Merge tag 'topic/atomic-fixes-2014-12-17' of git://anongit.freedesktop.org/drm-intel...
[cascardo/linux.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31
32 #include <linux/clocksource.h>
33 #include <linux/interrupt.h>
34 #include <linux/kvm.h>
35 #include <linux/fs.h>
36 #include <linux/vmalloc.h>
37 #include <linux/module.h>
38 #include <linux/mman.h>
39 #include <linux/highmem.h>
40 #include <linux/iommu.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/cpufreq.h>
43 #include <linux/user-return-notifier.h>
44 #include <linux/srcu.h>
45 #include <linux/slab.h>
46 #include <linux/perf_event.h>
47 #include <linux/uaccess.h>
48 #include <linux/hash.h>
49 #include <linux/pci.h>
50 #include <linux/timekeeper_internal.h>
51 #include <linux/pvclock_gtod.h>
52 #include <trace/events/kvm.h>
53
54 #define CREATE_TRACE_POINTS
55 #include "trace.h"
56
57 #include <asm/debugreg.h>
58 #include <asm/msr.h>
59 #include <asm/desc.h>
60 #include <asm/mtrr.h>
61 #include <asm/mce.h>
62 #include <asm/i387.h>
63 #include <asm/fpu-internal.h> /* Ugh! */
64 #include <asm/xcr.h>
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67
68 #define MAX_IO_MSRS 256
69 #define KVM_MAX_MCE_BANKS 32
70 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
71
72 #define emul_to_vcpu(ctxt) \
73         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
74
75 /* EFER defaults:
76  * - enable syscall per default because its emulated by KVM
77  * - enable LME and LMA per default on 64 bit KVM
78  */
79 #ifdef CONFIG_X86_64
80 static
81 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
82 #else
83 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
84 #endif
85
86 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
87 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
88
89 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
90 static void process_nmi(struct kvm_vcpu *vcpu);
91 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
92
93 struct kvm_x86_ops *kvm_x86_ops;
94 EXPORT_SYMBOL_GPL(kvm_x86_ops);
95
96 static bool ignore_msrs = 0;
97 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
98
99 unsigned int min_timer_period_us = 500;
100 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
101
102 bool kvm_has_tsc_control;
103 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
104 u32  kvm_max_guest_tsc_khz;
105 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
106
107 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
108 static u32 tsc_tolerance_ppm = 250;
109 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
110
111 static bool backwards_tsc_observed = false;
112
113 #define KVM_NR_SHARED_MSRS 16
114
115 struct kvm_shared_msrs_global {
116         int nr;
117         u32 msrs[KVM_NR_SHARED_MSRS];
118 };
119
120 struct kvm_shared_msrs {
121         struct user_return_notifier urn;
122         bool registered;
123         struct kvm_shared_msr_values {
124                 u64 host;
125                 u64 curr;
126         } values[KVM_NR_SHARED_MSRS];
127 };
128
129 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
130 static struct kvm_shared_msrs __percpu *shared_msrs;
131
132 struct kvm_stats_debugfs_item debugfs_entries[] = {
133         { "pf_fixed", VCPU_STAT(pf_fixed) },
134         { "pf_guest", VCPU_STAT(pf_guest) },
135         { "tlb_flush", VCPU_STAT(tlb_flush) },
136         { "invlpg", VCPU_STAT(invlpg) },
137         { "exits", VCPU_STAT(exits) },
138         { "io_exits", VCPU_STAT(io_exits) },
139         { "mmio_exits", VCPU_STAT(mmio_exits) },
140         { "signal_exits", VCPU_STAT(signal_exits) },
141         { "irq_window", VCPU_STAT(irq_window_exits) },
142         { "nmi_window", VCPU_STAT(nmi_window_exits) },
143         { "halt_exits", VCPU_STAT(halt_exits) },
144         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
145         { "hypercalls", VCPU_STAT(hypercalls) },
146         { "request_irq", VCPU_STAT(request_irq_exits) },
147         { "irq_exits", VCPU_STAT(irq_exits) },
148         { "host_state_reload", VCPU_STAT(host_state_reload) },
149         { "efer_reload", VCPU_STAT(efer_reload) },
150         { "fpu_reload", VCPU_STAT(fpu_reload) },
151         { "insn_emulation", VCPU_STAT(insn_emulation) },
152         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
153         { "irq_injections", VCPU_STAT(irq_injections) },
154         { "nmi_injections", VCPU_STAT(nmi_injections) },
155         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
156         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
157         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
158         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
159         { "mmu_flooded", VM_STAT(mmu_flooded) },
160         { "mmu_recycled", VM_STAT(mmu_recycled) },
161         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
162         { "mmu_unsync", VM_STAT(mmu_unsync) },
163         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
164         { "largepages", VM_STAT(lpages) },
165         { NULL }
166 };
167
168 u64 __read_mostly host_xcr0;
169
170 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
171
172 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
173 {
174         int i;
175         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
176                 vcpu->arch.apf.gfns[i] = ~0;
177 }
178
179 static void kvm_on_user_return(struct user_return_notifier *urn)
180 {
181         unsigned slot;
182         struct kvm_shared_msrs *locals
183                 = container_of(urn, struct kvm_shared_msrs, urn);
184         struct kvm_shared_msr_values *values;
185
186         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
187                 values = &locals->values[slot];
188                 if (values->host != values->curr) {
189                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
190                         values->curr = values->host;
191                 }
192         }
193         locals->registered = false;
194         user_return_notifier_unregister(urn);
195 }
196
197 static void shared_msr_update(unsigned slot, u32 msr)
198 {
199         u64 value;
200         unsigned int cpu = smp_processor_id();
201         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
202
203         /* only read, and nobody should modify it at this time,
204          * so don't need lock */
205         if (slot >= shared_msrs_global.nr) {
206                 printk(KERN_ERR "kvm: invalid MSR slot!");
207                 return;
208         }
209         rdmsrl_safe(msr, &value);
210         smsr->values[slot].host = value;
211         smsr->values[slot].curr = value;
212 }
213
214 void kvm_define_shared_msr(unsigned slot, u32 msr)
215 {
216         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
217         if (slot >= shared_msrs_global.nr)
218                 shared_msrs_global.nr = slot + 1;
219         shared_msrs_global.msrs[slot] = msr;
220         /* we need ensured the shared_msr_global have been updated */
221         smp_wmb();
222 }
223 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
224
225 static void kvm_shared_msr_cpu_online(void)
226 {
227         unsigned i;
228
229         for (i = 0; i < shared_msrs_global.nr; ++i)
230                 shared_msr_update(i, shared_msrs_global.msrs[i]);
231 }
232
233 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
234 {
235         unsigned int cpu = smp_processor_id();
236         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
237         int err;
238
239         if (((value ^ smsr->values[slot].curr) & mask) == 0)
240                 return 0;
241         smsr->values[slot].curr = value;
242         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
243         if (err)
244                 return 1;
245
246         if (!smsr->registered) {
247                 smsr->urn.on_user_return = kvm_on_user_return;
248                 user_return_notifier_register(&smsr->urn);
249                 smsr->registered = true;
250         }
251         return 0;
252 }
253 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
254
255 static void drop_user_return_notifiers(void)
256 {
257         unsigned int cpu = smp_processor_id();
258         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
259
260         if (smsr->registered)
261                 kvm_on_user_return(&smsr->urn);
262 }
263
264 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
265 {
266         return vcpu->arch.apic_base;
267 }
268 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
269
270 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
271 {
272         u64 old_state = vcpu->arch.apic_base &
273                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
274         u64 new_state = msr_info->data &
275                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
276         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
277                 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
278
279         if (!msr_info->host_initiated &&
280             ((msr_info->data & reserved_bits) != 0 ||
281              new_state == X2APIC_ENABLE ||
282              (new_state == MSR_IA32_APICBASE_ENABLE &&
283               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
284              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
285               old_state == 0)))
286                 return 1;
287
288         kvm_lapic_set_base(vcpu, msr_info->data);
289         return 0;
290 }
291 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
292
293 asmlinkage __visible void kvm_spurious_fault(void)
294 {
295         /* Fault while not rebooting.  We want the trace. */
296         BUG();
297 }
298 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
299
300 #define EXCPT_BENIGN            0
301 #define EXCPT_CONTRIBUTORY      1
302 #define EXCPT_PF                2
303
304 static int exception_class(int vector)
305 {
306         switch (vector) {
307         case PF_VECTOR:
308                 return EXCPT_PF;
309         case DE_VECTOR:
310         case TS_VECTOR:
311         case NP_VECTOR:
312         case SS_VECTOR:
313         case GP_VECTOR:
314                 return EXCPT_CONTRIBUTORY;
315         default:
316                 break;
317         }
318         return EXCPT_BENIGN;
319 }
320
321 #define EXCPT_FAULT             0
322 #define EXCPT_TRAP              1
323 #define EXCPT_ABORT             2
324 #define EXCPT_INTERRUPT         3
325
326 static int exception_type(int vector)
327 {
328         unsigned int mask;
329
330         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
331                 return EXCPT_INTERRUPT;
332
333         mask = 1 << vector;
334
335         /* #DB is trap, as instruction watchpoints are handled elsewhere */
336         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
337                 return EXCPT_TRAP;
338
339         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
340                 return EXCPT_ABORT;
341
342         /* Reserved exceptions will result in fault */
343         return EXCPT_FAULT;
344 }
345
346 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
347                 unsigned nr, bool has_error, u32 error_code,
348                 bool reinject)
349 {
350         u32 prev_nr;
351         int class1, class2;
352
353         kvm_make_request(KVM_REQ_EVENT, vcpu);
354
355         if (!vcpu->arch.exception.pending) {
356         queue:
357                 if (has_error && !is_protmode(vcpu))
358                         has_error = false;
359                 vcpu->arch.exception.pending = true;
360                 vcpu->arch.exception.has_error_code = has_error;
361                 vcpu->arch.exception.nr = nr;
362                 vcpu->arch.exception.error_code = error_code;
363                 vcpu->arch.exception.reinject = reinject;
364                 return;
365         }
366
367         /* to check exception */
368         prev_nr = vcpu->arch.exception.nr;
369         if (prev_nr == DF_VECTOR) {
370                 /* triple fault -> shutdown */
371                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
372                 return;
373         }
374         class1 = exception_class(prev_nr);
375         class2 = exception_class(nr);
376         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
377                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
378                 /* generate double fault per SDM Table 5-5 */
379                 vcpu->arch.exception.pending = true;
380                 vcpu->arch.exception.has_error_code = true;
381                 vcpu->arch.exception.nr = DF_VECTOR;
382                 vcpu->arch.exception.error_code = 0;
383         } else
384                 /* replace previous exception with a new one in a hope
385                    that instruction re-execution will regenerate lost
386                    exception */
387                 goto queue;
388 }
389
390 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
391 {
392         kvm_multiple_exception(vcpu, nr, false, 0, false);
393 }
394 EXPORT_SYMBOL_GPL(kvm_queue_exception);
395
396 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
397 {
398         kvm_multiple_exception(vcpu, nr, false, 0, true);
399 }
400 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
401
402 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
403 {
404         if (err)
405                 kvm_inject_gp(vcpu, 0);
406         else
407                 kvm_x86_ops->skip_emulated_instruction(vcpu);
408 }
409 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
410
411 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
412 {
413         ++vcpu->stat.pf_guest;
414         vcpu->arch.cr2 = fault->address;
415         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
416 }
417 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
418
419 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
420 {
421         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
422                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
423         else
424                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
425
426         return fault->nested_page_fault;
427 }
428
429 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
430 {
431         atomic_inc(&vcpu->arch.nmi_queued);
432         kvm_make_request(KVM_REQ_NMI, vcpu);
433 }
434 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
435
436 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
437 {
438         kvm_multiple_exception(vcpu, nr, true, error_code, false);
439 }
440 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
441
442 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
443 {
444         kvm_multiple_exception(vcpu, nr, true, error_code, true);
445 }
446 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
447
448 /*
449  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
450  * a #GP and return false.
451  */
452 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
453 {
454         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
455                 return true;
456         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
457         return false;
458 }
459 EXPORT_SYMBOL_GPL(kvm_require_cpl);
460
461 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
462 {
463         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
464                 return true;
465
466         kvm_queue_exception(vcpu, UD_VECTOR);
467         return false;
468 }
469 EXPORT_SYMBOL_GPL(kvm_require_dr);
470
471 /*
472  * This function will be used to read from the physical memory of the currently
473  * running guest. The difference to kvm_read_guest_page is that this function
474  * can read from guest physical or from the guest's guest physical memory.
475  */
476 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
477                             gfn_t ngfn, void *data, int offset, int len,
478                             u32 access)
479 {
480         struct x86_exception exception;
481         gfn_t real_gfn;
482         gpa_t ngpa;
483
484         ngpa     = gfn_to_gpa(ngfn);
485         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
486         if (real_gfn == UNMAPPED_GVA)
487                 return -EFAULT;
488
489         real_gfn = gpa_to_gfn(real_gfn);
490
491         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
492 }
493 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
494
495 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
496                                void *data, int offset, int len, u32 access)
497 {
498         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
499                                        data, offset, len, access);
500 }
501
502 /*
503  * Load the pae pdptrs.  Return true is they are all valid.
504  */
505 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
506 {
507         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
508         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
509         int i;
510         int ret;
511         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
512
513         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
514                                       offset * sizeof(u64), sizeof(pdpte),
515                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
516         if (ret < 0) {
517                 ret = 0;
518                 goto out;
519         }
520         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
521                 if (is_present_gpte(pdpte[i]) &&
522                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
523                         ret = 0;
524                         goto out;
525                 }
526         }
527         ret = 1;
528
529         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
530         __set_bit(VCPU_EXREG_PDPTR,
531                   (unsigned long *)&vcpu->arch.regs_avail);
532         __set_bit(VCPU_EXREG_PDPTR,
533                   (unsigned long *)&vcpu->arch.regs_dirty);
534 out:
535
536         return ret;
537 }
538 EXPORT_SYMBOL_GPL(load_pdptrs);
539
540 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
541 {
542         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
543         bool changed = true;
544         int offset;
545         gfn_t gfn;
546         int r;
547
548         if (is_long_mode(vcpu) || !is_pae(vcpu))
549                 return false;
550
551         if (!test_bit(VCPU_EXREG_PDPTR,
552                       (unsigned long *)&vcpu->arch.regs_avail))
553                 return true;
554
555         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
556         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
557         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
558                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
559         if (r < 0)
560                 goto out;
561         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
562 out:
563
564         return changed;
565 }
566
567 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
568 {
569         unsigned long old_cr0 = kvm_read_cr0(vcpu);
570         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
571                                     X86_CR0_CD | X86_CR0_NW;
572
573         cr0 |= X86_CR0_ET;
574
575 #ifdef CONFIG_X86_64
576         if (cr0 & 0xffffffff00000000UL)
577                 return 1;
578 #endif
579
580         cr0 &= ~CR0_RESERVED_BITS;
581
582         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
583                 return 1;
584
585         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
586                 return 1;
587
588         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
589 #ifdef CONFIG_X86_64
590                 if ((vcpu->arch.efer & EFER_LME)) {
591                         int cs_db, cs_l;
592
593                         if (!is_pae(vcpu))
594                                 return 1;
595                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
596                         if (cs_l)
597                                 return 1;
598                 } else
599 #endif
600                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
601                                                  kvm_read_cr3(vcpu)))
602                         return 1;
603         }
604
605         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
606                 return 1;
607
608         kvm_x86_ops->set_cr0(vcpu, cr0);
609
610         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
611                 kvm_clear_async_pf_completion_queue(vcpu);
612                 kvm_async_pf_hash_reset(vcpu);
613         }
614
615         if ((cr0 ^ old_cr0) & update_bits)
616                 kvm_mmu_reset_context(vcpu);
617         return 0;
618 }
619 EXPORT_SYMBOL_GPL(kvm_set_cr0);
620
621 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
622 {
623         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
624 }
625 EXPORT_SYMBOL_GPL(kvm_lmsw);
626
627 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
628 {
629         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
630                         !vcpu->guest_xcr0_loaded) {
631                 /* kvm_set_xcr() also depends on this */
632                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
633                 vcpu->guest_xcr0_loaded = 1;
634         }
635 }
636
637 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
638 {
639         if (vcpu->guest_xcr0_loaded) {
640                 if (vcpu->arch.xcr0 != host_xcr0)
641                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
642                 vcpu->guest_xcr0_loaded = 0;
643         }
644 }
645
646 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
647 {
648         u64 xcr0 = xcr;
649         u64 old_xcr0 = vcpu->arch.xcr0;
650         u64 valid_bits;
651
652         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
653         if (index != XCR_XFEATURE_ENABLED_MASK)
654                 return 1;
655         if (!(xcr0 & XSTATE_FP))
656                 return 1;
657         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
658                 return 1;
659
660         /*
661          * Do not allow the guest to set bits that we do not support
662          * saving.  However, xcr0 bit 0 is always set, even if the
663          * emulated CPU does not support XSAVE (see fx_init).
