 kvm_x86_ops->set_nmi(vcpu);
6071                 return 0;
6072         }
6073
6074         if (vcpu->arch.interrupt.pending) {
6075                 kvm_x86_ops->set_irq(vcpu);
6076                 return 0;
6077         }
6078
6079         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6080                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6081                 if (r != 0)
6082                         return r;
6083         }
6084
6085         /* try to inject new event if pending */
6086         if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6087                 --vcpu->arch.nmi_pending;
6088                 vcpu->arch.nmi_injected = true;
6089                 kvm_x86_ops->set_nmi(vcpu);
6090         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6091                 /*
6092                  * Because interrupts can be injected asynchronously, we are
6093                  * calling check_nested_events again here to avoid a race condition.
6094                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6095                  * proposal and current concerns.  Perhaps we should be setting
6096                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6097                  */
6098                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6099                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6100                         if (r != 0)
6101                                 return r;
6102                 }
6103                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6104                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6105                                             false);
6106                         kvm_x86_ops->set_irq(vcpu);
6107                 }
6108         }
6109         return 0;
6110 }
6111
6112 static void process_nmi(struct kvm_vcpu *vcpu)
6113 {
6114         unsigned limit = 2;
6115
6116         /*
6117          * x86 is limited to one NMI running, and one NMI pending after it.
6118          * If an NMI is already in progress, limit further NMIs to just one.
6119          * Otherwise, allow two (and we'll inject the first one immediately).
6120          */
6121         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6122                 limit = 1;
6123
6124         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6125         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6126         kvm_make_request(KVM_REQ_EVENT, vcpu);
6127 }
6128
6129 #define put_smstate(type, buf, offset, val)                       \
6130         *(type *)((buf) + (offset) - 0x7e00) = val
6131
6132 static u32 process_smi_get_segment_flags(struct kvm_segment *seg)
6133 {
6134         u32 flags = 0;
6135         flags |= seg->g       << 23;
6136         flags |= seg->db      << 22;
6137         flags |= seg->l       << 21;
6138         flags |= seg->avl     << 20;
6139         flags |= seg->present << 15;
6140         flags |= seg->dpl     << 13;
6141         flags |= seg->s       << 12;
6142         flags |= seg->type    << 8;
6143         return flags;
6144 }
6145
6146 static void process_smi_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6147 {
6148         struct kvm_segment seg;
6149         int offset;
6150
6151         kvm_get_segment(vcpu, &seg, n);
6152         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6153
6154         if (n < 3)
6155                 offset = 0x7f84 + n * 12;
6156         else
6157                 offset = 0x7f2c + (n - 3) * 12;
6158
6159         put_smstate(u32, buf, offset + 8, seg.base);
6160         put_smstate(u32, buf, offset + 4, seg.limit);
6161         put_smstate(u32, buf, offset, process_smi_get_segment_flags(&seg));
6162 }
6163
6164 #ifdef CONFIG_X86_64
6165 static void process_smi_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6166 {
6167         struct kvm_segment seg;
6168         int offset;
6169         u16 flags;
6170
6171         kvm_get_segment(vcpu, &seg, n);
6172         offset = 0x7e00 + n * 16;
6173
6174         flags = process_smi_get_segment_flags(&seg) >> 8;
6175         put_smstate(u16, buf, offset, seg.selector);
6176         put_smstate(u16, buf, offset + 2, flags);
6177         put_smstate(u32, buf, offset + 4, seg.limit);
6178         put_smstate(u64, buf, offset + 8, seg.base);
6179 }
6180 #endif
6181
6182 static void process_smi_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6183 {
6184         struct desc_ptr dt;
6185         struct kvm_segment seg;
6186         unsigned long val;
6187         int i;
6188
6189         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6190         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6191         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6192         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6193
6194         for (i = 0; i < 8; i++)
6195                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6196
6197         kvm_get_dr(vcpu, 6, &val);
6198         put_smstate(u32, buf, 0x7fcc, (u32)val);
6199         kvm_get_dr(vcpu, 7, &val);
6200         put_smstate(u32, buf, 0x7fc8, (u32)val);
6201
6202         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6203         put_smstate(u32, buf, 0x7fc4, seg.selector);
6204         put_smstate(u32, buf, 0x7f64, seg.base);
6205         put_smstate(u32, buf, 0x7f60, seg.limit);
6206         put_smstate(u32, buf, 0x7f5c, process_smi_get_segment_flags(&seg));
6207
6208         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6209         put_smstate(u32, buf, 0x7fc0, seg.selector);
6210         put_smstate(u32, buf, 0x7f80, seg.base);
6211         put_smstate(u32, buf, 0x7f7c, seg.limit);
6212         put_smstate(u32, buf, 0x7f78, process_smi_get_segment_flags(&seg));
6213
6214         kvm_x86_ops->get_gdt(vcpu, &dt);
6215         put_smstate(u32, buf, 0x7f74, dt.address);
6216         put_smstate(u32, buf, 0x7f70, dt.size);
6217
6218         kvm_x86_ops->get_idt(vcpu, &dt);
6219         put_smstate(u32, buf, 0x7f58, dt.address);
6220         put_smstate(u32, buf, 0x7f54, dt.size);
6221
6222         for (i = 0; i < 6; i++)
6223                 process_smi_save_seg_32(vcpu, buf, i);
6224
6225         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6226
6227         /* revision id */
6228         put_smstate(u32, buf, 0x7efc, 0x00020000);
6229         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6230 }
6231
6232 static void process_smi_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6233 {
6234 #ifdef CONFIG_X86_64
6235         struct desc_ptr dt;
6236         struct kvm_segment seg;
6237         unsigned long val;
6238         int i;
6239
6240         for (i = 0; i < 16; i++)
6241                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6242
6243         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6244         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6245
6246         kvm_get_dr(vcpu, 6, &val);
6247         put_smstate(u64, buf, 0x7f68, val);
6248         kvm_get_dr(vcpu, 7, &val);
6249         put_smstate(u64, buf, 0x7f60, val);
6250
6251         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6252         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6253         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6254
6255         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6256
6257         /* revision id */
6258         put_smstate(u32, buf, 0x7efc, 0x00020064);
6259
6260         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6261
6262         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6263         put_smstate(u16, buf, 0x7e90, seg.selector);
6264         put_smstate(u16, buf, 0x7e92, process_smi_get_segment_flags(&seg) >> 8);
6265         put_smstate(u32, buf, 0x7e94, seg.limit);
6266         put_smstate(u64, buf, 0x7e98, seg.base);
6267
6268         kvm_x86_ops->get_idt(vcpu, &dt);
6269         put_smstate(u32, buf, 0x7e84, dt.size);
6270         put_smstate(u64, buf, 0x7e88, dt.address);
6271
6272         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6273         put_smstate(u16, buf, 0x7e70, seg.selector);
6274         put_smstate(u16, buf, 0x7e72, process_smi_get_segment_flags(&seg) >> 8);
6275         put_smstate(u32, buf, 0x7e74, seg.limit);
6276         put_smstate(u64, buf, 0x7e78, seg.base);
6277
6278         kvm_x86_ops->get_gdt(vcpu, &dt);
6279         put_smstate(u32, buf, 0x7e64, dt.size);
6280         put_smstate(u64, buf, 0x7e68, dt.address);
6281
6282         for (i = 0; i < 6; i++)
6283                 process_smi_save_seg_64(vcpu, buf, i);
6284 #else
6285         WARN_ON_ONCE(1);
6286 #endif
6287 }
6288
6289 static void process_smi(struct kvm_vcpu *vcpu)
6290 {
6291         struct kvm_segment cs, ds;
6292         struct desc_ptr dt;
6293         char buf[512];
6294         u32 cr0;
6295
6296         if (is_smm(vcpu)) {
6297                 vcpu->arch.smi_pending = true;
6298                 return;
6299         }
6300
6301         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6302         vcpu->arch.hflags |= HF_SMM_MASK;
6303         memset(buf, 0, 512);
6304         if (guest_cpuid_has_longmode(vcpu))
6305                 process_smi_save_state_64(vcpu, buf);
6306         else
6307                 process_smi_save_state_32(vcpu, buf);
6308
6309         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6310
6311         if (kvm_x86_ops->get_nmi_mask(vcpu))
6312                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6313         else
6314                 kvm_x86_ops->set_nmi_mask(vcpu, true);
6315
6316         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6317         kvm_rip_write(vcpu, 0x8000);
6318
6319         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6320         kvm_x86_ops->set_cr0(vcpu, cr0);
6321         vcpu->arch.cr0 = cr0;
6322
6323         kvm_x86_ops->set_cr4(vcpu, 0);
6324
6325         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
6326         dt.address = dt.size = 0;
6327         kvm_x86_ops->set_idt(vcpu, &dt);
6328
6329         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6330
6331         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6332         cs.base = vcpu->arch.smbase;
6333
6334         ds.selector = 0;
6335         ds.base = 0;
6336
6337         cs.limit    = ds.limit = 0xffffffff;
6338         cs.type     = ds.type = 0x3;
6339         cs.dpl      = ds.dpl = 0;
6340         cs.db       = ds.db = 0;
6341         cs.s        = ds.s = 1;
6342         cs.l        = ds.l = 0;
6343         cs.g        = ds.g = 1;
6344         cs.avl      = ds.avl = 0;
6345         cs.present  = ds.present = 1;
6346         cs.unusable = ds.unusable = 0;
6347         cs.padding  = ds.padding = 0;
6348
6349         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6350         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6351         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6352         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6353         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6354         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6355
6356         if (guest_cpuid_has_longmode(vcpu))
6357                 kvm_x86_ops->set_efer(vcpu, 0);
6358
6359         kvm_update_cpuid(vcpu);
6360         kvm_mmu_reset_context(vcpu);
6361 }
6362
6363 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6364 {
6365         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6366 }
6367
6368 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6369 {
6370         u64 eoi_exit_bitmap[4];
6371
6372         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6373                 return;
6374
6375         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6376
6377         if (irqchip_split(vcpu->kvm))
6378                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6379         else {
6380                 if (vcpu->arch.apicv_active)
6381                         kvm_x86_ops->sync_pir_to_irr(vcpu);
6382                 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6383         }
6384         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6385                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
6386         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6387 }
6388
6389 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6390 {
6391         ++vcpu->stat.tlb_flush;
6392         kvm_x86_ops->tlb_flush(vcpu);
6393 }
6394
6395 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6396 {
6397         struct page *page = NULL;
6398
6399         if (!lapic_in_kernel(vcpu))
6400                 return;
6401
6402         if (!kvm_x86_ops->set_apic_access_page_addr)
6403                 return;
6404
6405         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6406         if (is_error_page(page))
6407                 return;
6408         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6409
6410         /*
6411          * Do not pin apic access page in memory, the MMU notifier
6412          * will call us again if it is migrated or swapped out.
6413          */
6414         put_page(page);
6415 }
6416 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6417
6418 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6419                                            unsigned long address)
6420 {
6421         /*
6422          * The physical address of apic access page is stored in the VMCS.
6423          * Update it when it becomes invalid.
6424          */
6425         if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6426                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6427 }
6428
6429 /*
6430  * Returns 1 to let vcpu_run() continue the guest execution loop without
6431  * exiting to the userspace.  Otherwise, the value will be returned to the
6432  * userspace.
6433  */
6434 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6435 {
6436         int r;
6437         bool req_int_win =
6438                 dm_request_for_irq_injection(vcpu) &&
6439                 kvm_cpu_accept_dm_intr(vcpu);
6440
6441         bool req_immediate_exit = false;
6442
6443         if (vcpu->requests) {
6444                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6445                         kvm_mmu_unload(vcpu);
6446                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6447                         __kvm_migrate_timers(vcpu);
6448                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6449                         kvm_gen_update_masterclock(vcpu->kvm);
6450                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6451                         kvm_gen_kvmclock_update(vcpu);
6452                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6453                         r = kvm_guest_time_update(vcpu);
6454                         if (unlikely(r))
6455                                 goto out;
6456                 }
6457                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6458                         kvm_mmu_sync_roots(vcpu);
6459                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6460                         kvm_vcpu_flush_tlb(vcpu);
6461                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6462                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6463                         r = 0;
6464                         goto out;
6465                 }
6466                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6467                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6468                         r = 0;
6469                         goto out;
6470                 }
6471                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6472                         vcpu->fpu_active = 0;
6473                         kvm_x86_ops->fpu_deactivate(vcpu);
6474                 }
6475                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6476                         /* Page is swapped out. Do synthetic halt */
6477                         vcpu->arch.apf.halted = true;
6478                         r = 1;
6479                         goto out;
6480                 }
6481                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6482                         record_steal_time(vcpu);
6483                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6484                         process_smi(vcpu);
6485                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6486                         process_nmi(vcpu);
6487                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6488                         kvm_pmu_handle_event(vcpu);
6489                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6490                         kvm_pmu_deliver_pmi(vcpu);
6491                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6492                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6493                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
6494                                      vcpu->arch.ioapic_handled_vectors)) {
6495                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6496                                 vcpu->run->eoi.vector =
6497                                                 vcpu->arch.pending_ioapic_eoi;
6498                                 r = 0;
6499                                 goto out;
6500                         }
6501                 }
6502                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6503                         vcpu_scan_ioapic(vcpu);
6504                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6505                         kvm_vcpu_reload_apic_access_page(vcpu);
6506                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6507                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6508                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6509                         r = 0;
6510                         goto out;
6511                 }
6512                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6513                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6514                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6515                         r = 0;
6516                         goto out;
6517                 }
6518                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6519                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6520                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6521                         r = 0;
6522                         goto out;
6523                 }
6524
6525                 /*
6526                  * KVM_REQ_HV_STIMER has to be processed after
6527                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6528                  * depend on the guest clock being up-to-date
6529                  */
6530                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6531                         kvm_hv_process_stimers(vcpu);
6532         }
6533
6534         /*
6535          * KVM_REQ_EVENT is not set when posted interrupts are set by
6536          * VT-d hardware, so we have to update RVI unconditionally.
6537          */
6538         if (kvm_lapic_enabled(vcpu)) {
6539                 /*
6540                  * Update architecture specific hints for APIC
6541                  * virtual interrupt delivery.
6542                  */
6543                 if (vcpu->arch.apicv_active)
6544                         kvm_x86_ops->hwapic_irr_update(vcpu,
6545                                 kvm_lapic_find_highest_irr(vcpu));
6546         }
6547
6548         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6549                 kvm_apic_accept_events(vcpu);
6550                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6551                         r = 1;
6552                         goto out;
6553                 }
6554
6555                 if (inject_pending_event(vcpu, req_int_win) != 0)
6556                         req_immediate_exit = true;
6557                 /* enable NMI/IRQ window open exits if needed */
6558                 else {
6559                         if (vcpu->arch.nmi_pending)
6560                                 kvm_x86_ops->enable_nmi_window(vcpu);
6561                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6562                                 kvm_x86_ops->enable_irq_window(vcpu);
6563                 }
6564
6565                 if (kvm_lapic_enabled(vcpu)) {
6566                         update_cr8_intercept(vcpu);
6567                         kvm_lapic_sync_to_vapic(vcpu);
6568                 }
6569         }
6570
6571         r = kvm_mmu_reload(vcpu);
6572         if (unlikely(r)) {
6573                 goto cancel_injection;
6574         }
6575
6576         preempt_disable();
6577
6578         kvm_x86_ops->prepare_guest_switch(vcpu);
6579         if (vcpu->fpu_active)
6580                 kvm_load_guest_fpu(vcpu);
6581         vcpu->mode = IN_GUEST_MODE;
6582
6583         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6584
6585         /*
6586          * We should set ->mode before check ->requests,
6587          * Please see the comment in kvm_make_all_cpus_request.
6588          * This also orders the write to mode from any reads
6589          * to the page tables done while the VCPU is running.
6590          * Please see the comment in kvm_flush_remote_tlbs.
6591          */
6592         smp_mb__after_srcu_read_unlock();
6593
6594         local_irq_disable();
6595
6596         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6597             || need_resched() || signal_pending(current)) {
6598                 vcpu->mode = OUTSIDE_GUEST_MODE;
6599                 smp_wmb();
6600                 local_irq_enable();
6601                 preempt_enable();
6602                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6603                 r = 1;
6604                 goto cancel_injection;
6605         }
6606
6607         kvm_load_guest_xcr0(vcpu);
6608
6609         if (req_immediate_exit)
6610                 smp_send_reschedule(vcpu->cpu);
6611
6612         trace_kvm_entry(vcpu->vcpu_id);
6613         wait_lapic_expire(vcpu);
6614         __kvm_guest_enter();
6615
6616         if (unlikely(vcpu->arch.switch_db_regs)) {
6617                 set_debugreg(0, 7);
6618                 set_debugreg(vcpu->arch.eff_db[0], 0);
6619                 set_debugreg(vcpu->arch.eff_db[1], 1);
6620                 set_debugreg(vcpu->arch.eff_db[2], 2);
6621                 set_debugreg(vcpu->arch.eff_db[3], 3);
6622                 set_debugreg(vcpu->arch.dr6, 6);
6623                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6624         }
6625
6626         kvm_x86_ops->run(vcpu);
6627
6628         /*
6629          * Do this here before restoring debug registers on the host.  And
6630          * since we do this before handling the vmexit, a DR access vmexit
6631          * can (a) read the correct value of the debug registers, (b) set
6632          * KVM_DEBUGREG_WONT_EXIT again.