664          */
665         valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
666         if (xcr0 & ~valid_bits)
667                 return 1;
668
669         if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR)))
670                 return 1;
671
672         if (xcr0 & XSTATE_AVX512) {
673                 if (!(xcr0 & XSTATE_YMM))
674                         return 1;
675                 if ((xcr0 & XSTATE_AVX512) != XSTATE_AVX512)
676                         return 1;
677         }
678         kvm_put_guest_xcr0(vcpu);
679         vcpu->arch.xcr0 = xcr0;
680
681         if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK)
682                 kvm_update_cpuid(vcpu);
683         return 0;
684 }
685
686 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
687 {
688         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
689             __kvm_set_xcr(vcpu, index, xcr)) {
690                 kvm_inject_gp(vcpu, 0);
691                 return 1;
692         }
693         return 0;
694 }
695 EXPORT_SYMBOL_GPL(kvm_set_xcr);
696
697 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
698 {
699         unsigned long old_cr4 = kvm_read_cr4(vcpu);
700         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
701                                    X86_CR4_PAE | X86_CR4_SMEP;
702         if (cr4 & CR4_RESERVED_BITS)
703                 return 1;
704
705         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
706                 return 1;
707
708         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
709                 return 1;
710
711         if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
712                 return 1;
713
714         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
715                 return 1;
716
717         if (is_long_mode(vcpu)) {
718                 if (!(cr4 & X86_CR4_PAE))
719                         return 1;
720         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
721                    && ((cr4 ^ old_cr4) & pdptr_bits)
722                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
723                                    kvm_read_cr3(vcpu)))
724                 return 1;
725
726         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
727                 if (!guest_cpuid_has_pcid(vcpu))
728                         return 1;
729
730                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
731                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
732                         return 1;
733         }
734
735         if (kvm_x86_ops->set_cr4(vcpu, cr4))
736                 return 1;
737
738         if (((cr4 ^ old_cr4) & pdptr_bits) ||
739             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
740                 kvm_mmu_reset_context(vcpu);
741
742         if ((cr4 ^ old_cr4) & X86_CR4_SMAP)
743                 update_permission_bitmask(vcpu, vcpu->arch.walk_mmu, false);
744
745         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
746                 kvm_update_cpuid(vcpu);
747
748         return 0;
749 }
750 EXPORT_SYMBOL_GPL(kvm_set_cr4);
751
752 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
753 {
754 #ifdef CONFIG_X86_64
755         cr3 &= ~CR3_PCID_INVD;
756 #endif
757
758         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
759                 kvm_mmu_sync_roots(vcpu);
760                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
761                 return 0;
762         }
763
764         if (is_long_mode(vcpu)) {
765                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
766                         return 1;
767         } else if (is_pae(vcpu) && is_paging(vcpu) &&
768                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
769                 return 1;
770
771         vcpu->arch.cr3 = cr3;
772         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
773         kvm_mmu_new_cr3(vcpu);
774         return 0;
775 }
776 EXPORT_SYMBOL_GPL(kvm_set_cr3);
777
778 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
779 {
780         if (cr8 & CR8_RESERVED_BITS)
781                 return 1;
782         if (irqchip_in_kernel(vcpu->kvm))
783                 kvm_lapic_set_tpr(vcpu, cr8);
784         else
785                 vcpu->arch.cr8 = cr8;
786         return 0;
787 }
788 EXPORT_SYMBOL_GPL(kvm_set_cr8);
789
790 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
791 {
792         if (irqchip_in_kernel(vcpu->kvm))
793                 return kvm_lapic_get_cr8(vcpu);
794         else
795                 return vcpu->arch.cr8;
796 }
797 EXPORT_SYMBOL_GPL(kvm_get_cr8);
798
799 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
800 {
801         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
802                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
803 }
804
805 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
806 {
807         unsigned long dr7;
808
809         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
810                 dr7 = vcpu->arch.guest_debug_dr7;
811         else
812                 dr7 = vcpu->arch.dr7;
813         kvm_x86_ops->set_dr7(vcpu, dr7);
814         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
815         if (dr7 & DR7_BP_EN_MASK)
816                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
817 }
818
819 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
820 {
821         u64 fixed = DR6_FIXED_1;
822
823         if (!guest_cpuid_has_rtm(vcpu))
824                 fixed |= DR6_RTM;
825         return fixed;
826 }
827
828 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
829 {
830         switch (dr) {
831         case 0 ... 3:
832                 vcpu->arch.db[dr] = val;
833                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
834                         vcpu->arch.eff_db[dr] = val;
835                 break;
836         case 4:
837                 /* fall through */
838         case 6:
839                 if (val & 0xffffffff00000000ULL)
840                         return -1; /* #GP */
841                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
842                 kvm_update_dr6(vcpu);
843                 break;
844         case 5:
845                 /* fall through */
846         default: /* 7 */
847                 if (val & 0xffffffff00000000ULL)
848                         return -1; /* #GP */
849                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
850                 kvm_update_dr7(vcpu);
851                 break;
852         }
853
854         return 0;
855 }
856
857 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
858 {
859         if (__kvm_set_dr(vcpu, dr, val)) {
860                 kvm_inject_gp(vcpu, 0);
861                 return 1;
862         }
863         return 0;
864 }
865 EXPORT_SYMBOL_GPL(kvm_set_dr);
866
867 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
868 {
869         switch (dr) {
870         case 0 ... 3:
871                 *val = vcpu->arch.db[dr];
872                 break;
873         case 4:
874                 /* fall through */
875         case 6:
876                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
877                         *val = vcpu->arch.dr6;
878                 else
879                         *val = kvm_x86_ops->get_dr6(vcpu);
880                 break;
881         case 5:
882                 /* fall through */
883         default: /* 7 */
884                 *val = vcpu->arch.dr7;
885                 break;
886         }
887         return 0;
888 }
889 EXPORT_SYMBOL_GPL(kvm_get_dr);
890
891 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
892 {
893         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
894         u64 data;
895         int err;
896
897         err = kvm_pmu_read_pmc(vcpu, ecx, &data);
898         if (err)
899                 return err;
900         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
901         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
902         return err;
903 }
904 EXPORT_SYMBOL_GPL(kvm_rdpmc);
905
906 /*
907  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
908  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
909  *
910  * This list is modified at module load time to reflect the
911  * capabilities of the host cpu. This capabilities test skips MSRs that are
912  * kvm-specific. Those are put in the beginning of the list.
913  */
914
915 #define KVM_SAVE_MSRS_BEGIN     12
916 static u32 msrs_to_save[] = {
917         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
918         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
919         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
920         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
921         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
922         MSR_KVM_PV_EOI_EN,
923         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
924         MSR_STAR,
925 #ifdef CONFIG_X86_64
926         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
927 #endif
928         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
929         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
930 };
931
932 static unsigned num_msrs_to_save;
933
934 static const u32 emulated_msrs[] = {
935         MSR_IA32_TSC_ADJUST,
936         MSR_IA32_TSCDEADLINE,
937         MSR_IA32_MISC_ENABLE,
938         MSR_IA32_MCG_STATUS,
939         MSR_IA32_MCG_CTL,
940 };
941
942 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
943 {
944         if (efer & efer_reserved_bits)
945                 return false;
946
947         if (efer & EFER_FFXSR) {
948                 struct kvm_cpuid_entry2 *feat;
949
950                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
951                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
952                         return false;
953         }
954
955         if (efer & EFER_SVME) {
956                 struct kvm_cpuid_entry2 *feat;
957
958                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
959                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
960                         return false;
961         }
962
963         return true;
964 }
965 EXPORT_SYMBOL_GPL(kvm_valid_efer);
966
967 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
968 {
969         u64 old_efer = vcpu->arch.efer;
970
971         if (!kvm_valid_efer(vcpu, efer))
972                 return 1;
973
974         if (is_paging(vcpu)
975             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
976                 return 1;
977
978         efer &= ~EFER_LMA;
979         efer |= vcpu->arch.efer & EFER_LMA;
980
981         kvm_x86_ops->set_efer(vcpu, efer);
982
983         /* Update reserved bits */
984         if ((efer ^ old_efer) & EFER_NX)
985                 kvm_mmu_reset_context(vcpu);
986
987         return 0;
988 }
989
990 void kvm_enable_efer_bits(u64 mask)
991 {
992        efer_reserved_bits &= ~mask;
993 }
994 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
995
996 /*
997  * Writes msr value into into the appropriate "register".
998  * Returns 0 on success, non-0 otherwise.
999  * Assumes vcpu_load() was already called.
1000  */
1001 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1002 {
1003         switch (msr->index) {
1004         case MSR_FS_BASE:
1005         case MSR_GS_BASE:
1006         case MSR_KERNEL_GS_BASE:
1007         case MSR_CSTAR:
1008         case MSR_LSTAR:
1009                 if (is_noncanonical_address(msr->data))
1010                         return 1;
1011                 break;
1012         case MSR_IA32_SYSENTER_EIP:
1013         case MSR_IA32_SYSENTER_ESP:
1014                 /*
1015                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1016                  * non-canonical address is written on Intel but not on
1017                  * AMD (which ignores the top 32-bits, because it does
1018                  * not implement 64-bit SYSENTER).
1019                  *
1020                  * 64-bit code should hence be able to write a non-canonical
1021                  * value on AMD.  Making the address canonical ensures that
1022                  * vmentry does not fail on Intel after writing a non-canonical
1023                  * value, and that something deterministic happens if the guest
1024                  * invokes 64-bit SYSENTER.
1025                  */
1026                 msr->data = get_canonical(msr->data);
1027         }
1028         return kvm_x86_ops->set_msr(vcpu, msr);
1029 }
1030 EXPORT_SYMBOL_GPL(kvm_set_msr);
1031
1032 /*
1033  * Adapt set_msr() to msr_io()'s calling convention
1034  */
1035 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1036 {
1037         struct msr_data msr;
1038
1039         msr.data = *data;
1040         msr.index = index;
1041         msr.host_initiated = true;
1042         return kvm_set_msr(vcpu, &msr);
1043 }
1044
1045 #ifdef CONFIG_X86_64
1046 struct pvclock_gtod_data {
1047         seqcount_t      seq;
1048
1049         struct { /* extract of a clocksource struct */
1050                 int vclock_mode;
1051                 cycle_t cycle_last;
1052                 cycle_t mask;
1053                 u32     mult;
1054                 u32     shift;
1055         } clock;
1056
1057         u64             boot_ns;
1058         u64             nsec_base;
1059 };
1060
1061 static struct pvclock_gtod_data pvclock_gtod_data;
1062
1063 static void update_pvclock_gtod(struct timekeeper *tk)
1064 {
1065         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1066         u64 boot_ns;
1067
1068         boot_ns = ktime_to_ns(ktime_add(tk->tkr.base_mono, tk->offs_boot));
1069
1070         write_seqcount_begin(&vdata->seq);
1071
1072         /* copy pvclock gtod data */
1073         vdata->clock.vclock_mode        = tk->tkr.clock->archdata.vclock_mode;
1074         vdata->clock.cycle_last         = tk->tkr.cycle_last;
1075         vdata->clock.mask               = tk->tkr.mask;
1076         vdata->clock.mult               = tk->tkr.mult;
1077         vdata->clock.shift              = tk->tkr.shift;
1078
1079         vdata->boot_ns                  = boot_ns;
1080         vdata->nsec_base                = tk->tkr.xtime_nsec;
1081
1082         write_seqcount_end(&vdata->seq);
1083 }
1084 #endif
1085
1086
1087 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1088 {
1089         int version;
1090         int r;
1091         struct pvclock_wall_clock wc;
1092         struct timespec boot;
1093
1094         if (!wall_clock)
1095                 return;
1096
1097         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1098         if (r)
1099                 return;
1100
1101         if (version & 1)
1102                 ++version;  /* first time write, random junk */
1103
1104         ++version;
1105
1106         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1107
1108         /*
1109          * The guest calculates current wall clock time by adding
1110          * system time (updated by kvm_guest_time_update below) to the
1111          * wall clock specified here.  guest system time equals host
1112          * system time for us, thus we must fill in host boot time here.
1113          */
1114         getboottime(&boot);
1115
1116         if (kvm->arch.kvmclock_offset) {
1117                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1118                 boot = timespec_sub(boot, ts);
1119         }
1120         wc.sec = boot.tv_sec;
1121         wc.nsec = boot.tv_nsec;
1122         wc.version = version;
1123
1124         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1125
1126         version++;
1127         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1128 }
1129
1130 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1131 {
1132         uint32_t quotient, remainder;
1133
1134         /* Don't try to replace with do_div(), this one calculates
1135          * "(dividend << 32) / divisor" */
1136         __asm__ ( "divl %4"
1137                   : "=a" (quotient), "=d" (remainder)
1138                   : "0" (0), "1" (dividend), "r" (divisor) );
1139         return quotient;
1140 }
1141
1142 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1143                                s8 *pshift, u32 *pmultiplier)
1144 {
1145         uint64_t scaled64;
1146         int32_t  shift = 0;
1147         uint64_t tps64;
1148         uint32_t tps32;
1149
1150         tps64 = base_khz * 1000LL;
1151         scaled64 = scaled_khz * 1000LL;
1152         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1153                 tps64 >>= 1;
1154                 shift--;
1155         }
1156
1157         tps32 = (uint32_t)tps64;
1158         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1159                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1160                         scaled64 >>= 1;
1161                 else
1162                         tps32 <<= 1;
1163                 shift++;
1164         }
1165
1166         *pshift = shift;
1167         *pmultiplier = div_frac(scaled64, tps32);
1168
1169         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1170                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
1171 }
1172
1173 static inline u64 get_kernel_ns(void)
1174 {
1175         return ktime_get_boot_ns();
1176 }
1177
1178 #ifdef CONFIG_X86_64
1179 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1180 #endif
1181
1182 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1183 unsigned long max_tsc_khz;
1184
1185 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1186 {
1187         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1188                                    vcpu->arch.virtual_tsc_shift);
1189 }
1190
1191 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1192 {
1193         u64 v = (u64)khz * (1000000 + ppm);
1194         do_div(v, 1000000);
1195         return v;
1196 }
1197
1198 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1199 {
1200         u32 thresh_lo, thresh_hi;
1201         int use_scaling = 0;
1202
1203         /* tsc_khz can be zero if TSC calibration fails */
1204         if (this_tsc_khz == 0)
1205                 return;
1206
1207         /* Compute a scale to convert nanoseconds in TSC cycles */
1208         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1209                            &vcpu->arch.virtual_tsc_shift,
1210                            &vcpu->arch.virtual_tsc_mult);
1211         vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1212
1213         /*
1214          * Compute the variation in TSC rate which is acceptable
1215          * within the range of tolerance and decide if the
1216          * rate being applied is within that bounds of the hardware
1217          * rate.  If so, no scaling or compensation need be done.
1218          */
1219         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1220         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1221         if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1222                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1223                 use_scaling = 1;
1224         }
1225         kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1226 }
1227
1228 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1229 {
1230         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1231                                       vcpu->arch.virtual_tsc_mult,
1232                                       vcpu->arch.virtual_tsc_shift);
1233         tsc += vcpu->arch.this_tsc_write;
1234         return tsc;
1235 }
1236
1237 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1238 {
1239 #ifdef CONFIG_X86_64
1240         bool vcpus_matched;
1241         struct kvm_arch *ka = &vcpu->kvm->arch;
1242         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1243
1244         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1245                          atomic_read(&vcpu->kvm->online_vcpus));
1246
1247         /*
1248          * Once the masterclock is enabled, always perform request in
1249          * order to update it.
1250          *
1251          * In order to enable masterclock, the host clocksource must be TSC
1252          * and the vcpus need to have matched TSCs.  When that happens,
1253          * perform request to enable masterclock.
1254          */
1255         if (ka->use_master_clock ||
1256             (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1257                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1258
1259         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1260                             atomic_read(&vcpu->kvm->online_vcpus),
1261                             ka->use_master_clock, gtod->clock.vclock_mode);
1262 #endif
1263 }
1264
1265 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1266 {
1267         u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1268         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1269 }
1270
1271 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1272 {
1273         struct kvm *kvm = vcpu->kvm;
1274         u64 offset, ns, elapsed;
1275         unsigned long flags;
1276         s64 usdiff;
1277         bool matched;
1278         bool already_matched;
1279         u64 data = msr->data;
1280
1281         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1282         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1283         ns = get_kernel_ns();
1284         elapsed = ns - kvm->arch.last_tsc_nsec;
1285
1286         if (vcpu->arch.virtual_tsc_khz) {
1287                 int faulted = 0;
1288
1289                 /* n.b - signed multiplication and division required */
1290                 usdiff = data - kvm->arch.last_tsc_write;
1291 #ifdef CONFIG_X86_64
1292                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1293 #else
1294                 /* do_div() only does unsigned */
1295                 asm("1: idivl %[divisor]\n"
1296                     "2: xor %%edx, %%edx\n"
1297                     "   movl $0, %[faulted]\n"
1298                     "3:\n"
1299                     ".section .fixup,\"ax\"\n"
1300                     "4: movl $1, %[faulted]\n"
1301                     "   jmp  3b\n"
1302                     ".previous\n"
1303
1304                 _ASM_EXTABLE(1b, 4b)
1305
1306                 : "=A"(usdiff), [faulted] "=r" (faulted)
1307                 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1308
1309 #endif
1310                 do_div(elapsed, 1000);
1311                 usdiff -= elapsed;
1312                 if (usdiff < 0)
1313                         usdiff = -usdiff;
1314
1315                 /* idivl overflow => difference is larger than USEC_PER_SEC */
1316                 if (faulted)
1317                         usdiff = USEC_PER_SEC;
1318         } else
1319                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1320
1321         /*
1322          * Special case: TSC write with a small delta (1 second) of virtual
1323          * cycle time against real time is interpreted as an attempt to
1324          * synchronize the CPU.
1325          *
1326          * For a reliable TSC, we can match TSC offsets, and for an unstable
1327          * TSC, we add elapsed time in this computation.  We could let the
1328          * compensation code attempt to catch up if we fall behind, but
1329          * it's better to try to match offsets from the beginning.
1330          */
1331         if (usdiff < USEC_PER_SEC &&
1332             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1333                 if (!check_tsc_unstable()) {
1334                         offset = kvm->arch.cur_tsc_offset;
1335                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1336                 } else {
1337                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1338                         data += delta;
1339                         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1340                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1341                 }
1342                 matched = true;
1343                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1344         } else {
1345                 /*
1346                  * We split periods of matched TSC writes into generations.
1347                  * For each generation, we track the original measured
1348                  * nanosecond time, offset, and write, so if TSCs are in
1349                  * sync, we can match exact offset, and if not, we can match
1350                  * exact software computation in compute_guest_tsc()
1351                  *
1352                  * These values are tracked in kvm->arch.cur_xxx variables.
1353                  */
1354                 kvm->arch.cur_tsc_generation++;
1355                 kvm->arch.cur_tsc_nsec = ns;
1356                 kvm->arch.cur_tsc_write = data;
1357                 kvm->arch.cur_tsc_offset = offset;
1358                 matched = false;
1359                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1360                          kvm->arch.cur_tsc_generation, data);
1361         }
1362
1363         /*
1364          * We also track th most recent recorded KHZ, write and time to
1365          * allow the matching interval to be extended at each write.
1366          */
1367         kvm->arch.last_tsc_nsec = ns;
1368         kvm->arch.last_tsc_write = data;
1369         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1370
1371         vcpu->arch.last_guest_tsc = data;
1372
1373         /* Keep track of which generation this VCPU has synchronized to */
1374         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1375         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1376         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1377
1378         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1379                 update_ia32_tsc_adjust_msr(vcpu, offset);
1380         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1381         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1382
1383         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1384         if (!matched) {
1385                 kvm->arch.nr_vcpus_matched_tsc = 0;
1386         } else if (!already_matched) {
1387                 kvm->arch.nr_vcpus_matched_tsc++;
1388         }
1389
1390         kvm_track_tsc_matching(vcpu);
1391         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1392 }
1393
1394 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1395
1396 #ifdef CONFIG_X86_64
1397
1398 static cycle_t read_tsc(void)
1399 {
1400         cycle_t ret;
1401         u64 last;
1402
1403         /*
1404          * Empirically, a fence (of type that depends on the CPU)
1405          * before rdtsc is enough to ensure that rdtsc is ordered
1406          * with respect to loads.  The various CPU manuals are unclear
1407          * as to whether rdtsc can be reordered with later loads,
1408          * but no one has ever seen it happen.
1409          */
1410         rdtsc_barrier();
1411         ret = (cycle_t)vget_cycles();
1412
1413         last = pvclock_gtod_data.clock.cycle_last;
1414
1415         if (likely(ret >= last))
1416                 return ret;
1417
1418         /*
1419          * GCC likes to generate cmov here, but this branch is extremely
1420          * predictable (it's just a funciton of time and the likely is
1421          * very likely) and there's a data dependence, so force GCC
1422          * to generate a branch instead.  I don't barrier() because
1423          * we don't actually need a barrier, and if this function
1424          * ever gets inlined it will generate worse code.
1425          */
1426         asm volatile ("");
1427         return last;
1428 }
1429
1430 static inline u64 vgettsc(cycle_t *cycle_now)
1431 {
1432         long v;
1433         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1434
1435         *cycle_now = read_tsc();
1436
1437         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1438         return v * gtod->clock.mult;
1439 }
1440
1441 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1442 {
1443         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1444         unsigned long seq;
1445         int mode;
1446         u64 ns;
1447
1448         do {
1449                 seq = read_seqcount_begin(&gtod->seq);
1450                 mode = gtod->clock.vclock_mode;
1451                 ns = gtod->nsec_base;
1452                 ns += vgettsc(cycle_now);
1453                 ns >>= gtod->clock.shift;
1454                 ns += gtod->boot_ns;
1455         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1456         *t = ns;
1457
1458         return mode;
1459 }
1460
1461 /* returns true if host is using tsc clocksource */
1462 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1463 {
1464         /* checked again under seqlock below */
1465         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1466                 return false;
1467
1468         return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1469 }
1470 #endif
1471
1472 /*
1473  *
1474  * Assuming a stable TSC across physical CPUS, and a stable TSC
1475  * across virtual CPUs, the following condition is possible.