6633          */
6634         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6635                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6636                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6637                 kvm_update_dr0123(vcpu);
6638                 kvm_update_dr6(vcpu);
6639                 kvm_update_dr7(vcpu);
6640                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6641         }
6642
6643         /*
6644          * If the guest has used debug registers, at least dr7
6645          * will be disabled while returning to the host.
6646          * If we don't have active breakpoints in the host, we don't
6647          * care about the messed up debug address registers. But if
6648          * we have some of them active, restore the old state.
6649          */
6650         if (hw_breakpoint_active())
6651                 hw_breakpoint_restore();
6652
6653         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6654
6655         vcpu->mode = OUTSIDE_GUEST_MODE;
6656         smp_wmb();
6657
6658         kvm_put_guest_xcr0(vcpu);
6659
6660         /* Interrupt is enabled by handle_external_intr() */
6661         kvm_x86_ops->handle_external_intr(vcpu);
6662
6663         ++vcpu->stat.exits;
6664
6665         /*
6666          * We must have an instruction between local_irq_enable() and
6667          * kvm_guest_exit(), so the timer interrupt isn't delayed by
6668          * the interrupt shadow.  The stat.exits increment will do nicely.
6669          * But we need to prevent reordering, hence this barrier():
6670          */
6671         barrier();
6672
6673         kvm_guest_exit();
6674
6675         preempt_enable();
6676
6677         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6678
6679         /*
6680          * Profile KVM exit RIPs:
6681          */
6682         if (unlikely(prof_on == KVM_PROFILING)) {
6683                 unsigned long rip = kvm_rip_read(vcpu);
6684                 profile_hit(KVM_PROFILING, (void *)rip);
6685         }
6686
6687         if (unlikely(vcpu->arch.tsc_always_catchup))
6688                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6689
6690         if (vcpu->arch.apic_attention)
6691                 kvm_lapic_sync_from_vapic(vcpu);
6692
6693         r = kvm_x86_ops->handle_exit(vcpu);
6694         return r;
6695
6696 cancel_injection:
6697         kvm_x86_ops->cancel_injection(vcpu);
6698         if (unlikely(vcpu->arch.apic_attention))
6699                 kvm_lapic_sync_from_vapic(vcpu);
6700 out:
6701         return r;
6702 }
6703
6704 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6705 {
6706         if (!kvm_arch_vcpu_runnable(vcpu) &&
6707             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6708                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6709                 kvm_vcpu_block(vcpu);
6710                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6711
6712                 if (kvm_x86_ops->post_block)
6713                         kvm_x86_ops->post_block(vcpu);
6714
6715                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6716                         return 1;
6717         }
6718
6719         kvm_apic_accept_events(vcpu);
6720         switch(vcpu->arch.mp_state) {
6721         case KVM_MP_STATE_HALTED:
6722                 vcpu->arch.pv.pv_unhalted = false;
6723                 vcpu->arch.mp_state =
6724                         KVM_MP_STATE_RUNNABLE;
6725         case KVM_MP_STATE_RUNNABLE:
6726                 vcpu->arch.apf.halted = false;
6727                 break;
6728         case KVM_MP_STATE_INIT_RECEIVED:
6729                 break;
6730         default:
6731                 return -EINTR;
6732                 break;
6733         }
6734         return 1;
6735 }
6736
6737 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
6738 {
6739         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6740                 !vcpu->arch.apf.halted);
6741 }
6742
6743 static int vcpu_run(struct kvm_vcpu *vcpu)
6744 {
6745         int r;
6746         struct kvm *kvm = vcpu->kvm;
6747
6748         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6749
6750         for (;;) {
6751                 if (kvm_vcpu_running(vcpu)) {
6752                         r = vcpu_enter_guest(vcpu);
6753                 } else {
6754                         r = vcpu_block(kvm, vcpu);
6755                 }
6756
6757                 if (r <= 0)
6758                         break;
6759
6760                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6761                 if (kvm_cpu_has_pending_timer(vcpu))
6762                         kvm_inject_pending_timer_irqs(vcpu);
6763
6764                 if (dm_request_for_irq_injection(vcpu) &&
6765                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
6766                         r = 0;
6767                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
6768                         ++vcpu->stat.request_irq_exits;
6769                         break;
6770                 }
6771
6772                 kvm_check_async_pf_completion(vcpu);
6773
6774                 if (signal_pending(current)) {
6775                         r = -EINTR;
6776                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6777                         ++vcpu->stat.signal_exits;
6778                         break;
6779                 }
6780                 if (need_resched()) {
6781                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6782                         cond_resched();
6783                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6784                 }
6785         }
6786
6787         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6788
6789         return r;
6790 }
6791
6792 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6793 {
6794         int r;
6795         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6796         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6797         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6798         if (r != EMULATE_DONE)
6799                 return 0;
6800         return 1;
6801 }
6802
6803 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6804 {
6805         BUG_ON(!vcpu->arch.pio.count);
6806
6807         return complete_emulated_io(vcpu);
6808 }
6809
6810 /*
6811  * Implements the following, as a state machine:
6812  *
6813  * read:
6814  *   for each fragment
6815  *     for each mmio piece in the fragment
6816  *       write gpa, len
6817  *       exit
6818  *       copy data
6819  *   execute insn
6820  *
6821  * write:
6822  *   for each fragment
6823  *     for each mmio piece in the fragment
6824  *       write gpa, len
6825  *       copy data
6826  *       exit
6827  */
6828 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6829 {
6830         struct kvm_run *run = vcpu->run;
6831         struct kvm_mmio_fragment *frag;
6832         unsigned len;
6833
6834         BUG_ON(!vcpu->mmio_needed);
6835
6836         /* Complete previous fragment */
6837         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6838         len = min(8u, frag->len);
6839         if (!vcpu->mmio_is_write)
6840                 memcpy(frag->data, run->mmio.data, len);
6841
6842         if (frag->len <= 8) {
6843                 /* Switch to the next fragment. */
6844                 frag++;
6845                 vcpu->mmio_cur_fragment++;
6846         } else {
6847                 /* Go forward to the next mmio piece. */
6848                 frag->data += len;
6849                 frag->gpa += len;
6850                 frag->len -= len;
6851         }
6852
6853         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6854                 vcpu->mmio_needed = 0;
6855
6856                 /* FIXME: return into emulator if single-stepping.  */
6857                 if (vcpu->mmio_is_write)
6858                         return 1;
6859                 vcpu->mmio_read_completed = 1;
6860                 return complete_emulated_io(vcpu);
6861         }
6862
6863         run->exit_reason = KVM_EXIT_MMIO;
6864         run->mmio.phys_addr = frag->gpa;
6865         if (vcpu->mmio_is_write)
6866                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6867         run->mmio.len = min(8u, frag->len);
6868         run->mmio.is_write = vcpu->mmio_is_write;
6869         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6870         return 0;
6871 }
6872
6873
6874 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6875 {
6876         struct fpu *fpu = &current->thread.fpu;
6877         int r;
6878         sigset_t sigsaved;
6879
6880         fpu__activate_curr(fpu);
6881
6882         if (vcpu->sigset_active)
6883                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6884
6885         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6886                 kvm_vcpu_block(vcpu);
6887                 kvm_apic_accept_events(vcpu);
6888                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6889                 r = -EAGAIN;
6890                 goto out;
6891         }
6892
6893         /* re-sync apic's tpr */
6894         if (!lapic_in_kernel(vcpu)) {
6895                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6896                         r = -EINVAL;
6897                         goto out;
6898                 }
6899         }
6900
6901         if (unlikely(vcpu->arch.complete_userspace_io)) {
6902                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6903                 vcpu->arch.complete_userspace_io = NULL;
6904                 r = cui(vcpu);
6905                 if (r <= 0)
6906                         goto out;
6907         } else
6908                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6909
6910         r = vcpu_run(vcpu);
6911
6912 out:
6913         post_kvm_run_save(vcpu);
6914         if (vcpu->sigset_active)
6915                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6916
6917         return r;
6918 }
6919
6920 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6921 {
6922         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6923                 /*
6924                  * We are here if userspace calls get_regs() in the middle of
6925                  * instruction emulation. Registers state needs to be copied
6926                  * back from emulation context to vcpu. Userspace shouldn't do
6927                  * that usually, but some bad designed PV devices (vmware
6928                  * backdoor interface) need this to work
6929                  */
6930                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6931                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6932         }
6933         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6934         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6935         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6936         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6937         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6938         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6939         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6940         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6941 #ifdef CONFIG_X86_64
6942         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6943         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6944         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6945         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6946         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6947         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6948         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6949         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6950 #endif
6951
6952         regs->rip = kvm_rip_read(vcpu);
6953         regs->rflags = kvm_get_rflags(vcpu);
6954
6955         return 0;
6956 }
6957
6958 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6959 {
6960         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6961         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6962
6963         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6964         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6965         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6966         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6967         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6968         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6969         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6970         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6971 #ifdef CONFIG_X86_64
6972         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6973         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6974         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6975         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6976         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6977         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6978         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6979         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6980 #endif
6981
6982         kvm_rip_write(vcpu, regs->rip);
6983         kvm_set_rflags(vcpu, regs->rflags);
6984
6985         vcpu->arch.exception.pending = false;
6986
6987         kvm_make_request(KVM_REQ_EVENT, vcpu);
6988
6989         return 0;
6990 }
6991
6992 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6993 {
6994         struct kvm_segment cs;
6995
6996         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6997         *db = cs.db;
6998         *l = cs.l;
6999 }
7000 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7001
7002 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7003                                   struct kvm_sregs *sregs)
7004 {
7005         struct desc_ptr dt;
7006
7007         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7008         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7009         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7010         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7011         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7012         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7013
7014         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7015         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7016
7017         kvm_x86_ops->get_idt(vcpu, &dt);
7018         sregs->idt.limit = dt.size;
7019         sregs->idt.base = dt.address;
7020         kvm_x86_ops->get_gdt(vcpu, &dt);
7021         sregs->gdt.limit = dt.size;
7022         sregs->gdt.base = dt.address;
7023
7024         sregs->cr0 = kvm_read_cr0(vcpu);
7025         sregs->cr2 = vcpu->arch.cr2;
7026         sregs->cr3 = kvm_read_cr3(vcpu);
7027         sregs->cr4 = kvm_read_cr4(vcpu);
7028         sregs->cr8 = kvm_get_cr8(vcpu);
7029         sregs->efer = vcpu->arch.efer;
7030         sregs->apic_base = kvm_get_apic_base(vcpu);
7031
7032         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7033
7034         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7035                 set_bit(vcpu->arch.interrupt.nr,
7036                         (unsigned long *)sregs->interrupt_bitmap);
7037
7038         return 0;
7039 }
7040
7041 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7042                                     struct kvm_mp_state *mp_state)
7043 {
7044         kvm_apic_accept_events(vcpu);
7045         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7046                                         vcpu->arch.pv.pv_unhalted)
7047                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7048         else
7049                 mp_state->mp_state = vcpu->arch.mp_state;
7050
7051         return 0;
7052 }
7053
7054 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7055                                     struct kvm_mp_state *mp_state)
7056 {
7057         if (!lapic_in_kernel(vcpu) &&
7058             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7059                 return -EINVAL;
7060
7061         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7062                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7063                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7064         } else
7065                 vcpu->arch.mp_state = mp_state->mp_state;
7066         kvm_make_request(KVM_REQ_EVENT, vcpu);
7067         return 0;
7068 }
7069
7070 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7071                     int reason, bool has_error_code, u32 error_code)
7072 {
7073         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7074         int ret;
7075
7076         init_emulate_ctxt(vcpu);
7077
7078         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7079                                    has_error_code, error_code);
7080
7081         if (ret)
7082                 return EMULATE_FAIL;
7083
7084         kvm_rip_write(vcpu, ctxt->eip);
7085         kvm_set_rflags(vcpu, ctxt->eflags);
7086         kvm_make_request(KVM_REQ_EVENT, vcpu);
7087         return EMULATE_DONE;
7088 }
7089 EXPORT_SYMBOL_GPL(kvm_task_switch);
7090
7091 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7092                                   struct kvm_sregs *sregs)
7093 {
7094         struct msr_data apic_base_msr;
7095         int mmu_reset_needed = 0;
7096         int pending_vec, max_bits, idx;
7097         struct desc_ptr dt;
7098
7099         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7100                 return -EINVAL;
7101
7102         dt.size = sregs->idt.limit;
7103         dt.address = sregs->idt.base;
7104         kvm_x86_ops->set_idt(vcpu, &dt);
7105         dt.size = sregs->gdt.limit;
7106         dt.address = sregs->gdt.base;
7107         kvm_x86_ops->set_gdt(vcpu, &dt);
7108
7109         vcpu->arch.cr2 = sregs->cr2;
7110         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7111         vcpu->arch.cr3 = sregs->cr3;
7112         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7113
7114         kvm_set_cr8(vcpu, sregs->cr8);
7115
7116         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7117         kvm_x86_ops->set_efer(vcpu, sregs->efer);
7118         apic_base_msr.data = sregs->apic_base;
7119         apic_base_msr.host_initiated = true;
7120         kvm_set_apic_base(vcpu, &apic_base_msr);
7121
7122         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7123         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7124         vcpu->arch.cr0 = sregs->cr0;
7125
7126         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7127         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7128         if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7129                 kvm_update_cpuid(vcpu);
7130
7131         idx = srcu_read_lock(&vcpu->kvm->srcu);
7132         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7133                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7134                 mmu_reset_needed = 1;
7135         }
7136         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7137
7138         if (mmu_reset_needed)
7139                 kvm_mmu_reset_context(vcpu);
7140
7141         max_bits = KVM_NR_INTERRUPTS;
7142         pending_vec = find_first_bit(
7143                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7144         if (pending_vec < max_bits) {
7145                 kvm_queue_interrupt(vcpu, pending_vec, false);
7146                 pr_debug("Set back pending irq %d\n", pending_vec);
7147         }
7148
7149         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7150         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7151         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7152         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7153         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7154         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7155
7156         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7157         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7158
7159         update_cr8_intercept(vcpu);
7160
7161         /* Older userspace won't unhalt the vcpu on reset. */
7162         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7163             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7164             !is_protmode(vcpu))
7165                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7166
7167         kvm_make_request(KVM_REQ_EVENT, vcpu);
7168
7169         return 0;
7170 }
7171
7172 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7173                                         struct kvm_guest_debug *dbg)
7174 {
7175         unsigned long rflags;
7176         int i, r;
7177
7178         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7179                 r = -EBUSY;
7180                 if (vcpu->arch.exception.pending)
7181                         goto out;
7182                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7183                         kvm_queue_exception(vcpu, DB_VECTOR);
7184                 else
7185                         kvm_queue_exception(vcpu, BP_VECTOR);
7186         }
7187
7188         /*
7189          * Read rflags as long as potentially injected trace flags are still
7190          * filtered out.
7191          */
7192         rflags = kvm_get_rflags(vcpu);
7193
7194         vcpu->guest_debug = dbg->control;
7195         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7196                 vcpu->guest_debug = 0;
7197
7198         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7199                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7200                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7201                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7202         } else {
7203                 for (i = 0; i < KVM_NR_DB_REGS; i++)
7204                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7205         }
7206         kvm_update_dr7(vcpu);
7207
7208         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7209                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7210                         get_segment_base(vcpu, VCPU_SREG_CS);
7211
7212         /*
7213          * Trigger an rflags update that will inject or remove the trace
7214          * flags.
7215          */
7216         kvm_set_rflags(vcpu, rflags);
7217
7218         kvm_x86_ops->update_bp_intercept(vcpu);
7219
7220         r = 0;
7221
7222 out:
7223
7224         return r;
7225 }
7226
7227 /*
7228  * Translate a guest virtual address to a guest physical address.