1476  * Each numbered line represents an event visible to both
1477  * CPUs at the next numbered event.
1478  *
1479  * "timespecX" represents host monotonic time. "tscX" represents
1480  * RDTSC value.
1481  *
1482  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1483  *
1484  * 1.  read timespec0,tsc0
1485  * 2.                                   | timespec1 = timespec0 + N
1486  *                                      | tsc1 = tsc0 + M
1487  * 3. transition to guest               | transition to guest
1488  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1489  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1490  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1491  *
1492  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1493  *
1494  *      - ret0 < ret1
1495  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1496  *              ...
1497  *      - 0 < N - M => M < N
1498  *
1499  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1500  * always the case (the difference between two distinct xtime instances
1501  * might be smaller then the difference between corresponding TSC reads,
1502  * when updating guest vcpus pvclock areas).
1503  *
1504  * To avoid that problem, do not allow visibility of distinct
1505  * system_timestamp/tsc_timestamp values simultaneously: use a master
1506  * copy of host monotonic time values. Update that master copy
1507  * in lockstep.
1508  *
1509  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1510  *
1511  */
1512
1513 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1514 {
1515 #ifdef CONFIG_X86_64
1516         struct kvm_arch *ka = &kvm->arch;
1517         int vclock_mode;
1518         bool host_tsc_clocksource, vcpus_matched;
1519
1520         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1521                         atomic_read(&kvm->online_vcpus));
1522
1523         /*
1524          * If the host uses TSC clock, then passthrough TSC as stable
1525          * to the guest.
1526          */
1527         host_tsc_clocksource = kvm_get_time_and_clockread(
1528                                         &ka->master_kernel_ns,
1529                                         &ka->master_cycle_now);
1530
1531         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1532                                 && !backwards_tsc_observed;
1533
1534         if (ka->use_master_clock)
1535                 atomic_set(&kvm_guest_has_master_clock, 1);
1536
1537         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1538         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1539                                         vcpus_matched);
1540 #endif
1541 }
1542
1543 static void kvm_gen_update_masterclock(struct kvm *kvm)
1544 {
1545 #ifdef CONFIG_X86_64
1546         int i;
1547         struct kvm_vcpu *vcpu;
1548         struct kvm_arch *ka = &kvm->arch;
1549
1550         spin_lock(&ka->pvclock_gtod_sync_lock);
1551         kvm_make_mclock_inprogress_request(kvm);
1552         /* no guest entries from this point */
1553         pvclock_update_vm_gtod_copy(kvm);
1554
1555         kvm_for_each_vcpu(i, vcpu, kvm)
1556                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1557
1558         /* guest entries allowed */
1559         kvm_for_each_vcpu(i, vcpu, kvm)
1560                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1561
1562         spin_unlock(&ka->pvclock_gtod_sync_lock);
1563 #endif
1564 }
1565
1566 static int kvm_guest_time_update(struct kvm_vcpu *v)
1567 {
1568         unsigned long flags, this_tsc_khz;
1569         struct kvm_vcpu_arch *vcpu = &v->arch;
1570         struct kvm_arch *ka = &v->kvm->arch;
1571         s64 kernel_ns;
1572         u64 tsc_timestamp, host_tsc;
1573         struct pvclock_vcpu_time_info guest_hv_clock;
1574         u8 pvclock_flags;
1575         bool use_master_clock;
1576
1577         kernel_ns = 0;
1578         host_tsc = 0;
1579
1580         /*
1581          * If the host uses TSC clock, then passthrough TSC as stable
1582          * to the guest.
1583          */
1584         spin_lock(&ka->pvclock_gtod_sync_lock);
1585         use_master_clock = ka->use_master_clock;
1586         if (use_master_clock) {
1587                 host_tsc = ka->master_cycle_now;
1588                 kernel_ns = ka->master_kernel_ns;
1589         }
1590         spin_unlock(&ka->pvclock_gtod_sync_lock);
1591
1592         /* Keep irq disabled to prevent changes to the clock */
1593         local_irq_save(flags);
1594         this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1595         if (unlikely(this_tsc_khz == 0)) {
1596                 local_irq_restore(flags);
1597                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1598                 return 1;
1599         }
1600         if (!use_master_clock) {
1601                 host_tsc = native_read_tsc();
1602                 kernel_ns = get_kernel_ns();
1603         }
1604
1605         tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1606
1607         /*
1608          * We may have to catch up the TSC to match elapsed wall clock
1609          * time for two reasons, even if kvmclock is used.
1610          *   1) CPU could have been running below the maximum TSC rate
1611          *   2) Broken TSC compensation resets the base at each VCPU
1612          *      entry to avoid unknown leaps of TSC even when running
1613          *      again on the same CPU.  This may cause apparent elapsed
1614          *      time to disappear, and the guest to stand still or run
1615          *      very slowly.
1616          */
1617         if (vcpu->tsc_catchup) {
1618                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1619                 if (tsc > tsc_timestamp) {
1620                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1621                         tsc_timestamp = tsc;
1622                 }
1623         }
1624
1625         local_irq_restore(flags);
1626
1627         if (!vcpu->pv_time_enabled)
1628                 return 0;
1629
1630         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1631                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1632                                    &vcpu->hv_clock.tsc_shift,
1633                                    &vcpu->hv_clock.tsc_to_system_mul);
1634                 vcpu->hw_tsc_khz = this_tsc_khz;
1635         }
1636
1637         /* With all the info we got, fill in the values */
1638         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1639         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1640         vcpu->last_guest_tsc = tsc_timestamp;
1641
1642         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1643                 &guest_hv_clock, sizeof(guest_hv_clock))))
1644                 return 0;
1645
1646         /*
1647          * The interface expects us to write an even number signaling that the
1648          * update is finished. Since the guest won't see the intermediate
1649          * state, we just increase by 2 at the end.
1650          */
1651         vcpu->hv_clock.version = guest_hv_clock.version + 2;
1652
1653         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1654         pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1655
1656         if (vcpu->pvclock_set_guest_stopped_request) {
1657                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1658                 vcpu->pvclock_set_guest_stopped_request = false;
1659         }
1660
1661         /* If the host uses TSC clocksource, then it is stable */
1662         if (use_master_clock)
1663                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1664
1665         vcpu->hv_clock.flags = pvclock_flags;
1666
1667         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1668
1669         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1670                                 &vcpu->hv_clock,
1671                                 sizeof(vcpu->hv_clock));
1672         return 0;
1673 }
1674
1675 /*
1676  * kvmclock updates which are isolated to a given vcpu, such as
1677  * vcpu->cpu migration, should not allow system_timestamp from
1678  * the rest of the vcpus to remain static. Otherwise ntp frequency
1679  * correction applies to one vcpu's system_timestamp but not
1680  * the others.
1681  *
1682  * So in those cases, request a kvmclock update for all vcpus.
1683  * We need to rate-limit these requests though, as they can
1684  * considerably slow guests that have a large number of vcpus.
1685  * The time for a remote vcpu to update its kvmclock is bound
1686  * by the delay we use to rate-limit the updates.
1687  */
1688
1689 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1690
1691 static void kvmclock_update_fn(struct work_struct *work)
1692 {
1693         int i;
1694         struct delayed_work *dwork = to_delayed_work(work);
1695         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1696                                            kvmclock_update_work);
1697         struct kvm *kvm = container_of(ka, struct kvm, arch);
1698         struct kvm_vcpu *vcpu;
1699
1700         kvm_for_each_vcpu(i, vcpu, kvm) {
1701                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1702                 kvm_vcpu_kick(vcpu);
1703         }
1704 }
1705
1706 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1707 {
1708         struct kvm *kvm = v->kvm;
1709
1710         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1711         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1712                                         KVMCLOCK_UPDATE_DELAY);
1713 }
1714
1715 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1716
1717 static void kvmclock_sync_fn(struct work_struct *work)
1718 {
1719         struct delayed_work *dwork = to_delayed_work(work);
1720         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1721                                            kvmclock_sync_work);
1722         struct kvm *kvm = container_of(ka, struct kvm, arch);
1723
1724         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1725         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1726                                         KVMCLOCK_SYNC_PERIOD);
1727 }
1728
1729 static bool msr_mtrr_valid(unsigned msr)
1730 {
1731         switch (msr) {
1732         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1733         case MSR_MTRRfix64K_00000:
1734         case MSR_MTRRfix16K_80000:
1735         case MSR_MTRRfix16K_A0000:
1736         case MSR_MTRRfix4K_C0000:
1737         case MSR_MTRRfix4K_C8000:
1738         case MSR_MTRRfix4K_D0000:
1739         case MSR_MTRRfix4K_D8000:
1740         case MSR_MTRRfix4K_E0000:
1741         case MSR_MTRRfix4K_E8000:
1742         case MSR_MTRRfix4K_F0000:
1743         case MSR_MTRRfix4K_F8000:
1744         case MSR_MTRRdefType:
1745         case MSR_IA32_CR_PAT:
1746                 return true;
1747         case 0x2f8:
1748                 return true;
1749         }
1750         return false;
1751 }
1752
1753 static bool valid_pat_type(unsigned t)
1754 {
1755         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1756 }
1757
1758 static bool valid_mtrr_type(unsigned t)
1759 {
1760         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1761 }
1762
1763 bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1764 {
1765         int i;
1766         u64 mask;
1767
1768         if (!msr_mtrr_valid(msr))
1769                 return false;
1770
1771         if (msr == MSR_IA32_CR_PAT) {
1772                 for (i = 0; i < 8; i++)
1773                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1774                                 return false;
1775                 return true;
1776         } else if (msr == MSR_MTRRdefType) {
1777                 if (data & ~0xcff)
1778                         return false;
1779                 return valid_mtrr_type(data & 0xff);
1780         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1781                 for (i = 0; i < 8 ; i++)
1782                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1783                                 return false;
1784                 return true;
1785         }
1786
1787         /* variable MTRRs */
1788         WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
1789
1790         mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
1791         if ((msr & 1) == 0) {
1792                 /* MTRR base */
1793                 if (!valid_mtrr_type(data & 0xff))
1794                         return false;
1795                 mask |= 0xf00;
1796         } else
1797                 /* MTRR mask */
1798                 mask |= 0x7ff;
1799         if (data & mask) {
1800                 kvm_inject_gp(vcpu, 0);
1801                 return false;
1802         }
1803
1804         return true;
1805 }
1806 EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
1807
1808 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1809 {
1810         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1811
1812         if (!kvm_mtrr_valid(vcpu, msr, data))
1813                 return 1;
1814
1815         if (msr == MSR_MTRRdefType) {
1816                 vcpu->arch.mtrr_state.def_type = data;
1817                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1818         } else if (msr == MSR_MTRRfix64K_00000)
1819                 p[0] = data;
1820         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1821                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1822         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1823                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1824         else if (msr == MSR_IA32_CR_PAT)
1825                 vcpu->arch.pat = data;
1826         else {  /* Variable MTRRs */
1827                 int idx, is_mtrr_mask;
1828                 u64 *pt;
1829
1830                 idx = (msr - 0x200) / 2;
1831                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1832                 if (!is_mtrr_mask)
1833                         pt =
1834                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1835                 else
1836                         pt =
1837                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1838                 *pt = data;
1839         }
1840
1841         kvm_mmu_reset_context(vcpu);
1842         return 0;
1843 }
1844
1845 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1846 {
1847         u64 mcg_cap = vcpu->arch.mcg_cap;
1848         unsigned bank_num = mcg_cap & 0xff;
1849
1850         switch (msr) {
1851         case MSR_IA32_MCG_STATUS:
1852                 vcpu->arch.mcg_status = data;
1853                 break;
1854         case MSR_IA32_MCG_CTL:
1855                 if (!(mcg_cap & MCG_CTL_P))
1856                         return 1;
1857                 if (data != 0 && data != ~(u64)0)
1858                         return -1;
1859                 vcpu->arch.mcg_ctl = data;
1860                 break;
1861         default:
1862                 if (msr >= MSR_IA32_MC0_CTL &&
1863                     msr < MSR_IA32_MCx_CTL(bank_num)) {
1864                         u32 offset = msr - MSR_IA32_MC0_CTL;
1865                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1866                          * some Linux kernels though clear bit 10 in bank 4 to
1867                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1868                          * this to avoid an uncatched #GP in the guest
1869                          */
1870                         if ((offset & 0x3) == 0 &&
1871                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1872                                 return -1;
1873                         vcpu->arch.mce_banks[offset] = data;
1874                         break;
1875                 }
1876                 return 1;
1877         }
1878         return 0;
1879 }
1880
1881 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1882 {
1883         struct kvm *kvm = vcpu->kvm;
1884         int lm = is_long_mode(vcpu);
1885         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1886                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1887         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1888                 : kvm->arch.xen_hvm_config.blob_size_32;
1889         u32 page_num = data & ~PAGE_MASK;
1890         u64 page_addr = data & PAGE_MASK;
1891         u8 *page;
1892         int r;
1893
1894         r = -E2BIG;
1895         if (page_num >= blob_size)
1896                 goto out;
1897         r = -ENOMEM;
1898         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1899         if (IS_ERR(page)) {
1900                 r = PTR_ERR(page);
1901                 goto out;
1902         }
1903         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1904                 goto out_free;
1905         r = 0;
1906 out_free:
1907         kfree(page);
1908 out:
1909         return r;
1910 }
1911
1912 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1913 {
1914         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1915 }
1916
1917 static bool kvm_hv_msr_partition_wide(u32 msr)
1918 {
1919         bool r = false;
1920         switch (msr) {
1921         case HV_X64_MSR_GUEST_OS_ID:
1922         case HV_X64_MSR_HYPERCALL:
1923         case HV_X64_MSR_REFERENCE_TSC:
1924         case HV_X64_MSR_TIME_REF_COUNT:
1925                 r = true;
1926                 break;
1927         }
1928
1929         return r;
1930 }
1931
1932 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1933 {
1934         struct kvm *kvm = vcpu->kvm;
1935
1936         switch (msr) {
1937         case HV_X64_MSR_GUEST_OS_ID:
1938                 kvm->arch.hv_guest_os_id = data;
1939                 /* setting guest os id to zero disables hypercall page */
1940                 if (!kvm->arch.hv_guest_os_id)
1941                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1942                 break;
1943         case HV_X64_MSR_HYPERCALL: {
1944                 u64 gfn;
1945                 unsigned long addr;
1946                 u8 instructions[4];
1947
1948                 /* if guest os id is not set hypercall should remain disabled */
1949                 if (!kvm->arch.hv_guest_os_id)
1950                         break;
1951                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1952                         kvm->arch.hv_hypercall = data;
1953                         break;
1954                 }
1955                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1956                 addr = gfn_to_hva(kvm, gfn);
1957                 if (kvm_is_error_hva(addr))
1958                         return 1;
1959                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1960                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1961                 if (__copy_to_user((void __user *)addr, instructions, 4))
1962                         return 1;
1963                 kvm->arch.hv_hypercall = data;
1964                 mark_page_dirty(kvm, gfn);
1965                 break;
1966         }
1967         case HV_X64_MSR_REFERENCE_TSC: {
1968                 u64 gfn;
1969                 HV_REFERENCE_TSC_PAGE tsc_ref;
1970                 memset(&tsc_ref, 0, sizeof(tsc_ref));
1971                 kvm->arch.hv_tsc_page = data;
1972                 if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1973                         break;
1974                 gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1975                 if (kvm_write_guest(kvm, gfn << HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT,
1976                         &tsc_ref, sizeof(tsc_ref)))
1977                         return 1;
1978                 mark_page_dirty(kvm, gfn);
1979                 break;
1980         }
1981         default:
1982                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1983                             "data 0x%llx\n", msr, data);
1984                 return 1;
1985         }
1986         return 0;
1987 }
1988
1989 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1990 {
1991         switch (msr) {
1992         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1993                 u64 gfn;
1994                 unsigned long addr;
1995
1996                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1997                         vcpu->arch.hv_vapic = data;
1998                         if (kvm_lapic_enable_pv_eoi(vcpu, 0))
1999                                 return 1;
2000                         break;
2001                 }
2002                 gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT;
2003                 addr = gfn_to_hva(vcpu->kvm, gfn);
2004                 if (kvm_is_error_hva(addr))
2005                         return 1;
2006                 if (__clear_user((void __user *)addr, PAGE_SIZE))
2007                         return 1;
2008                 vcpu->arch.hv_vapic = data;
2009                 mark_page_dirty(vcpu->kvm, gfn);
2010                 if (kvm_lapic_enable_pv_eoi(vcpu, gfn_to_gpa(gfn) | KVM_MSR_ENABLED))
2011                         return 1;
2012                 break;
2013         }
2014         case HV_X64_MSR_EOI:
2015                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
2016         case HV_X64_MSR_ICR:
2017                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
2018         case HV_X64_MSR_TPR:
2019                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
2020         default:
2021                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
2022                             "data 0x%llx\n", msr, data);
2023                 return 1;
2024         }
2025
2026         return 0;
2027 }
2028
2029 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2030 {
2031         gpa_t gpa = data & ~0x3f;
2032
2033         /* Bits 2:5 are reserved, Should be zero */
2034         if (data & 0x3c)
2035                 return 1;
2036
2037         vcpu->arch.apf.msr_val = data;
2038
2039         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2040                 kvm_clear_async_pf_completion_queue(vcpu);
2041                 kvm_async_pf_hash_reset(vcpu);
2042                 return 0;
2043         }
2044
2045         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2046                                         sizeof(u32)))
2047                 return 1;
2048
2049         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2050         kvm_async_pf_wakeup_all(vcpu);
2051         return 0;
2052 }
2053
2054 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2055 {
2056         vcpu->arch.pv_time_enabled = false;
2057 }
2058
2059 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
2060 {
2061         u64 delta;
2062
2063         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2064                 return;
2065
2066         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2067         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2068         vcpu->arch.st.accum_steal = delta;
2069 }
2070
2071 static void record_steal_time(struct kvm_vcpu *vcpu)
2072 {
2073         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2074                 return;
2075
2076         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2077                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2078                 return;
2079
2080         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2081         vcpu->arch.st.steal.version += 2;
2082         vcpu->arch.st.accum_steal = 0;
2083
2084         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2085                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2086 }
2087
2088 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2089 {
2090         bool pr = false;
2091         u32 msr = msr_info->index;
2092         u64 data = msr_info->data;
2093
2094         switch (msr) {
2095         case MSR_AMD64_NB_CFG:
2096         case MSR_IA32_UCODE_REV:
2097         case MSR_IA32_UCODE_WRITE:
2098         case MSR_VM_HSAVE_PA:
2099         case MSR_AMD64_PATCH_LOADER:
2100         case MSR_AMD64_BU_CFG2:
2101                 break;
2102
2103         case MSR_EFER:
2104                 return set_efer(vcpu, data);
2105         case MSR_K7_HWCR:
2106                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2107                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2108                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2109                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2110                 if (data != 0) {
2111                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2112                                     data);
2113                         return 1;
2114                 }
2115                 break;
2116         case MSR_FAM10H_MMIO_CONF_BASE:
2117                 if (data != 0) {
2118                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2119                                     "0x%llx\n", data);
2120                         return 1;
2121                 }
2122                 break;
2123         case MSR_IA32_DEBUGCTLMSR:
2124                 if (!data) {
2125                         /* We support the non-activated case already */
2126                         break;
2127                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2128                         /* Values other than LBR and BTF are vendor-specific,
2129                            thus reserved and should throw a #GP */
2130                         return 1;
2131                 }
2132                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2133                             __func__, data);
2134                 break;
2135         case 0x200 ... 0x2ff:
2136                 return set_msr_mtrr(vcpu, msr, data);
2137         case MSR_IA32_APICBASE:
2138                 return kvm_set_apic_base(vcpu, msr_info);
2139         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2140                 return kvm_x2apic_msr_write(vcpu, msr, data);
2141         case MSR_IA32_TSCDEADLINE:
2142                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2143                 break;
2144         case MSR_IA32_TSC_ADJUST:
2145                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2146                         if (!msr_info->host_initiated) {
2147                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2148                                 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2149                         }
2150                         vcpu->arch.ia32_tsc_adjust_msr = data;
2151                 }
2152                 break;
2153         case MSR_IA32_MISC_ENABLE:
2154                 vcpu->arch.ia32_misc_enable_msr = data;
2155                 break;
2156         case MSR_KVM_WALL_CLOCK_NEW:
2157         case MSR_KVM_WALL_CLOCK:
2158                 vcpu->kvm->arch.wall_clock = data;
2159                 kvm_write_wall_clock(vcpu->kvm, data);
2160                 break;
2161         case MSR_KVM_SYSTEM_TIME_NEW:
2162         case MSR_KVM_SYSTEM_TIME: {
2163                 u64 gpa_offset;
2164                 kvmclock_reset(vcpu);
2165
2166                 vcpu->arch.time = data;
2167                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2168
2169                 /* we verify if the enable bit is set... */
2170                 if (!(data & 1))
2171                         break;
2172
2173                 gpa_offset = data & ~(PAGE_MASK | 1);
2174
2175                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2176                      &vcpu->arch.pv_time, data & ~1ULL,
2177                      sizeof(struct pvclock_vcpu_time_info)))
2178                         vcpu->arch.pv_time_enabled = false;
2179                 else
2180                         vcpu->arch.pv_time_enabled = true;
2181
2182                 break;
2183         }
2184         case MSR_KVM_ASYNC_PF_EN:
2185                 if (kvm_pv_enable_async_pf(vcpu, data))
2186                         return 1;
2187                 break;
2188         case MSR_KVM_STEAL_TIME:
2189
2190                 if (unlikely(!sched_info_on()))
2191                         return 1;
2192
2193                 if (data & KVM_STEAL_RESERVED_MASK)
2194                         return 1;
2195
2196                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2197                                                 data & KVM_STEAL_VALID_BITS,
2198                                                 sizeof(struct kvm_steal_time)))
2199                         return 1;
2200
2201                 vcpu->arch.st.msr_val = data;
2202
2203                 if (!(data & KVM_MSR_ENABLED))
2204                         break;
2205
2206                 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2207
2208                 preempt_disable();
2209                 accumulate_steal_time(vcpu);
2210                 preempt_enable();
2211
2212                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2213
2214                 break;
2215         case MSR_KVM_PV_EOI_EN:
2216                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2217                         return 1;
2218                 break;
2219
2220         case MSR_IA32_MCG_CTL:
2221         case MSR_IA32_MCG_STATUS:
2222         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2223                 return set_msr_mce(vcpu, msr, data);
2224
2225         /* Performance counters are not protected by a CPUID bit,
2226          * so we should check all of them in the generic path for the sake of
2227          * cross vendor migration.
2228          * Writing a zero into the event select MSRs disables them,
2229          * which we perfectly emulate ;-). Any other value should be at least
2230          * reported, some guests depend on them.
2231          */
2232         case MSR_K7_EVNTSEL0:
2233         case MSR_K7_EVNTSEL1:
2234         case MSR_K7_EVNTSEL2:
2235         case MSR_K7_EVNTSEL3:
2236                 if (data != 0)
2237                         vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2238                                     "0x%x data 0x%llx\n", msr, data);
2239                 break;
2240         /* at least RHEL 4 unconditionally writes to the perfctr registers,
2241          * so we ignore writes to make it happy.
2242          */
2243         case MSR_K7_PERFCTR0:
2244         case MSR_K7_PERFCTR1:
2245         case MSR_K7_PERFCTR2:
2246         case MSR_K7_PERFCTR3:
2247                 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2248                             "0x%x data 0x%llx\n", msr, data);
2249                 break;
2250         case MSR_P6_PERFCTR0:
2251         case MSR_P6_PERFCTR1:
2252                 pr = true;
2253         case MSR_P6_EVNTSEL0:
2254         case MSR_P6_EVNTSEL1:
2255                 if (kvm_pmu_msr(vcpu, msr))
2256                         return kvm_pmu_set_msr(vcpu, msr_info);
2257
2258                 if (pr || data != 0)
2259                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2260                                     "0x%x data 0x%llx\n", msr, data);
2261                 break;
2262         case MSR_K7_CLK_CTL:
2263                 /*
2264                  * Ignore all writes to this no longer documented MSR.
2265                  * Writes are only relevant for old K7 processors,
2266                  * all pre-dating SVM, but a recommended workaround from
2267                  * AMD for these chips. It is possible to specify the
2268                  * affected processor models on the command line, hence
2269                  * the need to ignore the workaround.
2270                  */
2271                 break;
2272         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2273                 if (kvm_hv_msr_partition_wide(msr)) {
2274                         int r;
2275                         mutex_lock(&vcpu->kvm->lock);
2276                         r = set_msr_hyperv_pw(vcpu, msr, data);
2277                         mutex_unlock(&vcpu->kvm->lock);
2278                         return r;
2279                 } else
2280                         return set_msr_hyperv(vcpu, msr, data);
2281                 break;
2282         case MSR_IA32_BBL_CR_CTL3:
2283                 /* Drop writes to this legacy MSR -- see rdmsr
2284                  * counterpart for further detail.
2285                  */
2286                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2287                 break;
2288         case MSR_AMD64_OSVW_ID_LENGTH:
2289                 if (!guest_cpuid_has_osvw(vcpu))
2290                         return 1;
2291                 vcpu->arch.osvw.length = data;
2292                 break;
2293         case MSR_AMD64_OSVW_STATUS:
2294                 if (!guest_cpuid_has_osvw(vcpu))
2295                         return 1;
2296                 vcpu->arch.osvw.status = data;
2297                 break;
2298         default:
2299                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2300                         return xen_hvm_config(vcpu, data);
2301                 if (kvm_pmu_msr(vcpu, msr))
2302                         return kvm_pmu_set_msr(vcpu, msr_info);
2303                 if (!ignore_msrs) {
2304                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2305                                     msr, data);
2306                         return 1;
2307                 } else {
2308                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2309                                     msr, data);
2310                         break;
2311                 }
2312         }
2313         return 0;
2314 }
2315 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2316
2317
2318 /*
2319  * Reads an msr value (of 'msr_index') into 'pdata'.
2320  * Returns 0 on success, non-0 otherwise.
2321  * Assumes vcpu_load() was already called.
2322  */
2323 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2324 {
2325         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2326 }
2327
2328 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2329 {
2330         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2331
2332         if (!msr_mtrr_valid(msr))
2333                 return 1;
2334
2335         if (msr == MSR_MTRRdefType)
2336                 *pdata = vcpu->arch.mtrr_state.def_type +
2337                          (vcpu->arch.mtrr_state.enabled << 10);
2338         else if (msr == MSR_MTRRfix64K_00000)
2339                 *pdata = p[0];
2340         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2341                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2342         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2343                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2344         else if (msr == MSR_IA32_CR_PAT)
2345                 *pdata = vcpu->arch.pat;
2346         else {  /* Variable MTRRs */
2347                 int idx, is_mtrr_mask;
2348                 u64 *pt;
2349
2350                 idx = (msr - 0x200) / 2;
2351                 is_mtrr_mask = msr - 0x200 - 2 * idx;
2352                 if (!is_mtrr_mask)
2353                         pt =
2354                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2355                 else
2356                         pt =
2357                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2358                 *pdata = *pt;
2359         }
2360
2361         return 0;
2362 }
2363
2364 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2365 {
2366         u64 data;
2367         u64 mcg_cap = vcpu->arch.mcg_cap;
2368         unsigned bank_num = mcg_cap & 0xff;
2369
2370         switch (msr) {
2371         case MSR_IA32_P5_MC_ADDR:
2372         case MSR_IA32_P5_MC_TYPE:
2373                 data = 0;
2374                 break;
2375         case MSR_IA32_MCG_CAP:
2376                 data = vcpu->arch.mcg_cap;
2377                 break;
2378         case MSR_IA32_MCG_CTL:
2379                 if (!(mcg_cap & MCG_CTL_P))
2380                         return 1;
2381                 data = vcpu->arch.mcg_ctl;
2382                 break;
2383         case MSR_IA32_MCG_STATUS:
2384                 data = vcpu->arch.mcg_status;
2385                 break;
2386         default:
2387                 if (msr >= MSR_IA32_MC0_CTL &&
2388                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2389                         u32 offset = msr - MSR_IA32_MC0_CTL;
2390                         data = vcpu->arch.mce_banks[offset];
2391                         break;
2392                 }
2393                 return 1;
2394         }
2395         *pdata = data;
2396         return 0;
2397 }
2398
2399 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2400 {
2401         u64 data = 0;
2402         struct kvm *kvm = vcpu->kvm;
2403
2404         switch (msr) {
2405         case HV_X64_MSR_GUEST_OS_ID:
2406                 data = kvm->arch.hv_guest_os_id;
2407                 break;
2408         case HV_X64_MSR_HYPERCALL:
2409                 data = kvm->arch.hv_hypercall;
2410                 break;
2411         case HV_X64_MSR_TIME_REF_COUNT: {
2412                 data =
2413                      div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100);
2414                 break;
2415         }
2416         case HV_X64_MSR_REFERENCE_TSC:
2417                 data = kvm->arch.hv_tsc_page;
2418                 break;
2419         default:
2420                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2421                 return 1;
2422         }
2423
2424         *pdata = data;
2425         return 0;
2426 }
2427
2428 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2429 {
2430         u64 data = 0;
2431
2432         switch (msr) {
2433         case HV_X64_MSR_VP_INDEX: {
2434                 int r;
2435                 struct kvm_vcpu *v;
2436                 kvm_for_each_vcpu(r, v, vcpu->kvm) {
2437                         if (v == vcpu) {
2438                                 data = r;
2439                                 break;
2440                         }
2441                 }
2442                 break;
2443         }
2444         case HV_X64_MSR_EOI:
2445                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2446         case HV_X64_MSR_ICR:
2447                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2448         case HV_X64_MSR_TPR:
2449                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2450         case HV_X64_MSR_APIC_ASSIST_PAGE:
2451                 data = vcpu->arch.hv_vapic;
2452                 break;
2453         default:
2454                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2455                 return 1;
2456         }
2457         *pdata = data;
2458         return 0;
2459 }
2460
2461 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2462 {
2463         u64 data;
2464
2465         switch (msr) {
2466         case MSR_IA32_PLATFORM_ID:
2467         case MSR_IA32_EBL_CR_POWERON:
2468         case MSR_IA32_DEBUGCTLMSR:
2469         case MSR_IA32_LASTBRANCHFROMIP:
2470         case MSR_IA32_LASTBRANCHTOIP:
2471         case MSR_IA32_LASTINTFROMIP:
2472         case MSR_IA32_LASTINTTOIP:
2473         case MSR_K8_SYSCFG:
2474         case MSR_K7_HWCR:
2475         case MSR_VM_HSAVE_PA:
2476         case MSR_K7_EVNTSEL0:
2477         case MSR_K7_EVNTSEL1:
2478         case MSR_K7_EVNTSEL2:
2479         case MSR_K7_EVNTSEL3:
2480         case MSR_K7_PERFCTR0:
2481         case MSR_K7_PERFCTR1:
2482         case MSR_K7_PERFCTR2:
2483         case MSR_K7_PERFCTR3:
2484         case MSR_K8_INT_PENDING_MSG:
2485         case MSR_AMD64_NB_CFG:
2486         case MSR_FAM10H_MMIO_CONF_BASE:
2487         case MSR_AMD64_BU_CFG2:
2488                 data = 0;
2489                 break;
2490         case MSR_P6_PERFCTR0:
2491         case MSR_P6_PERFCTR1:
2492         case MSR_P6_EVNTSEL0:
2493         case MSR_P6_EVNTSEL1:
2494                 if (kvm_pmu_msr(vcpu, msr))
2495                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2496                 data = 0;
2497                 break;
2498         case MSR_IA32_UCODE_REV:
2499                 data = 0x100000000ULL;
2500                 break;
2501         case MSR_MTRRcap:
2502                 data = 0x500 | KVM_NR_VAR_MTRR;
2503                 break;
2504         case 0x200 ... 0x2ff:
2505                 return get_msr_mtrr(vcpu, msr, pdata);
2506         case 0xcd: /* fsb frequency */
2507                 data = 3;
2508                 break;
2509                 /*
2510                  * MSR_EBC_FREQUENCY_ID
2511                  * Conservative value valid for even the basic CPU models.
2512                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2513                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2514                  * and 266MHz for model 3, or 4. Set Core Clock
2515                  * Frequency to System Bus Frequency Ratio to 1 (bits
2516                  * 31:24) even though these are only valid for CPU
2517                  * models > 2, however guests may end up dividing or
2518                  * multiplying by zero otherwise.
2519                  */
2520         case MSR_EBC_FREQUENCY_ID:
2521                 data = 1 << 24;
2522                 break;
2523         case MSR_IA32_APICBASE:
2524                 data = kvm_get_apic_base(vcpu);
2525                 break;
2526         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2527                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
2528                 break;
2529         case MSR_IA32_TSCDEADLINE:
2530                 data = kvm_get_lapic_tscdeadline_msr(vcpu);
2531                 break;
2532         case MSR_IA32_TSC_ADJUST:
2533                 data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2534                 break;
2535         case MSR_IA32_MISC_ENABLE:
2536                 data = vcpu->arch.ia32_misc_enable_msr;
2537                 break;
2538         case MSR_IA32_PERF_STATUS:
2539                 /* TSC increment by tick */
2540                 data = 1000ULL;
2541                 /* CPU multiplier */
2542                 data |= (((uint64_t)4ULL) << 40);
2543                 break;
2544         case MSR_EFER:
2545                 data = vcpu->arch.efer;
2546                 break;
2547         case MSR_KVM_WALL_CLOCK:
2548         case MSR_KVM_WALL_CLOCK_NEW:
2549                 data = vcpu->kvm->arch.wall_clock;
2550                 break;
2551         case MSR_KVM_SYSTEM_TIME:
2552         case MSR_KVM_SYSTEM_TIME_NEW:
2553                 data = vcpu->arch.time;
2554                 break;
2555         case MSR_KVM_ASYNC_PF_EN:
2556                 data = vcpu->arch.apf.msr_val;
2557                 break;
2558         case MSR_KVM_STEAL_TIME:
2559                 data = vcpu->arch.st.msr_val;
2560                 break;
2561         case MSR_KVM_PV_EOI_EN:
2562                 data = vcpu->arch.pv_eoi.msr_val;
2563                 break;
2564         case MSR_IA32_P5_MC_ADDR:
2565         case MSR_IA32_P5_MC_TYPE:
2566         case MSR_IA32_MCG_CAP:
2567         case MSR_IA32_MCG_CTL:
2568         case MSR_IA32_MCG_STATUS:
2569         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2570                 return get_msr_mce(vcpu, msr, pdata);
2571         case MSR_K7_CLK_CTL:
2572                 /*
2573                  * Provide expected ramp-up count for K7. All other
2574                  * are set to zero, indicating minimum divisors for
2575                  * every field.
2576                  *
2577                  * This prevents guest kernels on AMD host with CPU
2578                  * type 6, model 8 and higher from exploding due to
2579                  * the rdmsr failing.
2580                  */
2581                 data = 0x20000000;
2582                 break;
2583         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2584                 if (kvm_hv_msr_partition_wide(msr)) {
2585                         int r;
2586                         mutex_lock(&vcpu->kvm->lock);
2587                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
2588                         mutex_unlock(&vcpu->kvm->lock);
2589                         return r;
2590                 } else
2591                         return get_msr_hyperv(vcpu, msr, pdata);
2592                 break;
2593         case MSR_IA32_BBL_CR_CTL3:
2594                 /* This legacy MSR exists but isn't fully documented in current
2595                  * silicon.  It is however accessed by winxp in very narrow
2596                  * scenarios where it sets bit #19, itself documented as
2597                  * a "reserved" bit.  Best effort attempt to source coherent
2598                  * read data here should the balance of the register be
2599                  * interpreted by the guest:
2600                  *
2601                  * L2 cache control register 3: 64GB range, 256KB size,
2602                  * enabled, latency 0x1, configured
2603                  */
2604                 data = 0xbe702111;
2605                 break;
2606         case MSR_AMD64_OSVW_ID_LENGTH:
2607                 if (!guest_cpuid_has_osvw(vcpu))
2608                         return 1;
2609                 data = vcpu->arch.osvw.length;
2610                 break;
2611         case MSR_AMD64_OSVW_STATUS:
2612                 if (!guest_cpuid_has_osvw(vcpu))
2613                         return 1;
2614                 data = vcpu->arch.osvw.status;
2615                 break;
2616         default:
2617                 if (kvm_pmu_msr(vcpu, msr))
2618                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2619                 if (!ignore_msrs) {
2620                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2621                         return 1;
2622                 } else {
2623                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2624                         data = 0;
2625                 }
2626                 break;
2627         }
2628         *pdata = data;
2629         return 0;
2630 }
2631 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2632
2633 /*
2634  * Read or write a bunch of msrs. All parameters are kernel addresses.
2635  *
2636  * @return number of msrs set successfully.
2637  */
2638 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2639                     struct kvm_msr_entry *entries,
2640                     int (*do_msr)(struct kvm_vcpu *vcpu,
2641                                   unsigned index, u64 *data))
2642 {
2643         int i, idx;
2644
2645         idx = srcu_read_lock(&vcpu->kvm->srcu);
2646         for (i = 0; i < msrs->nmsrs; ++i)
2647                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2648                         break;
2649         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2650
2651         return i;
2652 }
2653
2654 /*
2655  * Read or write a bunch of msrs. Parameters are user addresses.
2656  *
2657  * @return number of msrs set successfully.