7229  */
7230 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7231                                     struct kvm_translation *tr)
7232 {
7233         unsigned long vaddr = tr->linear_address;
7234         gpa_t gpa;
7235         int idx;
7236
7237         idx = srcu_read_lock(&vcpu->kvm->srcu);
7238         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7239         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7240         tr->physical_address = gpa;
7241         tr->valid = gpa != UNMAPPED_GVA;
7242         tr->writeable = 1;
7243         tr->usermode = 0;
7244
7245         return 0;
7246 }
7247
7248 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7249 {
7250         struct fxregs_state *fxsave =
7251                         &vcpu->arch.guest_fpu.state.fxsave;
7252
7253         memcpy(fpu->fpr, fxsave->st_space, 128);
7254         fpu->fcw = fxsave->cwd;
7255         fpu->fsw = fxsave->swd;
7256         fpu->ftwx = fxsave->twd;
7257         fpu->last_opcode = fxsave->fop;
7258         fpu->last_ip = fxsave->rip;
7259         fpu->last_dp = fxsave->rdp;
7260         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7261
7262         return 0;
7263 }
7264
7265 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7266 {
7267         struct fxregs_state *fxsave =
7268                         &vcpu->arch.guest_fpu.state.fxsave;
7269
7270         memcpy(fxsave->st_space, fpu->fpr, 128);
7271         fxsave->cwd = fpu->fcw;
7272         fxsave->swd = fpu->fsw;
7273         fxsave->twd = fpu->ftwx;
7274         fxsave->fop = fpu->last_opcode;
7275         fxsave->rip = fpu->last_ip;
7276         fxsave->rdp = fpu->last_dp;
7277         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7278
7279         return 0;
7280 }
7281
7282 static void fx_init(struct kvm_vcpu *vcpu)
7283 {
7284         fpstate_init(&vcpu->arch.guest_fpu.state);
7285         if (boot_cpu_has(X86_FEATURE_XSAVES))
7286                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7287                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
7288
7289         /*
7290          * Ensure guest xcr0 is valid for loading
7291          */
7292         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7293
7294         vcpu->arch.cr0 |= X86_CR0_ET;
7295 }
7296
7297 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7298 {
7299         if (vcpu->guest_fpu_loaded)
7300                 return;
7301
7302         /*
7303          * Restore all possible states in the guest,
7304          * and assume host would use all available bits.
7305          * Guest xcr0 would be loaded later.
7306          */
7307         vcpu->guest_fpu_loaded = 1;
7308         __kernel_fpu_begin();
7309         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7310         trace_kvm_fpu(1);
7311 }
7312
7313 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7314 {
7315         if (!vcpu->guest_fpu_loaded) {
7316                 vcpu->fpu_counter = 0;
7317                 return;
7318         }
7319
7320         vcpu->guest_fpu_loaded = 0;
7321         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7322         __kernel_fpu_end();
7323         ++vcpu->stat.fpu_reload;
7324         /*
7325          * If using eager FPU mode, or if the guest is a frequent user
7326          * of the FPU, just leave the FPU active for next time.
7327          * Every 255 times fpu_counter rolls over to 0; a guest that uses
7328          * the FPU in bursts will revert to loading it on demand.
7329          */
7330         if (!use_eager_fpu()) {
7331                 if (++vcpu->fpu_counter < 5)
7332                         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7333         }
7334         trace_kvm_fpu(0);
7335 }
7336
7337 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7338 {
7339         kvmclock_reset(vcpu);
7340
7341         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7342         kvm_x86_ops->vcpu_free(vcpu);
7343 }
7344
7345 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7346                                                 unsigned int id)
7347 {
7348         struct kvm_vcpu *vcpu;
7349
7350         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7351                 printk_once(KERN_WARNING
7352                 "kvm: SMP vm created on host with unstable TSC; "
7353                 "guest TSC will not be reliable\n");
7354
7355         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7356
7357         return vcpu;
7358 }
7359
7360 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7361 {
7362         int r;
7363
7364         kvm_vcpu_mtrr_init(vcpu);
7365         r = vcpu_load(vcpu);
7366         if (r)
7367                 return r;
7368         kvm_vcpu_reset(vcpu, false);
7369         kvm_mmu_setup(vcpu);
7370         vcpu_put(vcpu);
7371         return r;
7372 }
7373
7374 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7375 {
7376         struct msr_data msr;
7377         struct kvm *kvm = vcpu->kvm;
7378
7379         if (vcpu_load(vcpu))
7380                 return;
7381         msr.data = 0x0;
7382         msr.index = MSR_IA32_TSC;
7383         msr.host_initiated = true;
7384         kvm_write_tsc(vcpu, &msr);
7385         vcpu_put(vcpu);
7386
7387         if (!kvmclock_periodic_sync)
7388                 return;
7389
7390         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7391                                         KVMCLOCK_SYNC_PERIOD);
7392 }
7393
7394 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7395 {
7396         int r;
7397         vcpu->arch.apf.msr_val = 0;
7398
7399         r = vcpu_load(vcpu);
7400         BUG_ON(r);
7401         kvm_mmu_unload(vcpu);
7402         vcpu_put(vcpu);
7403
7404         kvm_x86_ops->vcpu_free(vcpu);
7405 }
7406
7407 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7408 {
7409         vcpu->arch.hflags = 0;
7410
7411         atomic_set(&vcpu->arch.nmi_queued, 0);
7412         vcpu->arch.nmi_pending = 0;
7413         vcpu->arch.nmi_injected = false;
7414         kvm_clear_interrupt_queue(vcpu);
7415         kvm_clear_exception_queue(vcpu);
7416
7417         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7418         kvm_update_dr0123(vcpu);
7419         vcpu->arch.dr6 = DR6_INIT;
7420         kvm_update_dr6(vcpu);
7421         vcpu->arch.dr7 = DR7_FIXED_1;
7422         kvm_update_dr7(vcpu);
7423
7424         vcpu->arch.cr2 = 0;
7425
7426         kvm_make_request(KVM_REQ_EVENT, vcpu);
7427         vcpu->arch.apf.msr_val = 0;
7428         vcpu->arch.st.msr_val = 0;
7429
7430         kvmclock_reset(vcpu);
7431
7432         kvm_clear_async_pf_completion_queue(vcpu);
7433         kvm_async_pf_hash_reset(vcpu);
7434         vcpu->arch.apf.halted = false;
7435
7436         if (!init_event) {
7437                 kvm_pmu_reset(vcpu);
7438                 vcpu->arch.smbase = 0x30000;
7439         }
7440
7441         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7442         vcpu->arch.regs_avail = ~0;
7443         vcpu->arch.regs_dirty = ~0;
7444
7445         kvm_x86_ops->vcpu_reset(vcpu, init_event);
7446 }
7447
7448 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7449 {
7450         struct kvm_segment cs;
7451
7452         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7453         cs.selector = vector << 8;
7454         cs.base = vector << 12;
7455         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7456         kvm_rip_write(vcpu, 0);
7457 }
7458
7459 int kvm_arch_hardware_enable(void)
7460 {
7461         struct kvm *kvm;
7462         struct kvm_vcpu *vcpu;
7463         int i;
7464         int ret;
7465         u64 local_tsc;
7466         u64 max_tsc = 0;
7467         bool stable, backwards_tsc = false;
7468
7469         kvm_shared_msr_cpu_online();
7470         ret = kvm_x86_ops->hardware_enable();
7471         if (ret != 0)
7472                 return ret;
7473
7474         local_tsc = rdtsc();
7475         stable = !check_tsc_unstable();
7476         list_for_each_entry(kvm, &vm_list, vm_list) {
7477                 kvm_for_each_vcpu(i, vcpu, kvm) {
7478                         if (!stable && vcpu->cpu == smp_processor_id())
7479                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7480                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7481                                 backwards_tsc = true;
7482                                 if (vcpu->arch.last_host_tsc > max_tsc)
7483                                         max_tsc = vcpu->arch.last_host_tsc;
7484                         }
7485                 }
7486         }
7487
7488         /*
7489          * Sometimes, even reliable TSCs go backwards.  This happens on
7490          * platforms that reset TSC during suspend or hibernate actions, but
7491          * maintain synchronization.  We must compensate.  Fortunately, we can
7492          * detect that condition here, which happens early in CPU bringup,
7493          * before any KVM threads can be running.  Unfortunately, we can't
7494          * bring the TSCs fully up to date with real time, as we aren't yet far
7495          * enough into CPU bringup that we know how much real time has actually
7496          * elapsed; our helper function, get_kernel_ns() will be using boot
7497          * variables that haven't been updated yet.