2658  */
2659 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2660                   int (*do_msr)(struct kvm_vcpu *vcpu,
2661                                 unsigned index, u64 *data),
2662                   int writeback)
2663 {
2664         struct kvm_msrs msrs;
2665         struct kvm_msr_entry *entries;
2666         int r, n;
2667         unsigned size;
2668
2669         r = -EFAULT;
2670         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2671                 goto out;
2672
2673         r = -E2BIG;
2674         if (msrs.nmsrs >= MAX_IO_MSRS)
2675                 goto out;
2676
2677         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2678         entries = memdup_user(user_msrs->entries, size);
2679         if (IS_ERR(entries)) {
2680                 r = PTR_ERR(entries);
2681                 goto out;
2682         }
2683
2684         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2685         if (r < 0)
2686                 goto out_free;
2687
2688         r = -EFAULT;
2689         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2690                 goto out_free;
2691
2692         r = n;
2693
2694 out_free:
2695         kfree(entries);
2696 out:
2697         return r;
2698 }
2699
2700 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2701 {
2702         int r;
2703
2704         switch (ext) {
2705         case KVM_CAP_IRQCHIP:
2706         case KVM_CAP_HLT:
2707         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2708         case KVM_CAP_SET_TSS_ADDR:
2709         case KVM_CAP_EXT_CPUID:
2710         case KVM_CAP_EXT_EMUL_CPUID:
2711         case KVM_CAP_CLOCKSOURCE:
2712         case KVM_CAP_PIT:
2713         case KVM_CAP_NOP_IO_DELAY:
2714         case KVM_CAP_MP_STATE:
2715         case KVM_CAP_SYNC_MMU:
2716         case KVM_CAP_USER_NMI:
2717         case KVM_CAP_REINJECT_CONTROL:
2718         case KVM_CAP_IRQ_INJECT_STATUS:
2719         case KVM_CAP_IRQFD:
2720         case KVM_CAP_IOEVENTFD:
2721         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2722         case KVM_CAP_PIT2:
2723         case KVM_CAP_PIT_STATE2:
2724         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2725         case KVM_CAP_XEN_HVM:
2726         case KVM_CAP_ADJUST_CLOCK:
2727         case KVM_CAP_VCPU_EVENTS:
2728         case KVM_CAP_HYPERV:
2729         case KVM_CAP_HYPERV_VAPIC:
2730         case KVM_CAP_HYPERV_SPIN:
2731         case KVM_CAP_PCI_SEGMENT:
2732         case KVM_CAP_DEBUGREGS:
2733         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2734         case KVM_CAP_XSAVE:
2735         case KVM_CAP_ASYNC_PF:
2736         case KVM_CAP_GET_TSC_KHZ:
2737         case KVM_CAP_KVMCLOCK_CTRL:
2738         case KVM_CAP_READONLY_MEM:
2739         case KVM_CAP_HYPERV_TIME:
2740         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2741 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2742         case KVM_CAP_ASSIGN_DEV_IRQ:
2743         case KVM_CAP_PCI_2_3:
2744 #endif
2745                 r = 1;
2746                 break;
2747         case KVM_CAP_COALESCED_MMIO:
2748                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2749                 break;
2750         case KVM_CAP_VAPIC:
2751                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2752                 break;
2753         case KVM_CAP_NR_VCPUS:
2754                 r = KVM_SOFT_MAX_VCPUS;
2755                 break;
2756         case KVM_CAP_MAX_VCPUS:
2757                 r = KVM_MAX_VCPUS;
2758                 break;
2759         case KVM_CAP_NR_MEMSLOTS:
2760                 r = KVM_USER_MEM_SLOTS;
2761                 break;
2762         case KVM_CAP_PV_MMU:    /* obsolete */
2763                 r = 0;
2764                 break;
2765 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2766         case KVM_CAP_IOMMU:
2767                 r = iommu_present(&pci_bus_type);
2768                 break;
2769 #endif
2770         case KVM_CAP_MCE:
2771                 r = KVM_MAX_MCE_BANKS;
2772                 break;
2773         case KVM_CAP_XCRS:
2774                 r = cpu_has_xsave;
2775                 break;
2776         case KVM_CAP_TSC_CONTROL:
2777                 r = kvm_has_tsc_control;
2778                 break;
2779         case KVM_CAP_TSC_DEADLINE_TIMER:
2780                 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2781                 break;
2782         default:
2783                 r = 0;
2784                 break;
2785         }
2786         return r;
2787
2788 }
2789
2790 long kvm_arch_dev_ioctl(struct file *filp,
2791                         unsigned int ioctl, unsigned long arg)
2792 {
2793         void __user *argp = (void __user *)arg;
2794         long r;
2795
2796         switch (ioctl) {
2797         case KVM_GET_MSR_INDEX_LIST: {
2798                 struct kvm_msr_list __user *user_msr_list = argp;
2799                 struct kvm_msr_list msr_list;
2800                 unsigned n;
2801
2802                 r = -EFAULT;
2803                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2804                         goto out;
2805                 n = msr_list.nmsrs;
2806                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2807                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2808                         goto out;
2809                 r = -E2BIG;
2810                 if (n < msr_list.nmsrs)
2811                         goto out;
2812                 r = -EFAULT;
2813                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2814                                  num_msrs_to_save * sizeof(u32)))
2815                         goto out;
2816                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2817                                  &emulated_msrs,
2818                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2819                         goto out;
2820                 r = 0;
2821                 break;
2822         }
2823         case KVM_GET_SUPPORTED_CPUID:
2824         case KVM_GET_EMULATED_CPUID: {
2825                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2826                 struct kvm_cpuid2 cpuid;
2827
2828                 r = -EFAULT;
2829                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2830                         goto out;
2831
2832                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2833                                             ioctl);
2834                 if (r)
2835                         goto out;
2836
2837                 r = -EFAULT;
2838                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2839                         goto out;
2840                 r = 0;
2841                 break;
2842         }
2843         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2844                 u64 mce_cap;
2845
2846                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2847                 r = -EFAULT;
2848                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2849                         goto out;
2850                 r = 0;
2851                 break;
2852         }
2853         default:
2854                 r = -EINVAL;
2855         }
2856 out:
2857         return r;
2858 }
2859
2860 static void wbinvd_ipi(void *garbage)
2861 {
2862         wbinvd();
2863 }
2864
2865 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2866 {
2867         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2868 }
2869
2870 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2871 {
2872         /* Address WBINVD may be executed by guest */
2873         if (need_emulate_wbinvd(vcpu)) {
2874                 if (kvm_x86_ops->has_wbinvd_exit())
2875                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2876                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2877                         smp_call_function_single(vcpu->cpu,
2878                                         wbinvd_ipi, NULL, 1);
2879         }
2880
2881         kvm_x86_ops->vcpu_load(vcpu, cpu);
2882
2883         /* Apply any externally detected TSC adjustments (due to suspend) */
2884         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2885                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2886                 vcpu->arch.tsc_offset_adjustment = 0;
2887                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2888         }
2889
2890         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2891                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2892                                 native_read_tsc() - vcpu->arch.last_host_tsc;
2893                 if (tsc_delta < 0)
2894                         mark_tsc_unstable("KVM discovered backwards TSC");
2895                 if (check_tsc_unstable()) {
2896                         u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2897                                                 vcpu->arch.last_guest_tsc);
2898                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2899                         vcpu->arch.tsc_catchup = 1;
2900                 }
2901                 /*
2902                  * On a host with synchronized TSC, there is no need to update
2903                  * kvmclock on vcpu->cpu migration
2904                  */
2905                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2906                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2907                 if (vcpu->cpu != cpu)
2908                         kvm_migrate_timers(vcpu);
2909                 vcpu->cpu = cpu;
2910         }
2911
2912         accumulate_steal_time(vcpu);
2913         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2914 }
2915
2916 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2917 {
2918         kvm_x86_ops->vcpu_put(vcpu);
2919         kvm_put_guest_fpu(vcpu);
2920         vcpu->arch.last_host_tsc = native_read_tsc();
2921 }
2922
2923 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2924                                     struct kvm_lapic_state *s)
2925 {
2926         kvm_x86_ops->sync_pir_to_irr(vcpu);
2927         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2928
2929         return 0;
2930 }
2931
2932 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2933                                     struct kvm_lapic_state *s)
2934 {
2935         kvm_apic_post_state_restore(vcpu, s);
2936         update_cr8_intercept(vcpu);
2937
2938         return 0;
2939 }
2940
2941 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2942                                     struct kvm_interrupt *irq)
2943 {
2944         if (irq->irq >= KVM_NR_INTERRUPTS)
2945                 return -EINVAL;
2946         if (irqchip_in_kernel(vcpu->kvm))
2947                 return -ENXIO;
2948
2949         kvm_queue_interrupt(vcpu, irq->irq, false);
2950         kvm_make_request(KVM_REQ_EVENT, vcpu);
2951
2952         return 0;
2953 }
2954
2955 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2956 {
2957         kvm_inject_nmi(vcpu);
2958
2959         return 0;
2960 }
2961
2962 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2963                                            struct kvm_tpr_access_ctl *tac)
2964 {
2965         if (tac->flags)
2966                 return -EINVAL;
2967         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2968         return 0;
2969 }
2970
2971 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2972                                         u64 mcg_cap)
2973 {
2974         int r;
2975         unsigned bank_num = mcg_cap & 0xff, bank;
2976
2977         r = -EINVAL;
2978         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2979                 goto out;
2980         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2981                 goto out;
2982         r = 0;
2983         vcpu->arch.mcg_cap = mcg_cap;
2984         /* Init IA32_MCG_CTL to all 1s */
2985         if (mcg_cap & MCG_CTL_P)
2986                 vcpu->arch.mcg_ctl = ~(u64)0;
2987         /* Init IA32_MCi_CTL to all 1s */
2988         for (bank = 0; bank < bank_num; bank++)
2989                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2990 out:
2991         return r;
2992 }
2993
2994 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2995                                       struct kvm_x86_mce *mce)
2996 {
2997         u64 mcg_cap = vcpu->arch.mcg_cap;
2998         unsigned bank_num = mcg_cap & 0xff;
2999         u64 *banks = vcpu->arch.mce_banks;
3000
3001         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3002                 return -EINVAL;
3003         /*
3004          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3005          * reporting is disabled
3006          */
3007         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3008             vcpu->arch.mcg_ctl != ~(u64)0)
3009                 return 0;
3010         banks += 4 * mce->bank;
3011         /*
3012          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3013          * reporting is disabled for the bank
3014          */
3015         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3016                 return 0;
3017         if (mce->status & MCI_STATUS_UC) {
3018                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3019                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3020                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3021                         return 0;
3022                 }
3023                 if (banks[1] & MCI_STATUS_VAL)
3024                         mce->status |= MCI_STATUS_OVER;
3025                 banks[2] = mce->addr;
3026                 banks[3] = mce->misc;
3027                 vcpu->arch.mcg_status = mce->mcg_status;
3028                 banks[1] = mce->status;
3029                 kvm_queue_exception(vcpu, MC_VECTOR);
3030         } else if (!(banks[1] & MCI_STATUS_VAL)
3031                    || !(banks[1] & MCI_STATUS_UC)) {
3032                 if (banks[1] & MCI_STATUS_VAL)
3033                         mce->status |= MCI_STATUS_OVER;
3034                 banks[2] = mce->addr;
3035                 banks[3] = mce->misc;
3036                 banks[1] = mce->status;
3037         } else
3038                 banks[1] |= MCI_STATUS_OVER;
3039         return 0;
3040 }
3041
3042 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3043                                                struct kvm_vcpu_events *events)
3044 {
3045         process_nmi(vcpu);
3046         events->exception.injected =
3047                 vcpu->arch.exception.pending &&
3048                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3049         events->exception.nr = vcpu->arch.exception.nr;
3050         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3051         events->exception.pad = 0;
3052         events->exception.error_code = vcpu->arch.exception.error_code;
3053
3054         events->interrupt.injected =
3055                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3056         events->interrupt.nr = vcpu->arch.interrupt.nr;
3057         events->interrupt.soft = 0;
3058         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3059
3060         events->nmi.injected = vcpu->arch.nmi_injected;
3061         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3062         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3063         events->nmi.pad = 0;
3064
3065         events->sipi_vector = 0; /* never valid when reporting to user space */
3066
3067         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3068                          | KVM_VCPUEVENT_VALID_SHADOW);
3069         memset(&events->reserved, 0, sizeof(events->reserved));
3070 }
3071
3072 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3073                                               struct kvm_vcpu_events *events)
3074 {
3075         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3076                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3077                               | KVM_VCPUEVENT_VALID_SHADOW))
3078                 return -EINVAL;
3079
3080         process_nmi(vcpu);
3081         vcpu->arch.exception.pending = events->exception.injected;
3082         vcpu->arch.exception.nr = events->exception.nr;
3083         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3084         vcpu->arch.exception.error_code = events->exception.error_code;
3085
3086         vcpu->arch.interrupt.pending = events->interrupt.injected;
3087         vcpu->arch.interrupt.nr = events->interrupt.nr;
3088         vcpu->arch.interrupt.soft = events->interrupt.soft;
3089         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3090                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3091                                                   events->interrupt.shadow);
3092
3093         vcpu->arch.nmi_injected = events->nmi.injected;
3094         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3095                 vcpu->arch.nmi_pending = events->nmi.pending;
3096         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3097
3098         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3099             kvm_vcpu_has_lapic(vcpu))
3100                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3101
3102         kvm_make_request(KVM_REQ_EVENT, vcpu);
3103
3104         return 0;
3105 }
3106
3107 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3108                                              struct kvm_debugregs *dbgregs)
3109 {
3110         unsigned long val;
3111
3112         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3113         kvm_get_dr(vcpu, 6, &val);
3114         dbgregs->dr6 = val;
3115         dbgregs->dr7 = vcpu->arch.dr7;
3116         dbgregs->flags = 0;
3117         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3118 }
3119
3120 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3121                                             struct kvm_debugregs *dbgregs)
3122 {
3123         if (dbgregs->flags)
3124                 return -EINVAL;
3125
3126         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3127         vcpu->arch.dr6 = dbgregs->dr6;
3128         kvm_update_dr6(vcpu);
3129         vcpu->arch.dr7 = dbgregs->dr7;
3130         kvm_update_dr7(vcpu);
3131
3132         return 0;
3133 }
3134
3135 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3136
3137 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3138 {
3139         struct xsave_struct *xsave = &vcpu->arch.guest_fpu.state->xsave;
3140         u64 xstate_bv = xsave->xsave_hdr.xstate_bv;
3141         u64 valid;
3142
3143         /*
3144          * Copy legacy XSAVE area, to avoid complications with CPUID
3145          * leaves 0 and 1 in the loop below.
3146          */
3147         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3148
3149         /* Set XSTATE_BV */
3150         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3151
3152         /*
3153          * Copy each region from the possibly compacted offset to the
3154          * non-compacted offset.
3155          */
3156         valid = xstate_bv & ~XSTATE_FPSSE;
3157         while (valid) {
3158                 u64 feature = valid & -valid;
3159                 int index = fls64(feature) - 1;
3160                 void *src = get_xsave_addr(xsave, feature);
3161
3162                 if (src) {
3163                         u32 size, offset, ecx, edx;
3164                         cpuid_count(XSTATE_CPUID, index,
3165                                     &size, &offset, &ecx, &edx);
3166                         memcpy(dest + offset, src, size);
3167                 }
3168
3169                 valid -= feature;
3170         }
3171 }
3172
3173 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3174 {
3175         struct xsave_struct *xsave = &vcpu->arch.guest_fpu.state->xsave;
3176         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3177         u64 valid;
3178
3179         /*
3180          * Copy legacy XSAVE area, to avoid complications with CPUID
3181          * leaves 0 and 1 in the loop below.
3182          */
3183         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3184
3185         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3186         xsave->xsave_hdr.xstate_bv = xstate_bv;
3187         if (cpu_has_xsaves)
3188                 xsave->xsave_hdr.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3189
3190         /*
3191          * Copy each region from the non-compacted offset to the
3192          * possibly compacted offset.
3193          */
3194         valid = xstate_bv & ~XSTATE_FPSSE;
3195         while (valid) {
3196                 u64 feature = valid & -valid;
3197                 int index = fls64(feature) - 1;
3198                 void *dest = get_xsave_addr(xsave, feature);
3199
3200                 if (dest) {
3201                         u32 size, offset, ecx, edx;
3202                         cpuid_count(XSTATE_CPUID, index,
3203                                     &size, &offset, &ecx, &edx);
3204                         memcpy(dest, src + offset, size);
3205                 } else
3206                         WARN_ON_ONCE(1);
3207
3208                 valid -= feature;
3209         }
3210 }
3211
3212 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3213                                          struct kvm_xsave *guest_xsave)
3214 {
3215         if (cpu_has_xsave) {
3216                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3217                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3218         } else {
3219                 memcpy(guest_xsave->region,
3220                         &vcpu->arch.guest_fpu.state->fxsave,
3221                         sizeof(struct i387_fxsave_struct));
3222                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3223                         XSTATE_FPSSE;
3224         }
3225 }
3226
3227 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3228                                         struct kvm_xsave *guest_xsave)
3229 {
3230         u64 xstate_bv =
3231                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3232
3233         if (cpu_has_xsave) {
3234                 /*
3235                  * Here we allow setting states that are not present in
3236                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3237                  * with old userspace.
3238                  */
3239                 if (xstate_bv & ~kvm_supported_xcr0())
3240                         return -EINVAL;
3241                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3242         } else {
3243                 if (xstate_bv & ~XSTATE_FPSSE)
3244                         return -EINVAL;
3245                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
3246                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
3247         }
3248         return 0;
3249 }
3250
3251 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3252                                         struct kvm_xcrs *guest_xcrs)
3253 {
3254         if (!cpu_has_xsave) {
3255                 guest_xcrs->nr_xcrs = 0;
3256                 return;
3257         }
3258
3259         guest_xcrs->nr_xcrs = 1;
3260         guest_xcrs->flags = 0;
3261         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3262         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3263 }
3264
3265 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3266                                        struct kvm_xcrs *guest_xcrs)
3267 {
3268         int i, r = 0;
3269
3270         if (!cpu_has_xsave)
3271                 return -EINVAL;
3272
3273         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3274                 return -EINVAL;
3275
3276         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3277                 /* Only support XCR0 currently */
3278                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3279                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3280                                 guest_xcrs->xcrs[i].value);
3281                         break;
3282                 }
3283         if (r)
3284                 r = -EINVAL;
3285         return r;
3286 }
3287
3288 /*
3289  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3290  * stopped by the hypervisor.  This function will be called from the host only.
3291  * EINVAL is returned when the host attempts to set the flag for a guest that
3292  * does not support pv clocks.
3293  */
3294 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3295 {
3296         if (!vcpu->arch.pv_time_enabled)
3297                 return -EINVAL;
3298         vcpu->arch.pvclock_set_guest_stopped_request = true;
3299         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3300         return 0;
3301 }
3302
3303 long kvm_arch_vcpu_ioctl(struct file *filp,
3304                          unsigned int ioctl, unsigned long arg)
3305 {
3306         struct kvm_vcpu *vcpu = filp->private_data;
3307         void __user *argp = (void __user *)arg;
3308         int r;
3309         union {
3310                 struct kvm_lapic_state *lapic;
3311                 struct kvm_xsave *xsave;
3312                 struct kvm_xcrs *xcrs;
3313                 void *buffer;
3314         } u;
3315
3316         u.buffer = NULL;
3317         switch (ioctl) {
3318         case KVM_GET_LAPIC: {
3319                 r = -EINVAL;
3320                 if (!vcpu->arch.apic)
3321                         goto out;
3322                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3323
3324                 r = -ENOMEM;
3325                 if (!u.lapic)
3326                         goto out;
3327                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3328                 if (r)
3329                         goto out;
3330                 r = -EFAULT;
3331                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3332                         goto out;
3333                 r = 0;
3334                 break;
3335         }
3336         case KVM_SET_LAPIC: {
3337                 r = -EINVAL;
3338                 if (!vcpu->arch.apic)
3339                         goto out;
3340                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3341                 if (IS_ERR(u.lapic))
3342                         return PTR_ERR(u.lapic);
3343
3344                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3345                 break;
3346         }
3347         case KVM_INTERRUPT: {
3348                 struct kvm_interrupt irq;
3349
3350                 r = -EFAULT;
3351                 if (copy_from_user(&irq, argp, sizeof irq))
3352                         goto out;
3353                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3354                 break;
3355         }
3356         case KVM_NMI: {
3357                 r = kvm_vcpu_ioctl_nmi(vcpu);
3358                 break;
3359         }
3360         case KVM_SET_CPUID: {
3361                 struct kvm_cpuid __user *cpuid_arg = argp;
3362                 struct kvm_cpuid cpuid;
3363
3364                 r = -EFAULT;
3365                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3366                         goto out;
3367                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3368                 break;
3369         }
3370         case KVM_SET_CPUID2: {
3371                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3372                 struct kvm_cpuid2 cpuid;
3373
3374                 r = -EFAULT;
3375                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3376                         goto out;
3377                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3378                                               cpuid_arg->entries);
3379                 break;
3380         }
3381         case KVM_GET_CPUID2: {
3382                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3383                 struct kvm_cpuid2 cpuid;
3384
3385                 r = -EFAULT;
3386                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3387                         goto out;
3388                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3389                                               cpuid_arg->entries);
3390                 if (r)
3391                         goto out;
3392                 r = -EFAULT;
3393                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3394                         goto out;
3395                 r = 0;
3396                 break;
3397         }
3398         case KVM_GET_MSRS:
3399                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3400                 break;
3401         case KVM_SET_MSRS:
3402                 r = msr_io(vcpu, argp, do_set_msr, 0);
3403                 break;
3404         case KVM_TPR_ACCESS_REPORTING: {
3405                 struct kvm_tpr_access_ctl tac;
3406
3407                 r = -EFAULT;
3408                 if (copy_from_user(&tac, argp, sizeof tac))
3409                         goto out;
3410                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3411                 if (r)
3412                         goto out;
3413                 r = -EFAULT;
3414                 if (copy_to_user(argp, &tac, sizeof tac))
3415                         goto out;
3416                 r = 0;
3417                 break;
3418         };
3419         case KVM_SET_VAPIC_ADDR: {
3420                 struct kvm_vapic_addr va;
3421
3422                 r = -EINVAL;
3423                 if (!irqchip_in_kernel(vcpu->kvm))
3424                         goto out;
3425                 r = -EFAULT;
3426                 if (copy_from_user(&va, argp, sizeof va))
3427                         goto out;
3428                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3429                 break;
3430         }
3431         case KVM_X86_SETUP_MCE: {
3432                 u64 mcg_cap;
3433
3434                 r = -EFAULT;
3435                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3436                         goto out;
3437                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3438                 break;
3439         }
3440         case KVM_X86_SET_MCE: {
3441                 struct kvm_x86_mce mce;
3442
3443                 r = -EFAULT;
3444                 if (copy_from_user(&mce, argp, sizeof mce))
3445                         goto out;
3446                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3447                 break;
3448         }
3449         case KVM_GET_VCPU_EVENTS: {
3450                 struct kvm_vcpu_events events;
3451
3452                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3453
3454                 r = -EFAULT;
3455                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3456                         break;
3457                 r = 0;
3458                 break;
3459         }
3460         case KVM_SET_VCPU_EVENTS: {
3461                 struct kvm_vcpu_events events;
3462
3463                 r = -EFAULT;
3464                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3465                         break;
3466
3467                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3468                 break;
3469         }
3470         case KVM_GET_DEBUGREGS: {
3471                 struct kvm_debugregs dbgregs;
3472
3473                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3474
3475                 r = -EFAULT;
3476                 if (copy_to_user(argp, &dbgregs,
3477                                  sizeof(struct kvm_debugregs)))
3478                         break;
3479                 r = 0;
3480                 break;
3481         }
3482         case KVM_SET_DEBUGREGS: {
3483                 struct kvm_debugregs dbgregs;
3484
3485                 r = -EFAULT;
3486                 if (copy_from_user(&dbgregs, argp,
3487                                    sizeof(struct kvm_debugregs)))
3488                         break;
3489
3490                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3491                 break;
3492         }
3493         case KVM_GET_XSAVE: {
3494                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3495                 r = -ENOMEM;
3496                 if (!u.xsave)
3497                         break;
3498
3499                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3500
3501                 r = -EFAULT;
3502                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3503                         break;
3504                 r = 0;
3505                 break;
3506         }
3507         case KVM_SET_XSAVE: {
3508                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3509                 if (IS_ERR(u.xsave))
3510                         return PTR_ERR(u.xsave);
3511
3512                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3513                 break;
3514         }
3515         case KVM_GET_XCRS: {
3516                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3517                 r = -ENOMEM;
3518                 if (!u.xcrs)
3519                         break;
3520
3521                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3522
3523                 r = -EFAULT;
3524                 if (copy_to_user(argp, u.xcrs,
3525                                  sizeof(struct kvm_xcrs)))
3526                         break;
3527                 r = 0;
3528                 break;
3529         }
3530         case KVM_SET_XCRS: {
3531                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3532                 if (IS_ERR(u.xcrs))
3533                         return PTR_ERR(u.xcrs);
3534
3535                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3536                 break;
3537         }
3538         case KVM_SET_TSC_KHZ: {
3539                 u32 user_tsc_khz;
3540
3541                 r = -EINVAL;
3542                 user_tsc_khz = (u32)arg;
3543
3544                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3545                         goto out;
3546
3547                 if (user_tsc_khz == 0)
3548                         user_tsc_khz = tsc_khz;
3549
3550                 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3551
3552                 r = 0;
3553                 goto out;
3554         }
3555         case KVM_GET_TSC_KHZ: {
3556                 r = vcpu->arch.virtual_tsc_khz;
3557                 goto out;
3558         }
3559         case KVM_KVMCLOCK_CTRL: {
3560                 r = kvm_set_guest_paused(vcpu);
3561                 goto out;
3562         }
3563         default:
3564                 r = -EINVAL;
3565         }
3566 out:
3567         kfree(u.buffer);
3568         return r;
3569 }
3570
3571 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3572 {
3573         return VM_FAULT_SIGBUS;
3574 }
3575
3576 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3577 {
3578         int ret;
3579
3580         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3581                 return -EINVAL;
3582         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3583         return ret;
3584 }
3585
3586 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3587                                               u64 ident_addr)
3588 {
3589         kvm->arch.ept_identity_map_addr = ident_addr;
3590         return 0;
3591 }
3592
3593 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3594                                           u32 kvm_nr_mmu_pages)
3595 {
3596         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3597                 return -EINVAL;
3598
3599         mutex_lock(&kvm->slots_lock);
3600
3601         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3602         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3603
3604         mutex_unlock(&kvm->slots_lock);
3605         return 0;
3606 }
3607
3608 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3609 {
3610         return kvm->arch.n_max_mmu_pages;
3611 }
3612
3613 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3614 {
3615         int r;
3616
3617         r = 0;
3618         switch (chip->chip_id) {
3619         case KVM_IRQCHIP_PIC_MASTER:
3620                 memcpy(&chip->chip.pic,
3621                         &pic_irqchip(kvm)->pics[0],
3622                         sizeof(struct kvm_pic_state));
3623                 break;
3624         case KVM_IRQCHIP_PIC_SLAVE:
3625                 memcpy(&chip->chip.pic,
3626                         &pic_irqchip(kvm)->pics[1],
3627                         sizeof(struct kvm_pic_state));
3628                 break;
3629         case KVM_IRQCHIP_IOAPIC:
3630                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3631                 break;
3632         default:
3633                 r = -EINVAL;
3634                 break;
3635         }
3636         return r;
3637 }
3638
3639 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3640 {
3641         int r;
3642
3643         r = 0;
3644         switch (chip->chip_id) {
3645         case KVM_IRQCHIP_PIC_MASTER:
3646                 spin_lock(&pic_irqchip(kvm)->lock);
3647                 memcpy(&pic_irqchip(kvm)->pics[0],
3648                         &chip->chip.pic,
3649                         sizeof(struct kvm_pic_state));
3650                 spin_unlock(&pic_irqchip(kvm)->lock);
3651                 break;
3652         case KVM_IRQCHIP_PIC_SLAVE:
3653                 spin_lock(&pic_irqchip(kvm)->lock);
3654                 memcpy(&pic_irqchip(kvm)->pics[1],
3655                         &chip->chip.pic,
3656                         sizeof(struct kvm_pic_state));
3657                 spin_unlock(&pic_irqchip(kvm)->lock);
3658                 break;
3659         case KVM_IRQCHIP_IOAPIC:
3660                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3661                 break;
3662         default:
3663                 r = -EINVAL;
3664                 break;
3665         }
3666         kvm_pic_update_irq(pic_irqchip(kvm));
3667         return r;
3668 }
3669
3670 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3671 {
3672         int r = 0;
3673
3674         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3675         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3676         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3677         return r;
3678 }
3679
3680 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3681 {
3682         int r = 0;
3683
3684         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3685         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3686         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3687         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3688         return r;
3689 }
3690
3691 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3692 {
3693         int r = 0;
3694
3695         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3696         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3697                 sizeof(ps->channels));
3698         ps->flags = kvm->arch.vpit->pit_state.flags;
3699         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3700         memset(&ps->reserved, 0, sizeof(ps->reserved));
3701         return r;
3702 }
3703
3704 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3705 {
3706         int r = 0, start = 0;
3707         u32 prev_legacy, cur_legacy;
3708         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3709         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3710         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3711         if (!prev_legacy && cur_legacy)
3712                 start = 1;
3713         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3714                sizeof(kvm->arch.vpit->pit_state.channels));
3715         kvm->arch.vpit->pit_state.flags = ps->flags;
3716         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3717         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3718         return r;
3719 }
3720
3721 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3722                                  struct kvm_reinject_control *control)
3723 {
3724         if (!kvm->arch.vpit)
3725                 return -ENXIO;
3726         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3727         kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3728         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3729         return 0;
3730 }
3731
3732 /**
3733  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3734  * @kvm: kvm instance
3735  * @log: slot id and address to which we copy the log
3736  *
3737  * We need to keep it in mind that VCPU threads can write to the bitmap
3738  * concurrently.  So, to avoid losing data, we keep the following order for
3739  * each bit:
3740  *
3741  *   1. Take a snapshot of the bit and clear it if needed.
3742  *   2. Write protect the corresponding page.
3743  *   3. Flush TLB's if needed.
3744  *   4. Copy the snapshot to the userspace.
3745  *
3746  * Between 2 and 3, the guest may write to the page using the remaining TLB
3747  * entry.  This is not a problem because the page will be reported dirty at
3748  * step 4 using the snapshot taken before and step 3 ensures that successive
3749  * writes will be logged for the next call.
3750  */
3751 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3752 {
3753         int r;
3754         struct kvm_memory_slot *memslot;
3755         unsigned long n, i;
3756         unsigned long *dirty_bitmap;
3757         unsigned long *dirty_bitmap_buffer;
3758         bool is_dirty = false;
3759
3760         mutex_lock(&kvm->slots_lock);
3761
3762         r = -EINVAL;
3763         if (log->slot >= KVM_USER_MEM_SLOTS)
3764                 goto out;
3765
3766         memslot = id_to_memslot(kvm->memslots, log->slot);
3767
3768         dirty_bitmap = memslot->dirty_bitmap;
3769         r = -ENOENT;
3770         if (!dirty_bitmap)
3771                 goto out;
3772
3773         n = kvm_dirty_bitmap_bytes(memslot);
3774
3775         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3776         memset(dirty_bitmap_buffer, 0, n);
3777
3778         spin_lock(&kvm->mmu_lock);
3779
3780         for (i = 0; i < n / sizeof(long); i++) {
3781                 unsigned long mask;
3782                 gfn_t offset;
3783
3784                 if (!dirty_bitmap[i])
3785                         continue;
3786
3787                 is_dirty = true;
3788
3789                 mask = xchg(&dirty_bitmap[i], 0);
3790                 dirty_bitmap_buffer[i] = mask;
3791
3792                 offset = i * BITS_PER_LONG;
3793                 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3794         }
3795
3796         spin_unlock(&kvm->mmu_lock);
3797
3798         /* See the comments in kvm_mmu_slot_remove_write_access(). */
3799         lockdep_assert_held(&kvm->slots_lock);
3800
3801         /*
3802          * All the TLBs can be flushed out of mmu lock, see the comments in
3803          * kvm_mmu_slot_remove_write_access().
3804          */
3805         if (is_dirty)
3806                 kvm_flush_remote_tlbs(kvm);
3807
3808         r = -EFAULT;
3809         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3810                 goto out;
3811
3812         r = 0;
3813 out:
3814         mutex_unlock(&kvm->slots_lock);
3815         return r;
3816 }
3817
3818 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3819                         bool line_status)
3820 {
3821         if (!irqchip_in_kernel(kvm))
3822                 return -ENXIO;
3823
3824         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3825                                         irq_event->irq, irq_event->level,
3826                                         line_status);
3827         return 0;
3828 }
3829
3830 long kvm_arch_vm_ioctl(struct file *filp,
3831                        unsigned int ioctl, unsigned long arg)
3832 {
3833         struct kvm *kvm = filp->private_data;
3834         void __user *argp = (void __user *)arg;
3835         int r = -ENOTTY;
3836         /*
3837          * This union makes it completely explicit to gcc-3.x
3838          * that these two variables' stack usage should be
3839          * combined, not added together.
3840          */
3841         union {
3842                 struct kvm_pit_state ps;
3843                 struct kvm_pit_state2 ps2;
3844                 struct kvm_pit_config pit_config;
3845         } u;
3846
3847         switch (ioctl) {
3848         case KVM_SET_TSS_ADDR:
3849                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3850                 break;
3851         case KVM_SET_IDENTITY_MAP_ADDR: {
3852                 u64 ident_addr;
3853
3854                 r = -EFAULT;
3855                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3856                         goto out;
3857                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3858                 break;
3859         }
3860         case KVM_SET_NR_MMU_PAGES:
3861                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3862                 break;
3863         case KVM_GET_NR_MMU_PAGES:
3864                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3865                 break;
3866         case KVM_CREATE_IRQCHIP: {
3867                 struct kvm_pic *vpic;
3868
3869                 mutex_lock(&kvm->lock);
3870                 r = -EEXIST;
3871                 if (kvm->arch.vpic)
3872                         goto create_irqchip_unlock;
3873                 r = -EINVAL;
3874                 if (atomic_read(&kvm->online_vcpus))
3875                         goto create_irqchip_unlock;
3876                 r = -ENOMEM;
3877                 vpic = kvm_create_pic(kvm);
3878                 if (vpic) {
3879                         r = kvm_ioapic_init(kvm);
3880                         if (r) {
3881                                 mutex_lock(&kvm->slots_lock);
3882                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3883                                                           &vpic->dev_master);
3884                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3885                                                           &vpic->dev_slave);
3886                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3887                                                           &vpic->dev_eclr);
3888                                 mutex_unlock(&kvm->slots_lock);
3889                                 kfree(vpic);
3890                                 goto create_irqchip_unlock;
3891                         }
3892                 } else
3893                         goto create_irqchip_unlock;
3894                 smp_wmb();
3895                 kvm->arch.vpic = vpic;
3896                 smp_wmb();
3897                 r = kvm_setup_default_irq_routing(kvm);
3898                 if (r) {
3899                         mutex_lock(&kvm->slots_lock);
3900                         mutex_lock(&kvm->irq_lock);
3901                         kvm_ioapic_destroy(kvm);
3902                         kvm_destroy_pic(kvm);
3903                         mutex_unlock(&kvm->irq_lock);
3904                         mutex_unlock(&kvm->slots_lock);
3905                 }
3906         create_irqchip_unlock:
3907                 mutex_unlock(&kvm->lock);
3908                 break;
3909         }
3910         case KVM_CREATE_PIT:
3911                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3912                 goto create_pit;
3913         case KVM_CREATE_PIT2:
3914                 r = -EFAULT;
3915                 if (copy_from_user(&u.pit_config, argp,
3916                                    sizeof(struct kvm_pit_config)))
3917                         goto out;
3918         create_pit:
3919                 mutex_lock(&kvm->slots_lock);
3920                 r = -EEXIST;
3921                 if (kvm->arch.vpit)
3922                         goto create_pit_unlock;
3923                 r = -ENOMEM;
3924                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3925                 if (kvm->arch.vpit)
3926                         r = 0;
3927         create_pit_unlock:
3928                 mutex_unlock(&kvm->slots_lock);
3929                 break;
3930         case KVM_GET_IRQCHIP: {
3931                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3932                 struct kvm_irqchip *chip;
3933
3934                 chip = memdup_user(argp, sizeof(*chip));
3935                 if (IS_ERR(chip)) {
3936                         r = PTR_ERR(chip);
3937                         goto out;
3938                 }
3939
3940                 r = -ENXIO;
3941                 if (!irqchip_in_kernel(kvm))
3942                         goto get_irqchip_out;
3943                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3944                 if (r)
3945                         goto get_irqchip_out;
3946                 r = -EFAULT;
3947                 if (copy_to_user(argp, chip, sizeof *chip))
3948                         goto get_irqchip_out;
3949                 r = 0;
3950         get_irqchip_out:
3951                 kfree(chip);
3952                 break;
3953         }
3954         case KVM_SET_IRQCHIP: {
3955                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3956                 struct kvm_irqchip *chip;
3957
3958                 chip = memdup_user(argp, sizeof(*chip));
3959                 if (IS_ERR(chip)) {
3960                         r = PTR_ERR(chip);
3961                         goto out;
3962                 }
3963
3964                 r = -ENXIO;
3965                 if (!irqchip_in_kernel(kvm))
3966                         goto set_irqchip_out;
3967                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3968                 if (r)
3969                         goto set_irqchip_out;
3970                 r = 0;
3971         set_irqchip_out:
3972                 kfree(chip);
3973                 break;
3974         }
3975         case KVM_GET_PIT: {
3976                 r = -EFAULT;
3977                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3978                         goto out;
3979                 r = -ENXIO;
3980                 if (!kvm->arch.vpit)
3981                         goto out;
3982                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3983                 if (r)
3984                         goto out;
3985                 r = -EFAULT;
3986                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3987                         goto out;
3988                 r = 0;
3989                 break;
3990         }
3991         case KVM_SET_PIT: {
3992                 r = -EFAULT;
3993                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3994                         goto out;
3995                 r = -ENXIO;
3996                 if (!kvm->arch.vpit)
3997                         goto out;
3998                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3999                 break;
4000         }
4001         case KVM_GET_PIT2: {
4002                 r = -ENXIO;
4003                 if (!kvm->arch.vpit)
4004                         goto out;
4005                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4006                 if (r)
4007                         goto out;
4008                 r = -EFAULT;
4009                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4010                         goto out;
4011                 r = 0;
4012                 break;
4013         }
4014         case KVM_SET_PIT2: {
4015                 r = -EFAULT;
4016                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4017                         goto out;
4018                 r = -ENXIO;
4019                 if (!kvm->arch.vpit)
4020                         goto out;
4021                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4022                 break;
4023         }
4024         case KVM_REINJECT_CONTROL: {
4025                 struct kvm_reinject_control control;
4026                 r =  -EFAULT;
4027                 if (copy_from_user(&control, argp, sizeof(control)))
4028                         goto out;
4029                 r = kvm_vm_ioctl_reinject(kvm, &control);
4030                 break;
4031         }
4032         case KVM_XEN_HVM_CONFIG: {
4033                 r = -EFAULT;
4034                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4035                                    sizeof(struct kvm_xen_hvm_config)))
4036                         goto out;
4037                 r = -EINVAL;
4038                 if (kvm->arch.xen_hvm_config.flags)
4039                         goto out;
4040                 r = 0;
4041                 break;
4042         }
4043         case KVM_SET_CLOCK: {
4044                 struct kvm_clock_data user_ns;
4045                 u64 now_ns;
4046                 s64 delta;
4047
4048                 r = -EFAULT;
4049                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4050                         goto out;
4051
4052                 r = -EINVAL;
4053                 if (user_ns.flags)
4054                         goto out;
4055
4056                 r = 0;
4057                 local_irq_disable();
4058                 now_ns = get_kernel_ns();
4059                 delta = user_ns.clock - now_ns;
4060                 local_irq_enable();
4061                 kvm->arch.kvmclock_offset = delta;
4062                 kvm_gen_update_masterclock(kvm);
4063                 break;
4064         }
4065         case KVM_GET_CLOCK: {
4066                 struct kvm_clock_data user_ns;
4067                 u64 now_ns;
4068
4069                 local_irq_disable();
4070                 now_ns = get_kernel_ns();
4071                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
4072                 local_irq_enable();
4073                 user_ns.flags = 0;
4074                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4075
4076                 r = -EFAULT;
4077                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4078                         goto out;
4079                 r = 0;
4080                 break;
4081         }
4082
4083         default:
4084                 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4085         }
4086 out:
4087         return r;
4088 }
4089
4090 static void kvm_init_msr_list(void)
4091 {
4092         u32 dummy[2];
4093         unsigned i, j;
4094
4095         /* skip the first msrs in the list. KVM-specific */
4096         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
4097                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4098                         continue;
4099
4100                 /*
4101                  * Even MSRs that are valid in the host may not be exposed
4102                  * to the guests in some cases.  We could work around this
4103                  * in VMX with the generic MSR save/load machinery, but it
4104                  * is not really worthwhile since it will really only
4105                  * happen with nested virtualization.