7498          *
7499          * So we simply find the maximum observed TSC above, then record the
7500          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7501          * the adjustment will be applied.  Note that we accumulate
7502          * adjustments, in case multiple suspend cycles happen before some VCPU
7503          * gets a chance to run again.  In the event that no KVM threads get a
7504          * chance to run, we will miss the entire elapsed period, as we'll have
7505          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7506          * loose cycle time.  This isn't too big a deal, since the loss will be
7507          * uniform across all VCPUs (not to mention the scenario is extremely
7508          * unlikely). It is possible that a second hibernate recovery happens
7509          * much faster than a first, causing the observed TSC here to be
7510          * smaller; this would require additional padding adjustment, which is
7511          * why we set last_host_tsc to the local tsc observed here.
7512          *
7513          * N.B. - this code below runs only on platforms with reliable TSC,
7514          * as that is the only way backwards_tsc is set above.  Also note
7515          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7516          * have the same delta_cyc adjustment applied if backwards_tsc
7517          * is detected.  Note further, this adjustment is only done once,
7518          * as we reset last_host_tsc on all VCPUs to stop this from being
7519          * called multiple times (one for each physical CPU bringup).
7520          *
7521          * Platforms with unreliable TSCs don't have to deal with this, they
7522          * will be compensated by the logic in vcpu_load, which sets the TSC to
7523          * catchup mode.  This will catchup all VCPUs to real time, but cannot
7524          * guarantee that they stay in perfect synchronization.
7525          */
7526         if (backwards_tsc) {
7527                 u64 delta_cyc = max_tsc - local_tsc;
7528                 backwards_tsc_observed = true;
7529                 list_for_each_entry(kvm, &vm_list, vm_list) {
7530                         kvm_for_each_vcpu(i, vcpu, kvm) {
7531                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7532                                 vcpu->arch.last_host_tsc = local_tsc;
7533                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7534                         }
7535
7536                         /*
7537                          * We have to disable TSC offset matching.. if you were
7538                          * booting a VM while issuing an S4 host suspend....
7539                          * you may have some problem.  Solving this issue is
7540                          * left as an exercise to the reader.
7541                          */
7542                         kvm->arch.last_tsc_nsec = 0;
7543                         kvm->arch.last_tsc_write = 0;
7544                 }
7545
7546         }
7547         return 0;
7548 }
7549
7550 void kvm_arch_hardware_disable(void)
7551 {
7552         kvm_x86_ops->hardware_disable();
7553         drop_user_return_notifiers();
7554 }
7555
7556 int kvm_arch_hardware_setup(void)
7557 {
7558         int r;
7559
7560         r = kvm_x86_ops->hardware_setup();
7561         if (r != 0)
7562                 return r;
7563
7564         if (kvm_has_tsc_control) {
7565                 /*
7566                  * Make sure the user can only configure tsc_khz values that
7567                  * fit into a signed integer.
7568                  * A min value is not calculated needed because it will always
7569                  * be 1 on all machines.
7570                  */
7571                 u64 max = min(0x7fffffffULL,
7572                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7573                 kvm_max_guest_tsc_khz = max;
7574
7575                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7576         }
7577
7578         kvm_init_msr_list();
7579         return 0;
7580 }
7581
7582 void kvm_arch_hardware_unsetup(void)
7583 {
7584         kvm_x86_ops->hardware_unsetup();
7585 }
7586
7587 void kvm_arch_check_processor_compat(void *rtn)
7588 {
7589         kvm_x86_ops->check_processor_compatibility(rtn);
7590 }
7591
7592 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7593 {
7594         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7595 }
7596 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7597
7598 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7599 {
7600         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7601 }
7602
7603 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7604 {
7605         return irqchip_in_kernel(vcpu->kvm) == lapic_in_kernel(vcpu);
7606 }
7607
7608 struct static_key kvm_no_apic_vcpu __read_mostly;
7609 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7610
7611 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7612 {
7613         struct page *page;
7614         struct kvm *kvm;
7615         int r;
7616
7617         BUG_ON(vcpu->kvm == NULL);
7618         kvm = vcpu->kvm;
7619
7620         vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7621         vcpu->arch.pv.pv_unhalted = false;
7622         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7623         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7624                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7625         else
7626                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7627
7628         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7629         if (!page) {
7630                 r = -ENOMEM;
7631                 goto fail;
7632         }
7633         vcpu->arch.pio_data = page_address(page);
7634
7635         kvm_set_tsc_khz(vcpu, max_tsc_khz);
7636
7637         r = kvm_mmu_create(vcpu);
7638         if (r < 0)
7639                 goto fail_free_pio_data;
7640
7641         if (irqchip_in_kernel(kvm)) {
7642                 r = kvm_create_lapic(vcpu);
7643                 if (r < 0)
7644                         goto fail_mmu_destroy;
7645         } else
7646                 static_key_slow_inc(&kvm_no_apic_vcpu);
7647
7648         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7649                                        GFP_KERNEL);
7650         if (!vcpu->arch.mce_banks) {
7651                 r = -ENOMEM;
7652                 goto fail_free_lapic;
7653         }
7654         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7655
7656         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7657                 r = -ENOMEM;
7658                 goto fail_free_mce_banks;
7659         }
7660
7661         fx_init(vcpu);
7662
7663         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7664         vcpu->arch.pv_time_enabled = false;
7665
7666         vcpu->arch.guest_supported_xcr0 = 0;
7667         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7668
7669         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7670
7671         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7672
7673         kvm_async_pf_hash_reset(vcpu);
7674         kvm_pmu_init(vcpu);
7675
7676         vcpu->arch.pending_external_vector = -1;
7677
7678         kvm_hv_vcpu_init(vcpu);
7679
7680         return 0;
7681
7682 fail_free_mce_banks:
7683         kfree(vcpu->arch.mce_banks);
7684 fail_free_lapic:
7685         kvm_free_lapic(vcpu);
7686 fail_mmu_destroy:
7687         kvm_mmu_destroy(vcpu);
7688 fail_free_pio_data:
7689         free_page((unsigned long)vcpu->arch.pio_data);
7690 fail:
7691         return r;
7692 }
7693
7694 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7695 {
7696         int idx;
7697
7698         kvm_hv_vcpu_uninit(vcpu);
7699         kvm_pmu_destroy(vcpu);
7700         kfree(vcpu->arch.mce_banks);
7701         kvm_free_lapic(vcpu);
7702         idx = srcu_read_lock(&vcpu->kvm->srcu);
7703         kvm_mmu_destroy(vcpu);
7704         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7705         free_page((unsigned long)vcpu->arch.pio_data);
7706         if (!lapic_in_kernel(vcpu))
7707                 static_key_slow_dec(&kvm_no_apic_vcpu);
7708 }
7709
7710 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7711 {
7712         kvm_x86_ops->sched_in(vcpu, cpu);
7713 }
7714
7715 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7716 {
7717         if (type)
7718                 return -EINVAL;
7719
7720         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7721         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7722         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7723         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7724         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7725
7726         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7727         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7728         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7729         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7730                 &kvm->arch.irq_sources_bitmap);
7731
7732         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7733         mutex_init(&kvm->arch.apic_map_lock);
7734         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7735
7736         pvclock_update_vm_gtod_copy(kvm);
7737
7738         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7739         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7740
7741         kvm_page_track_init(kvm);
7742         kvm_mmu_init_vm(kvm);
7743
7744         if (kvm_x86_ops->vm_init)
7745                 return kvm_x86_ops->vm_init(kvm);
7746
7747         return 0;
7748 }
7749
7750 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7751 {
7752         int r;
7753         r = vcpu_load(vcpu);
7754         BUG_ON(r);
7755         kvm_mmu_unload(vcpu);
7756         vcpu_put(vcpu);
7757 }
7758
7759 static void kvm_free_vcpus(struct kvm *kvm)
7760 {
7761         unsigned int i;
7762         struct kvm_vcpu *vcpu;
7763
7764         /*
7765          * Unpin any mmu pages first.
7766          */
7767         kvm_for_each_vcpu(i, vcpu, kvm) {
7768                 kvm_clear_async_pf_completion_queue(vcpu);
7769                 kvm_unload_vcpu_mmu(vcpu);
7770         }
7771         kvm_for_each_vcpu(i, vcpu, kvm)
7772                 kvm_arch_vcpu_free(vcpu);
7773
7774         mutex_lock(&kvm->lock);
7775         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7776                 kvm->vcpus[i] = NULL;
7777
7778         atomic_set(&kvm->online_vcpus, 0);
7779         mutex_unlock(&kvm->lock);
7780 }
7781
7782 void kvm_arch_sync_events(struct kvm *kvm)
7783 {
7784         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7785         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7786         kvm_free_all_assigned_devices(kvm);
7787         kvm_free_pit(kvm);
7788 }
7789
7790 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7791 {
7792         int i, r;
7793         unsigned long hva;
7794         struct kvm_memslots *slots = kvm_memslots(kvm);
7795         struct kvm_memory_slot *slot, old;
7796
7797         /* Called with kvm->slots_lock held.  */
7798         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
7799                 return -EINVAL;
7800
7801         slot = id_to_memslot(slots, id);
7802         if (size) {
7803                 if (slot->npages)
7804                         return -EEXIST;
7805
7806                 /*
7807                  * MAP_SHARED to prevent internal slot pages from being moved
7808                  * by fork()/COW.