4106                  */
4107                 switch (msrs_to_save[i]) {
4108                 case MSR_IA32_BNDCFGS:
4109                         if (!kvm_x86_ops->mpx_supported())
4110                                 continue;
4111                         break;
4112                 default:
4113                         break;
4114                 }
4115
4116                 if (j < i)
4117                         msrs_to_save[j] = msrs_to_save[i];
4118                 j++;
4119         }
4120         num_msrs_to_save = j;
4121 }
4122
4123 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4124                            const void *v)
4125 {
4126         int handled = 0;
4127         int n;
4128
4129         do {
4130                 n = min(len, 8);
4131                 if (!(vcpu->arch.apic &&
4132                       !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
4133                     && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
4134                         break;
4135                 handled += n;
4136                 addr += n;
4137                 len -= n;
4138                 v += n;
4139         } while (len);
4140
4141         return handled;
4142 }
4143
4144 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4145 {
4146         int handled = 0;
4147         int n;
4148
4149         do {
4150                 n = min(len, 8);
4151                 if (!(vcpu->arch.apic &&
4152                       !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
4153                     && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
4154                         break;
4155                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4156                 handled += n;
4157                 addr += n;
4158                 len -= n;
4159                 v += n;
4160         } while (len);
4161
4162         return handled;
4163 }
4164
4165 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4166                         struct kvm_segment *var, int seg)
4167 {
4168         kvm_x86_ops->set_segment(vcpu, var, seg);
4169 }
4170
4171 void kvm_get_segment(struct kvm_vcpu *vcpu,
4172                      struct kvm_segment *var, int seg)
4173 {
4174         kvm_x86_ops->get_segment(vcpu, var, seg);
4175 }
4176
4177 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4178                            struct x86_exception *exception)
4179 {
4180         gpa_t t_gpa;
4181
4182         BUG_ON(!mmu_is_nested(vcpu));
4183
4184         /* NPT walks are always user-walks */
4185         access |= PFERR_USER_MASK;
4186         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4187
4188         return t_gpa;
4189 }
4190
4191 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4192                               struct x86_exception *exception)
4193 {
4194         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4195         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4196 }
4197
4198  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4199                                 struct x86_exception *exception)
4200 {
4201         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4202         access |= PFERR_FETCH_MASK;
4203         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4204 }
4205
4206 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4207                                struct x86_exception *exception)
4208 {
4209         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4210         access |= PFERR_WRITE_MASK;
4211         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4212 }
4213
4214 /* uses this to access any guest's mapped memory without checking CPL */
4215 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4216                                 struct x86_exception *exception)
4217 {
4218         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4219 }
4220
4221 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4222                                       struct kvm_vcpu *vcpu, u32 access,
4223                                       struct x86_exception *exception)
4224 {
4225         void *data = val;
4226         int r = X86EMUL_CONTINUE;
4227
4228         while (bytes) {
4229                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4230                                                             exception);
4231                 unsigned offset = addr & (PAGE_SIZE-1);
4232                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4233                 int ret;
4234
4235                 if (gpa == UNMAPPED_GVA)
4236                         return X86EMUL_PROPAGATE_FAULT;
4237                 ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, data,
4238                                           offset, toread);
4239                 if (ret < 0) {
4240                         r = X86EMUL_IO_NEEDED;
4241                         goto out;
4242                 }
4243
4244                 bytes -= toread;
4245                 data += toread;
4246                 addr += toread;
4247         }
4248 out:
4249         return r;
4250 }
4251
4252 /* used for instruction fetching */
4253 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4254                                 gva_t addr, void *val, unsigned int bytes,
4255                                 struct x86_exception *exception)
4256 {
4257         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4258         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4259         unsigned offset;
4260         int ret;
4261
4262         /* Inline kvm_read_guest_virt_helper for speed.  */
4263         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4264                                                     exception);
4265         if (unlikely(gpa == UNMAPPED_GVA))
4266                 return X86EMUL_PROPAGATE_FAULT;
4267
4268         offset = addr & (PAGE_SIZE-1);
4269         if (WARN_ON(offset + bytes > PAGE_SIZE))
4270                 bytes = (unsigned)PAGE_SIZE - offset;
4271         ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, val,
4272                                   offset, bytes);
4273         if (unlikely(ret < 0))
4274                 return X86EMUL_IO_NEEDED;
4275
4276         return X86EMUL_CONTINUE;
4277 }
4278
4279 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4280                                gva_t addr, void *val, unsigned int bytes,
4281                                struct x86_exception *exception)
4282 {
4283         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4284         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4285
4286         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4287                                           exception);
4288 }
4289 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4290
4291 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4292                                       gva_t addr, void *val, unsigned int bytes,
4293                                       struct x86_exception *exception)
4294 {
4295         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4296         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4297 }
4298
4299 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4300                                        gva_t addr, void *val,
4301                                        unsigned int bytes,
4302                                        struct x86_exception *exception)
4303 {
4304         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4305         void *data = val;
4306         int r = X86EMUL_CONTINUE;
4307
4308         while (bytes) {
4309                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4310                                                              PFERR_WRITE_MASK,
4311                                                              exception);
4312                 unsigned offset = addr & (PAGE_SIZE-1);
4313                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4314                 int ret;
4315
4316                 if (gpa == UNMAPPED_GVA)
4317                         return X86EMUL_PROPAGATE_FAULT;
4318                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
4319                 if (ret < 0) {
4320                         r = X86EMUL_IO_NEEDED;
4321                         goto out;
4322                 }
4323
4324                 bytes -= towrite;
4325                 data += towrite;
4326                 addr += towrite;
4327         }
4328 out:
4329         return r;
4330 }
4331 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4332
4333 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4334                                 gpa_t *gpa, struct x86_exception *exception,
4335                                 bool write)
4336 {
4337         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4338                 | (write ? PFERR_WRITE_MASK : 0);
4339
4340         if (vcpu_match_mmio_gva(vcpu, gva)
4341             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4342                                  vcpu->arch.access, access)) {
4343                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4344                                         (gva & (PAGE_SIZE - 1));
4345                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4346                 return 1;
4347         }
4348
4349         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4350
4351         if (*gpa == UNMAPPED_GVA)
4352                 return -1;
4353
4354         /* For APIC access vmexit */
4355         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4356                 return 1;
4357
4358         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4359                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4360                 return 1;
4361         }
4362
4363         return 0;
4364 }
4365
4366 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4367                         const void *val, int bytes)
4368 {
4369         int ret;
4370
4371         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4372         if (ret < 0)
4373                 return 0;
4374         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4375         return 1;
4376 }
4377
4378 struct read_write_emulator_ops {
4379         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4380                                   int bytes);
4381         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4382                                   void *val, int bytes);
4383         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4384                                int bytes, void *val);
4385         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4386                                     void *val, int bytes);
4387         bool write;
4388 };
4389
4390 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4391 {
4392         if (vcpu->mmio_read_completed) {
4393                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4394                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4395                 vcpu->mmio_read_completed = 0;
4396                 return 1;
4397         }
4398
4399         return 0;
4400 }
4401
4402 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4403                         void *val, int bytes)
4404 {
4405         return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4406 }
4407
4408 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4409                          void *val, int bytes)
4410 {
4411         return emulator_write_phys(vcpu, gpa, val, bytes);
4412 }
4413
4414 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4415 {
4416         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4417         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4418 }
4419
4420 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4421                           void *val, int bytes)
4422 {
4423         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4424         return X86EMUL_IO_NEEDED;
4425 }
4426
4427 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4428                            void *val, int bytes)
4429 {
4430         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4431
4432         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4433         return X86EMUL_CONTINUE;
4434 }
4435
4436 static const struct read_write_emulator_ops read_emultor = {
4437         .read_write_prepare = read_prepare,
4438         .read_write_emulate = read_emulate,
4439         .read_write_mmio = vcpu_mmio_read,
4440         .read_write_exit_mmio = read_exit_mmio,
4441 };
4442
4443 static const struct read_write_emulator_ops write_emultor = {
4444         .read_write_emulate = write_emulate,
4445         .read_write_mmio = write_mmio,
4446         .read_write_exit_mmio = write_exit_mmio,
4447         .write = true,
4448 };
4449
4450 static int emulator_read_write_onepage(unsigned long addr, void *val,
4451                                        unsigned int bytes,
4452                                        struct x86_exception *exception,
4453                                        struct kvm_vcpu *vcpu,
4454                                        const struct read_write_emulator_ops *ops)
4455 {
4456         gpa_t gpa;
4457         int handled, ret;
4458         bool write = ops->write;
4459         struct kvm_mmio_fragment *frag;
4460
4461         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4462
4463         if (ret < 0)
4464                 return X86EMUL_PROPAGATE_FAULT;
4465
4466         /* For APIC access vmexit */
4467         if (ret)
4468                 goto mmio;
4469
4470         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4471                 return X86EMUL_CONTINUE;
4472
4473 mmio:
4474         /*
4475          * Is this MMIO handled locally?
4476          */
4477         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4478         if (handled == bytes)
4479                 return X86EMUL_CONTINUE;
4480
4481         gpa += handled;
4482         bytes -= handled;
4483         val += handled;
4484
4485         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4486         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4487         frag->gpa = gpa;
4488         frag->data = val;
4489         frag->len = bytes;
4490         return X86EMUL_CONTINUE;
4491 }
4492
4493 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4494                         void *val, unsigned int bytes,
4495                         struct x86_exception *exception,
4496                         const struct read_write_emulator_ops *ops)
4497 {
4498         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4499         gpa_t gpa;
4500         int rc;
4501
4502         if (ops->read_write_prepare &&
4503                   ops->read_write_prepare(vcpu, val, bytes))
4504                 return X86EMUL_CONTINUE;
4505
4506         vcpu->mmio_nr_fragments = 0;
4507
4508         /* Crossing a page boundary? */
4509         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4510                 int now;
4511
4512                 now = -addr & ~PAGE_MASK;
4513                 rc = emulator_read_write_onepage(addr, val, now, exception,
4514                                                  vcpu, ops);
4515
4516                 if (rc != X86EMUL_CONTINUE)
4517                         return rc;
4518                 addr += now;
4519                 val += now;
4520                 bytes -= now;
4521         }
4522
4523         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4524                                          vcpu, ops);
4525         if (rc != X86EMUL_CONTINUE)
4526                 return rc;
4527
4528         if (!vcpu->mmio_nr_fragments)
4529                 return rc;
4530
4531         gpa = vcpu->mmio_fragments[0].gpa;
4532
4533         vcpu->mmio_needed = 1;
4534         vcpu->mmio_cur_fragment = 0;
4535
4536         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4537         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4538         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4539         vcpu->run->mmio.phys_addr = gpa;
4540
4541         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4542 }
4543
4544 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4545                                   unsigned long addr,
4546                                   void *val,
4547                                   unsigned int bytes,
4548                                   struct x86_exception *exception)
4549 {
4550         return emulator_read_write(ctxt, addr, val, bytes,
4551                                    exception, &read_emultor);
4552 }
4553
4554 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4555                             unsigned long addr,
4556                             const void *val,
4557                             unsigned int bytes,
4558                             struct x86_exception *exception)
4559 {
4560         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4561                                    exception, &write_emultor);
4562 }
4563
4564 #define CMPXCHG_TYPE(t, ptr, old, new) \
4565         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4566
4567 #ifdef CONFIG_X86_64
4568 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4569 #else
4570 #  define CMPXCHG64(ptr, old, new) \
4571         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4572 #endif
4573
4574 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4575                                      unsigned long addr,
4576                                      const void *old,
4577                                      const void *new,
4578                                      unsigned int bytes,
4579                                      struct x86_exception *exception)
4580 {
4581         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4582         gpa_t gpa;
4583         struct page *page;
4584         char *kaddr;
4585         bool exchanged;
4586
4587         /* guests cmpxchg8b have to be emulated atomically */
4588         if (bytes > 8 || (bytes & (bytes - 1)))
4589                 goto emul_write;
4590
4591         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4592
4593         if (gpa == UNMAPPED_GVA ||
4594             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4595                 goto emul_write;
4596
4597         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4598                 goto emul_write;
4599
4600         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4601         if (is_error_page(page))
4602                 goto emul_write;
4603
4604         kaddr = kmap_atomic(page);
4605         kaddr += offset_in_page(gpa);
4606         switch (bytes) {
4607         case 1:
4608                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4609                 break;
4610         case 2:
4611                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4612                 break;
4613         case 4:
4614                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4615                 break;
4616         case 8:
4617                 exchanged = CMPXCHG64(kaddr, old, new);
4618                 break;
4619         default:
4620                 BUG();
4621         }
4622         kunmap_atomic(kaddr);
4623         kvm_release_page_dirty(page);
4624
4625         if (!exchanged)
4626                 return X86EMUL_CMPXCHG_FAILED;
4627
4628         mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
4629         kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4630
4631         return X86EMUL_CONTINUE;
4632
4633 emul_write:
4634         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4635
4636         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4637 }
4638
4639 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4640 {
4641         /* TODO: String I/O for in kernel device */
4642         int r;
4643
4644         if (vcpu->arch.pio.in)
4645                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4646                                     vcpu->arch.pio.size, pd);
4647         else
4648                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4649                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4650                                      pd);
4651         return r;
4652 }
4653
4654 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4655                                unsigned short port, void *val,
4656                                unsigned int count, bool in)
4657 {
4658         vcpu->arch.pio.port = port;
4659         vcpu->arch.pio.in = in;
4660         vcpu->arch.pio.count  = count;
4661         vcpu->arch.pio.size = size;
4662
4663         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4664                 vcpu->arch.pio.count = 0;
4665                 return 1;
4666         }
4667
4668         vcpu->run->exit_reason = KVM_EXIT_IO;
4669         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4670         vcpu->run->io.size = size;
4671         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4672         vcpu->run->io.count = count;
4673         vcpu->run->io.port = port;
4674
4675         return 0;
4676 }
4677
4678 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4679                                     int size, unsigned short port, void *val,
4680                                     unsigned int count)
4681 {
4682         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4683         int ret;
4684
4685         if (vcpu->arch.pio.count)
4686                 goto data_avail;
4687
4688         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4689         if (ret) {
4690 data_avail:
4691                 memcpy(val, vcpu->arch.pio_data, size * count);
4692                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4693                 vcpu->arch.pio.count = 0;
4694                 return 1;
4695         }
4696
4697         return 0;
4698 }
4699
4700 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4701                                      int size, unsigned short port,
4702                                      const void *val, unsigned int count)
4703 {
4704         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4705
4706         memcpy(vcpu->arch.pio_data, val, size * count);
4707         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4708         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4709 }
4710
4711 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4712 {
4713         return kvm_x86_ops->get_segment_base(vcpu, seg);
4714 }
4715
4716 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4717 {
4718         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4719 }
4720
4721 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4722 {
4723         if (!need_emulate_wbinvd(vcpu))
4724                 return X86EMUL_CONTINUE;
4725
4726         if (kvm_x86_ops->has_wbinvd_exit()) {
4727                 int cpu = get_cpu();
4728
4729                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4730                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4731                                 wbinvd_ipi, NULL, 1);
4732                 put_cpu();
4733                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4734         } else
4735                 wbinvd();
4736         return X86EMUL_CONTINUE;
4737 }
4738 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4739
4740 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4741 {
4742         kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4743 }
4744
4745 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4746 {
4747         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4748 }
4749
4750 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4751 {
4752
4753         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4754 }
4755
4756 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4757 {
4758         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4759 }
4760
4761 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4762 {
4763         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4764         unsigned long value;
4765
4766         switch (cr) {
4767         case 0:
4768                 value = kvm_read_cr0(vcpu);
4769                 break;
4770         case 2:
4771                 value = vcpu->arch.cr2;
4772                 break;
4773         case 3:
4774                 value = kvm_read_cr3(vcpu);
4775                 break;
4776         case 4:
4777                 value = kvm_read_cr4(vcpu);
4778                 break;
4779         case 8:
4780                 value = kvm_get_cr8(vcpu);
4781                 break;
4782         default:
4783                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4784                 return 0;
4785         }
4786
4787         return value;
4788 }
4789
4790 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4791 {
4792         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4793         int res = 0;
4794
4795         switch (cr) {
4796         case 0:
4797                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4798                 break;
4799         case 2:
4800                 vcpu->arch.cr2 = val;
4801                 break;
4802         case 3:
4803                 res = kvm_set_cr3(vcpu, val);
4804                 break;
4805         case 4:
4806                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4807                 break;
4808         case 8:
4809                 res = kvm_set_cr8(vcpu, val);
4810                 break;
4811         default:
4812                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4813                 res = -1;
4814         }
4815
4816         return res;
4817 }
4818
4819 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4820 {
4821         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4822 }
4823
4824 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4825 {
4826         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4827 }
4828
4829 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4830 {
4831         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4832 }
4833
4834 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4835 {
4836         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4837 }
4838
4839 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4840 {
4841         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4842 }
4843
4844 static unsigned long emulator_get_cached_segment_base(
4845         struct x86_emulate_ctxt *ctxt, int seg)
4846 {
4847         return get_segment_base(emul_to_vcpu(ctxt), seg);
4848 }
4849
4850 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4851                                  struct desc_struct *desc, u32 *base3,
4852                                  int seg)
4853 {
4854         struct kvm_segment var;
4855
4856         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4857         *selector = var.selector;
4858
4859         if (var.unusable) {
4860                 memset(desc, 0, sizeof(*desc));
4861                 return false;
4862         }
4863
4864         if (var.g)
4865                 var.limit >>= 12;
4866         set_desc_limit(desc, var.limit);
4867         set_desc_base(desc, (unsigned long)var.base);
4868 #ifdef CONFIG_X86_64
4869         if (base3)
4870                 *base3 = var.base >> 32;
4871 #endif
4872         desc->type = var.type;
4873         desc->s = var.s;
4874         desc->dpl = var.dpl;
4875         desc->p = var.present;
4876         desc->avl = var.avl;
4877         desc->l = var.l;
4878         desc->d = var.db;
4879         desc->g = var.g;
4880
4881         return true;
4882 }
4883
4884 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4885                                  struct desc_struct *desc, u32 base3,
4886                                  int seg)
4887 {
4888         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4889         struct kvm_segment var;
4890
4891         var.selector = selector;
4892         var.base = get_desc_base(desc);
4893 #ifdef CONFIG_X86_64
4894         var.base |= ((u64)base3) << 32;
4895 #endif
4896         var.limit = get_desc_limit(desc);
4897         if (desc->g)
4898                 var.limit = (var.limit << 12) | 0xfff;
4899         var.type = desc->type;
4900         var.dpl = desc->dpl;
4901         var.db = desc->d;
4902         var.s = desc->s;
4903         var.l = desc->l;
4904         var.g = desc->g;
4905         var.avl = desc->avl;
4906         var.present = desc->p;
4907         var.unusable = !var.present;
4908         var.padding = 0;
4909
4910         kvm_set_segment(vcpu, &var, seg);
4911         return;
4912 }
4913
4914 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4915                             u32 msr_index, u64 *pdata)
4916 {
4917         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4918 }
4919
4920 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4921                             u32 msr_index, u64 data)
4922 {
4923         struct msr_data msr;
4924
4925         msr.data = data;
4926         msr.index = msr_index;
4927         msr.host_initiated = false;
4928         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4929 }
4930
4931 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4932                               u32 pmc)
4933 {
4934         return kvm_pmu_check_pmc(emul_to_vcpu(ctxt), pmc);
4935 }
4936
4937 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4938                              u32 pmc, u64 *pdata)
4939 {
4940         return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4941 }
4942
4943 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4944 {
4945         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4946 }
4947
4948 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4949 {
4950         preempt_disable();
4951         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4952         /*
4953          * CR0.TS may reference the host fpu state, not the guest fpu state,
4954          * so it may be clear at this point.