7809                  */
7810                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
7811                               MAP_SHARED | MAP_ANONYMOUS, 0);
7812                 if (IS_ERR((void *)hva))
7813                         return PTR_ERR((void *)hva);
7814         } else {
7815                 if (!slot->npages)
7816                         return 0;
7817
7818                 hva = 0;
7819         }
7820
7821         old = *slot;
7822         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7823                 struct kvm_userspace_memory_region m;
7824
7825                 m.slot = id | (i << 16);
7826                 m.flags = 0;
7827                 m.guest_phys_addr = gpa;
7828                 m.userspace_addr = hva;
7829                 m.memory_size = size;
7830                 r = __kvm_set_memory_region(kvm, &m);
7831                 if (r < 0)
7832                         return r;
7833         }
7834
7835         if (!size) {
7836                 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
7837                 WARN_ON(r < 0);
7838         }
7839
7840         return 0;
7841 }
7842 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7843
7844 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7845 {
7846         int r;
7847
7848         mutex_lock(&kvm->slots_lock);
7849         r = __x86_set_memory_region(kvm, id, gpa, size);
7850         mutex_unlock(&kvm->slots_lock);
7851
7852         return r;
7853 }
7854 EXPORT_SYMBOL_GPL(x86_set_memory_region);
7855
7856 void kvm_arch_destroy_vm(struct kvm *kvm)
7857 {
7858         if (current->mm == kvm->mm) {
7859                 /*
7860                  * Free memory regions allocated on behalf of userspace,
7861                  * unless the the memory map has changed due to process exit
7862                  * or fd copying.
7863                  */
7864                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
7865                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
7866                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
7867         }
7868         if (kvm_x86_ops->vm_destroy)
7869                 kvm_x86_ops->vm_destroy(kvm);
7870         kvm_iommu_unmap_guest(kvm);
7871         kfree(kvm->arch.vpic);
7872         kfree(kvm->arch.vioapic);
7873         kvm_free_vcpus(kvm);
7874         kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7875         kvm_mmu_uninit_vm(kvm);
7876 }
7877
7878 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7879                            struct kvm_memory_slot *dont)
7880 {
7881         int i;
7882
7883         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7884                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7885                         kvfree(free->arch.rmap[i]);
7886                         free->arch.rmap[i] = NULL;
7887                 }
7888                 if (i == 0)
7889                         continue;
7890
7891                 if (!dont || free->arch.lpage_info[i - 1] !=
7892                              dont->arch.lpage_info[i - 1]) {
7893                         kvfree(free->arch.lpage_info[i - 1]);
7894                         free->arch.lpage_info[i - 1] = NULL;
7895                 }
7896         }
7897
7898         kvm_page_track_free_memslot(free, dont);
7899 }
7900
7901 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7902                             unsigned long npages)
7903 {
7904         int i;
7905
7906         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7907                 struct kvm_lpage_info *linfo;
7908                 unsigned long ugfn;
7909                 int lpages;
7910                 int level = i + 1;
7911
7912                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7913                                       slot->base_gfn, level) + 1;
7914
7915                 slot->arch.rmap[i] =
7916                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7917                 if (!slot->arch.rmap[i])
7918                         goto out_free;
7919                 if (i == 0)
7920                         continue;
7921
7922                 linfo = kvm_kvzalloc(lpages * sizeof(*linfo));
7923                 if (!linfo)
7924                         goto out_free;
7925
7926                 slot->arch.lpage_info[i - 1] = linfo;
7927
7928                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7929                         linfo[0].disallow_lpage = 1;
7930                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7931                         linfo[lpages - 1].disallow_lpage = 1;
7932                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7933                 /*
7934                  * If the gfn and userspace address are not aligned wrt each
7935                  * other, or if explicitly asked to, disable large page
7936                  * support for this slot
7937                  */
7938                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7939                     !kvm_largepages_enabled()) {
7940                         unsigned long j;
7941
7942                         for (j = 0; j < lpages; ++j)
7943                                 linfo[j].disallow_lpage = 1;
7944                 }
7945         }
7946
7947         if (kvm_page_track_create_memslot(slot, npages))
7948                 goto out_free;
7949
7950         return 0;
7951
7952 out_free:
7953         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7954                 kvfree(slot->arch.rmap[i]);
7955                 slot->arch.rmap[i] = NULL;
7956                 if (i == 0)
7957                         continue;
7958
7959                 kvfree(slot->arch.lpage_info[i - 1]);
7960                 slot->arch.lpage_info[i - 1] = NULL;
7961         }
7962         return -ENOMEM;
7963 }
7964
7965 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
7966 {
7967         /*
7968          * memslots->generation has been incremented.
7969          * mmio generation may have reached its maximum value.
7970          */
7971         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
7972 }
7973
7974 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7975                                 struct kvm_memory_slot *memslot,
7976                                 const struct kvm_userspace_memory_region *mem,
7977                                 enum kvm_mr_change change)
7978 {
7979         return 0;
7980 }
7981
7982 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
7983                                      struct kvm_memory_slot *new)
7984 {
7985         /* Still write protect RO slot */
7986         if (new->flags & KVM_MEM_READONLY) {
7987                 kvm_mmu_slot_remove_write_access(kvm, new);
7988                 return;
7989         }
7990
7991         /*
7992          * Call kvm_x86_ops dirty logging hooks when they are valid.
7993          *
7994          * kvm_x86_ops->slot_disable_log_dirty is called when:
7995          *
7996          *  - KVM_MR_CREATE with dirty logging is disabled
7997          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
7998          *
7999          * The reason is, in case of PML, we need to set D-bit for any slots
8000          * with dirty logging disabled in order to eliminate unnecessary GPA
8001          * logging in PML buffer (and potential PML buffer full VMEXT). This
8002          * guarantees leaving PML enabled during guest's lifetime won't have
8003          * any additonal overhead from PML when guest is running with dirty
8004          * logging disabled for memory slots.
8005          *
8006          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8007          * to dirty logging mode.
8008          *
8009          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8010          *
8011          * In case of write protect:
8012          *
8013          * Write protect all pages for dirty logging.
8014          *
8015          * All the sptes including the large sptes which point to this
8016          * slot are set to readonly. We can not create any new large
8017          * spte on this slot until the end of the logging.
8018          *
8019          * See the comments in fast_page_fault().
8020          */
8021         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8022                 if (kvm_x86_ops->slot_enable_log_dirty)
8023                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8024                 else
8025                         kvm_mmu_slot_remove_write_access(kvm, new);
8026         } else {
8027                 if (kvm_x86_ops->slot_disable_log_dirty)
8028                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8029         }
8030 }
8031
8032 void kvm_arch_commit_memory_region(struct kvm *kvm,
8033                                 const struct kvm_userspace_memory_region *mem,
8034                                 const struct kvm_memory_slot *old,
8035                                 const struct kvm_memory_slot *new,
8036                                 enum kvm_mr_change change)
8037 {
8038         int nr_mmu_pages = 0;
8039
8040         if (!kvm->arch.n_requested_mmu_pages)
8041                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8042
8043         if (nr_mmu_pages)
8044                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8045
8046         /*
8047          * Dirty logging tracks sptes in 4k granularity, meaning that large
8048          * sptes have to be split.  If live migration is successful, the guest
8049          * in the source machine will be destroyed and large sptes will be
8050          * created in the destination. However, if the guest continues to run
8051          * in the source machine (for example if live migration fails), small
8052          * sptes will remain around and cause bad performance.
8053          *
8054          * Scan sptes if dirty logging has been stopped, dropping those
8055          * which can be collapsed into a single large-page spte.  Later
8056          * page faults will create the large-page sptes.
8057          */
8058         if ((change != KVM_MR_DELETE) &&
8059                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8060                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8061                 kvm_mmu_zap_collapsible_sptes(kvm, new);
8062
8063         /*
8064          * Set up write protection and/or dirty logging for the new slot.
8065          *
8066          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8067          * been zapped so no dirty logging staff is needed for old slot. For
8068          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8069          * new and it's also covered when dealing with the new slot.
8070          *
8071          * FIXME: const-ify all uses of struct kvm_memory_slot.
8072          */
8073         if (change != KVM_MR_DELETE)
8074                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8075 }
8076
8077 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8078 {
8079         kvm_mmu_invalidate_zap_all_pages(kvm);
8080 }
8081
8082 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8083                                    struct kvm_memory_slot *slot)
8084 {
8085         kvm_mmu_invalidate_zap_all_pages(kvm);
8086 }
8087
8088 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8089 {
8090         if (!list_empty_careful(&vcpu->async_pf.done))
8091                 return true;
8092
8093         if (kvm_apic_has_events(vcpu))
8094                 return true;
8095
8096         if (vcpu->arch.pv.pv_unhalted)
8097                 return true;
8098
8099         if (atomic_read(&vcpu->arch.nmi_queued))
8100                 return true;
8101
8102         if (test_bit(KVM_REQ_SMI, &vcpu->requests))
8103                 return true;
8104
8105         if (kvm_arch_interrupt_allowed(vcpu) &&
8106             kvm_cpu_has_interrupt(vcpu))
8107                 return true;
8108
8109         if (kvm_hv_has_stimer_pending(vcpu))
8110                 return true;
8111
8112         return false;
8113 }
8114
8115 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8116 {
8117         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8118                 kvm_x86_ops->check_nested_events(vcpu, false);
8119
8120         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8121 }
8122
8123 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8124 {
8125         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8126 }
8127
8128 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8129 {
8130         return kvm_x86_ops->interrupt_allowed(vcpu);
8131 }
8132
8133 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8134 {
8135         if (is_64_bit_mode(vcpu))
8136                 return kvm_rip_read(vcpu);
8137         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8138                      kvm_rip_read(vcpu));
8139 }
8140 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8141
8142 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8143 {
8144         return kvm_get_linear_rip(vcpu) == linear_rip;
8145 }
8146 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8147
8148 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8149 {
8150         unsigned long rflags;
8151
8152         rflags = kvm_x86_ops->get_rflags(vcpu);
8153         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8154                 rflags &= ~X86_EFLAGS_TF;
8155         return rflags;
8156 }
8157 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8158
8159 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8160 {
8161         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8162             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8163                 rflags |= X86_EFLAGS_TF;
8164         kvm_x86_ops->set_rflags(vcpu, rflags);
8165 }
8166
8167 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8168 {
8169         __kvm_set_rflags(vcpu, rflags);
8170         kvm_make_request(KVM_REQ_EVENT, vcpu);
8171 }
8172 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8173
8174 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8175 {
8176         int r;
8177
8178         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8179               work->wakeup_all)
8180                 return;
8181
8182         r = kvm_mmu_reload(vcpu);
8183         if (unlikely(r))
8184                 return;
8185
8186         if (!vcpu->arch.mmu.direct_map &&
8187               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8188                 return;
8189
8190         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8191 }
8192
8193 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8194 {
8195         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8196 }
8197
8198 static inline u32 kvm_async_pf_next_probe(u32 key)
8199 {
8200         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8201 }
8202
8203 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8204 {
8205         u32 key = kvm_async_pf_hash_fn(gfn);
8206
8207         while (vcpu->arch.apf.gfns[key] != ~0)
8208                 key = kvm_async_pf_next_probe(key);
8209
8210         vcpu->arch.apf.gfns[key] = gfn;
8211 }
8212
8213 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8214 {
8215         int i;
8216         u32 key = kvm_async_pf_hash_fn(gfn);
8217
8218         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8219                      (vcpu->arch.apf.gfns[key] != gfn &&
8220                       vcpu->arch.apf.gfns[key] != ~0); i++)
8221                 key = kvm_async_pf_next_probe(key);
8222
8223         return key;
8224 }
8225
8226 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8227 {
8228         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8229 }
8230
8231 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8232 {
8233         u32 i, j, k;
8234
8235         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8236         while (true) {
8237                 vcpu->arch.apf.gfns[i] = ~0;
8238                 do {
8239                         j = kvm_async_pf_next_probe(j);
8240                         if (vcpu->arch.apf.gfns[j] == ~0)
8241                                 return;
8242                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8243                         /*
8244                          * k lies cyclically in ]i,j]
8245                          * |    i.k.j |
8246                          * |....j i.k.| or  |.k..j i...|
8247                          */
8248                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8249                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8250                 i = j;
8251         }
8252 }
8253
8254 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8255 {
8256
8257         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8258                                       sizeof(val));
8259 }
8260
8261 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8262                                      struct kvm_async_pf *work)
8263 {
8264         struct x86_exception fault;
8265
8266         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8267         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8268
8269         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8270             (vcpu->arch.apf.send_user_only &&
8271              kvm_x86_ops->get_cpl(vcpu) == 0))
8272                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8273         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8274                 fault.vector = PF_VECTOR;
8275                 fault.error_code_valid = true;
8276                 fault.error_code = 0;
8277                 fault.nested_page_fault = false;
8278                 fault.address = work->arch.token;
8279                 kvm_inject_page_fault(vcpu, &fault);
8280         }
8281 }
8282
8283 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8284                                  struct kvm_async_pf *work)
8285 {
8286         struct x86_exception fault;
8287
8288         trace_kvm_async_pf_ready(work->arch.token, work->gva);
8289         if (work->wakeup_all)
8290                 work->arch.token = ~0; /* broadcast wakeup */
8291         else
8292                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8293
8294         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8295             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8296                 fault.vector = PF_VECTOR;
8297                 fault.error_code_valid = true;
8298                 fault.error_code = 0;
8299                 fault.nested_page_fault = false;
8300                 fault.address = work->arch.token;
8301                 kvm_inject_page_fault(vcpu, &fault);
8302         }
8303         vcpu->arch.apf.halted = false;
8304         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8305 }
8306
8307 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8308 {
8309         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8310                 return true;
8311         else
8312                 return !kvm_event_needs_reinjection(vcpu) &&
8313                         kvm_x86_ops->interrupt_allowed(vcpu);
8314 }
8315
8316 void kvm_arch_start_assignment(struct kvm *kvm)
8317 {
8318         atomic_inc(&kvm->arch.assigned_device_count);
8319 }
8320 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8321
8322 void kvm_arch_end_assignment(struct kvm *kvm)
8323 {
8324         atomic_dec(&kvm->arch.assigned_device_count);
8325 }
8326 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8327
8328 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8329 {
8330         return atomic_read(&kvm->arch.assigned_device_count);
8331 }
8332 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8333
8334 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8335 {
8336         atomic_inc(&kvm->arch.noncoherent_dma_count);
8337 }
8338 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8339
8340 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8341 {
8342         atomic_dec(&kvm->arch.noncoherent_dma_count);
8343 }
8344 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8345
8346 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8347 {
8348         return atomic_read(&kvm->arch.noncoherent_dma_count);
8349 }
8350 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8351
8352 bool kvm_arch_has_irq_bypass(void)
8353 {
8354         return kvm_x86_ops->update_pi_irte != NULL;
8355 }
8356
8357 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8358                                       struct irq_bypass_producer *prod)
8359 {
8360         struct kvm_kernel_irqfd *irqfd =
8361                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8362
8363         irqfd->producer = prod;
8364
8365         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8366                                            prod->irq, irqfd->gsi, 1);
8367 }
8368
8369 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8370                                       struct irq_bypass_producer *prod)
8371 {
8372         int ret;
8373         struct kvm_kernel_irqfd *irqfd =
8374                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8375
8376         WARN_ON(irqfd->producer != prod);
8377         irqfd->producer = NULL;
8378
8379         /*
8380          * When producer of consumer is unregistered, we change back to
8381          * remapped mode, so we can re-use the current implementation
8382          * when the irq is masked/disabed or the consumer side (KVM
8383          * int this case doesn't want to receive the interrupts.
8384         */
8385         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8386         if (ret)
8387                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8388                        " fails: %d\n", irqfd->consumer.token, ret);
8389 }
8390
8391 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8392                                    uint32_t guest_irq, bool set)
8393 {
8394         if (!kvm_x86_ops->update_pi_irte)
8395                 return -EINVAL;
8396
8397         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8398 }
8399
8400 bool kvm_vector_hashing_enabled(void)
8401 {
8402         return vector_hashing;
8403 }
8404 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8405
8406 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8407 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8408 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8409 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8410 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8411 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8412 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8413 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8414 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8415 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8416 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8417 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8418 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8419 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8420 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8421 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8422 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8423 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8424 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);