4955          */
4956         clts();
4957 }
4958
4959 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4960 {
4961         preempt_enable();
4962 }
4963
4964 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4965                               struct x86_instruction_info *info,
4966                               enum x86_intercept_stage stage)
4967 {
4968         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4969 }
4970
4971 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4972                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4973 {
4974         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4975 }
4976
4977 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4978 {
4979         return kvm_register_read(emul_to_vcpu(ctxt), reg);
4980 }
4981
4982 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4983 {
4984         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4985 }
4986
4987 static const struct x86_emulate_ops emulate_ops = {
4988         .read_gpr            = emulator_read_gpr,
4989         .write_gpr           = emulator_write_gpr,
4990         .read_std            = kvm_read_guest_virt_system,
4991         .write_std           = kvm_write_guest_virt_system,
4992         .fetch               = kvm_fetch_guest_virt,
4993         .read_emulated       = emulator_read_emulated,
4994         .write_emulated      = emulator_write_emulated,
4995         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4996         .invlpg              = emulator_invlpg,
4997         .pio_in_emulated     = emulator_pio_in_emulated,
4998         .pio_out_emulated    = emulator_pio_out_emulated,
4999         .get_segment         = emulator_get_segment,
5000         .set_segment         = emulator_set_segment,
5001         .get_cached_segment_base = emulator_get_cached_segment_base,
5002         .get_gdt             = emulator_get_gdt,
5003         .get_idt             = emulator_get_idt,
5004         .set_gdt             = emulator_set_gdt,
5005         .set_idt             = emulator_set_idt,
5006         .get_cr              = emulator_get_cr,
5007         .set_cr              = emulator_set_cr,
5008         .cpl                 = emulator_get_cpl,
5009         .get_dr              = emulator_get_dr,
5010         .set_dr              = emulator_set_dr,
5011         .set_msr             = emulator_set_msr,
5012         .get_msr             = emulator_get_msr,
5013         .check_pmc           = emulator_check_pmc,
5014         .read_pmc            = emulator_read_pmc,
5015         .halt                = emulator_halt,
5016         .wbinvd              = emulator_wbinvd,
5017         .fix_hypercall       = emulator_fix_hypercall,
5018         .get_fpu             = emulator_get_fpu,
5019         .put_fpu             = emulator_put_fpu,
5020         .intercept           = emulator_intercept,
5021         .get_cpuid           = emulator_get_cpuid,
5022 };
5023
5024 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5025 {
5026         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5027         /*
5028          * an sti; sti; sequence only disable interrupts for the first
5029          * instruction. So, if the last instruction, be it emulated or
5030          * not, left the system with the INT_STI flag enabled, it
5031          * means that the last instruction is an sti. We should not
5032          * leave the flag on in this case. The same goes for mov ss
5033          */
5034         if (int_shadow & mask)
5035                 mask = 0;
5036         if (unlikely(int_shadow || mask)) {
5037                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5038                 if (!mask)
5039                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5040         }
5041 }
5042
5043 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5044 {
5045         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5046         if (ctxt->exception.vector == PF_VECTOR)
5047                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5048
5049         if (ctxt->exception.error_code_valid)
5050                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5051                                       ctxt->exception.error_code);
5052         else
5053                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5054         return false;
5055 }
5056
5057 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5058 {
5059         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5060         int cs_db, cs_l;
5061
5062         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5063
5064         ctxt->eflags = kvm_get_rflags(vcpu);
5065         ctxt->eip = kvm_rip_read(vcpu);
5066         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5067                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5068                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5069                      cs_db                              ? X86EMUL_MODE_PROT32 :
5070                                                           X86EMUL_MODE_PROT16;
5071         ctxt->guest_mode = is_guest_mode(vcpu);
5072
5073         init_decode_cache(ctxt);
5074         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5075 }
5076
5077 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5078 {
5079         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5080         int ret;
5081
5082         init_emulate_ctxt(vcpu);
5083
5084         ctxt->op_bytes = 2;
5085         ctxt->ad_bytes = 2;
5086         ctxt->_eip = ctxt->eip + inc_eip;
5087         ret = emulate_int_real(ctxt, irq);
5088
5089         if (ret != X86EMUL_CONTINUE)
5090                 return EMULATE_FAIL;
5091
5092         ctxt->eip = ctxt->_eip;
5093         kvm_rip_write(vcpu, ctxt->eip);
5094         kvm_set_rflags(vcpu, ctxt->eflags);
5095
5096         if (irq == NMI_VECTOR)
5097                 vcpu->arch.nmi_pending = 0;
5098         else
5099                 vcpu->arch.interrupt.pending = false;
5100
5101         return EMULATE_DONE;
5102 }
5103 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5104
5105 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5106 {
5107         int r = EMULATE_DONE;
5108
5109         ++vcpu->stat.insn_emulation_fail;
5110         trace_kvm_emulate_insn_failed(vcpu);
5111         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5112                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5113                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5114                 vcpu->run->internal.ndata = 0;
5115                 r = EMULATE_FAIL;
5116         }
5117         kvm_queue_exception(vcpu, UD_VECTOR);
5118
5119         return r;
5120 }
5121
5122 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5123                                   bool write_fault_to_shadow_pgtable,
5124                                   int emulation_type)
5125 {
5126         gpa_t gpa = cr2;
5127         pfn_t pfn;
5128
5129         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5130                 return false;
5131
5132         if (!vcpu->arch.mmu.direct_map) {
5133                 /*
5134                  * Write permission should be allowed since only
5135                  * write access need to be emulated.
5136                  */
5137                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5138
5139                 /*
5140                  * If the mapping is invalid in guest, let cpu retry
5141                  * it to generate fault.
5142                  */
5143                 if (gpa == UNMAPPED_GVA)
5144                         return true;
5145         }
5146
5147         /*
5148          * Do not retry the unhandleable instruction if it faults on the
5149          * readonly host memory, otherwise it will goto a infinite loop:
5150          * retry instruction -> write #PF -> emulation fail -> retry
5151          * instruction -> ...
5152          */
5153         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5154
5155         /*
5156          * If the instruction failed on the error pfn, it can not be fixed,
5157          * report the error to userspace.
5158          */
5159         if (is_error_noslot_pfn(pfn))
5160                 return false;
5161
5162         kvm_release_pfn_clean(pfn);
5163
5164         /* The instructions are well-emulated on direct mmu. */
5165         if (vcpu->arch.mmu.direct_map) {
5166                 unsigned int indirect_shadow_pages;
5167
5168                 spin_lock(&vcpu->kvm->mmu_lock);
5169                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5170                 spin_unlock(&vcpu->kvm->mmu_lock);
5171
5172                 if (indirect_shadow_pages)
5173                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5174
5175                 return true;
5176         }
5177
5178         /*
5179          * if emulation was due to access to shadowed page table
5180          * and it failed try to unshadow page and re-enter the
5181          * guest to let CPU execute the instruction.
5182          */
5183         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5184
5185         /*
5186          * If the access faults on its page table, it can not
5187          * be fixed by unprotecting shadow page and it should
5188          * be reported to userspace.
5189          */
5190         return !write_fault_to_shadow_pgtable;
5191 }
5192
5193 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5194                               unsigned long cr2,  int emulation_type)
5195 {
5196         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5197         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5198
5199         last_retry_eip = vcpu->arch.last_retry_eip;
5200         last_retry_addr = vcpu->arch.last_retry_addr;
5201
5202         /*
5203          * If the emulation is caused by #PF and it is non-page_table
5204          * writing instruction, it means the VM-EXIT is caused by shadow
5205          * page protected, we can zap the shadow page and retry this
5206          * instruction directly.
5207          *
5208          * Note: if the guest uses a non-page-table modifying instruction
5209          * on the PDE that points to the instruction, then we will unmap
5210          * the instruction and go to an infinite loop. So, we cache the
5211          * last retried eip and the last fault address, if we meet the eip
5212          * and the address again, we can break out of the potential infinite
5213          * loop.
5214          */
5215         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5216
5217         if (!(emulation_type & EMULTYPE_RETRY))
5218                 return false;
5219
5220         if (x86_page_table_writing_insn(ctxt))
5221                 return false;
5222
5223         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5224                 return false;
5225
5226         vcpu->arch.last_retry_eip = ctxt->eip;
5227         vcpu->arch.last_retry_addr = cr2;
5228
5229         if (!vcpu->arch.mmu.direct_map)
5230                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5231
5232         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5233
5234         return true;
5235 }
5236
5237 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5238 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5239
5240 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5241                                 unsigned long *db)
5242 {
5243         u32 dr6 = 0;
5244         int i;
5245         u32 enable, rwlen;
5246
5247         enable = dr7;
5248         rwlen = dr7 >> 16;
5249         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5250                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5251                         dr6 |= (1 << i);
5252         return dr6;
5253 }
5254
5255 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5256 {
5257         struct kvm_run *kvm_run = vcpu->run;
5258
5259         /*
5260          * rflags is the old, "raw" value of the flags.  The new value has
5261          * not been saved yet.
5262          *
5263          * This is correct even for TF set by the guest, because "the
5264          * processor will not generate this exception after the instruction
5265          * that sets the TF flag".
5266          */
5267         if (unlikely(rflags & X86_EFLAGS_TF)) {
5268                 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5269                         kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5270                                                   DR6_RTM;
5271                         kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5272                         kvm_run->debug.arch.exception = DB_VECTOR;
5273                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5274                         *r = EMULATE_USER_EXIT;
5275                 } else {
5276                         vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5277                         /*
5278                          * "Certain debug exceptions may clear bit 0-3.  The
5279                          * remaining contents of the DR6 register are never
5280                          * cleared by the processor".
5281                          */
5282                         vcpu->arch.dr6 &= ~15;
5283                         vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5284                         kvm_queue_exception(vcpu, DB_VECTOR);
5285                 }
5286         }
5287 }
5288
5289 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5290 {
5291         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5292             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5293                 struct kvm_run *kvm_run = vcpu->run;
5294                 unsigned long eip = kvm_get_linear_rip(vcpu);
5295                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5296                                            vcpu->arch.guest_debug_dr7,
5297                                            vcpu->arch.eff_db);
5298
5299                 if (dr6 != 0) {
5300                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5301                         kvm_run->debug.arch.pc = eip;
5302                         kvm_run->debug.arch.exception = DB_VECTOR;
5303                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5304                         *r = EMULATE_USER_EXIT;
5305                         return true;
5306                 }
5307         }
5308
5309         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5310             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5311                 unsigned long eip = kvm_get_linear_rip(vcpu);
5312                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5313                                            vcpu->arch.dr7,
5314                                            vcpu->arch.db);
5315
5316                 if (dr6 != 0) {
5317                         vcpu->arch.dr6 &= ~15;
5318                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5319                         kvm_queue_exception(vcpu, DB_VECTOR);
5320                         *r = EMULATE_DONE;
5321                         return true;
5322                 }
5323         }
5324
5325         return false;
5326 }
5327
5328 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5329                             unsigned long cr2,
5330                             int emulation_type,
5331                             void *insn,
5332                             int insn_len)
5333 {
5334         int r;
5335         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5336         bool writeback = true;
5337         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5338
5339         /*
5340          * Clear write_fault_to_shadow_pgtable here to ensure it is
5341          * never reused.
5342          */
5343         vcpu->arch.write_fault_to_shadow_pgtable = false;
5344         kvm_clear_exception_queue(vcpu);
5345
5346         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5347                 init_emulate_ctxt(vcpu);
5348
5349                 /*
5350                  * We will reenter on the same instruction since
5351                  * we do not set complete_userspace_io.  This does not
5352                  * handle watchpoints yet, those would be handled in
5353                  * the emulate_ops.
5354                  */
5355                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5356                         return r;
5357
5358                 ctxt->interruptibility = 0;
5359                 ctxt->have_exception = false;
5360                 ctxt->exception.vector = -1;
5361                 ctxt->perm_ok = false;
5362
5363                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5364
5365                 r = x86_decode_insn(ctxt, insn, insn_len);
5366
5367                 trace_kvm_emulate_insn_start(vcpu);
5368                 ++vcpu->stat.insn_emulation;
5369                 if (r != EMULATION_OK)  {
5370                         if (emulation_type & EMULTYPE_TRAP_UD)
5371                                 return EMULATE_FAIL;
5372                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5373                                                 emulation_type))
5374                                 return EMULATE_DONE;
5375                         if (emulation_type & EMULTYPE_SKIP)
5376                                 return EMULATE_FAIL;
5377                         return handle_emulation_failure(vcpu);
5378                 }
5379         }
5380
5381         if (emulation_type & EMULTYPE_SKIP) {
5382                 kvm_rip_write(vcpu, ctxt->_eip);
5383                 if (ctxt->eflags & X86_EFLAGS_RF)
5384                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5385                 return EMULATE_DONE;
5386         }
5387
5388         if (retry_instruction(ctxt, cr2, emulation_type))
5389                 return EMULATE_DONE;
5390
5391         /* this is needed for vmware backdoor interface to work since it
5392            changes registers values  during IO operation */
5393         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5394                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5395                 emulator_invalidate_register_cache(ctxt);
5396         }
5397
5398 restart:
5399         r = x86_emulate_insn(ctxt);
5400
5401         if (r == EMULATION_INTERCEPTED)
5402                 return EMULATE_DONE;
5403
5404         if (r == EMULATION_FAILED) {
5405                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5406                                         emulation_type))
5407                         return EMULATE_DONE;
5408
5409                 return handle_emulation_failure(vcpu);
5410         }
5411
5412         if (ctxt->have_exception) {
5413                 r = EMULATE_DONE;
5414                 if (inject_emulated_exception(vcpu))
5415                         return r;
5416         } else if (vcpu->arch.pio.count) {
5417                 if (!vcpu->arch.pio.in) {
5418                         /* FIXME: return into emulator if single-stepping.  */
5419                         vcpu->arch.pio.count = 0;
5420                 } else {
5421                         writeback = false;
5422                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5423                 }
5424                 r = EMULATE_USER_EXIT;
5425         } else if (vcpu->mmio_needed) {
5426                 if (!vcpu->mmio_is_write)
5427                         writeback = false;
5428                 r = EMULATE_USER_EXIT;
5429                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5430         } else if (r == EMULATION_RESTART)
5431                 goto restart;
5432         else
5433                 r = EMULATE_DONE;
5434
5435         if (writeback) {
5436                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5437                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5438                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5439                 kvm_rip_write(vcpu, ctxt->eip);
5440                 if (r == EMULATE_DONE)
5441                         kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5442                 if (!ctxt->have_exception ||
5443                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5444                         __kvm_set_rflags(vcpu, ctxt->eflags);
5445
5446                 /*
5447                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5448                  * do nothing, and it will be requested again as soon as
5449                  * the shadow expires.  But we still need to check here,
5450                  * because POPF has no interrupt shadow.
5451                  */
5452                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5453                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5454         } else
5455                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5456
5457         return r;
5458 }
5459 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5460
5461 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5462 {
5463         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5464         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5465                                             size, port, &val, 1);
5466         /* do not return to emulator after return from userspace */
5467         vcpu->arch.pio.count = 0;
5468         return ret;
5469 }
5470 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5471
5472 static void tsc_bad(void *info)
5473 {
5474         __this_cpu_write(cpu_tsc_khz, 0);
5475 }
5476
5477 static void tsc_khz_changed(void *data)
5478 {
5479         struct cpufreq_freqs *freq = data;
5480         unsigned long khz = 0;
5481
5482         if (data)
5483                 khz = freq->new;
5484         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5485                 khz = cpufreq_quick_get(raw_smp_processor_id());
5486         if (!khz)
5487                 khz = tsc_khz;
5488         __this_cpu_write(cpu_tsc_khz, khz);
5489 }
5490
5491 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5492                                      void *data)
5493 {
5494         struct cpufreq_freqs *freq = data;
5495         struct kvm *kvm;
5496         struct kvm_vcpu *vcpu;
5497         int i, send_ipi = 0;
5498
5499         /*
5500          * We allow guests to temporarily run on slowing clocks,
5501          * provided we notify them after, or to run on accelerating
5502          * clocks, provided we notify them before.  Thus time never
5503          * goes backwards.
5504          *
5505          * However, we have a problem.  We can't atomically update
5506          * the frequency of a given CPU from this function; it is
5507          * merely a notifier, which can be called from any CPU.
5508          * Changing the TSC frequency at arbitrary points in time
5509          * requires a recomputation of local variables related to
5510          * the TSC for each VCPU.  We must flag these local variables
5511          * to be updated and be sure the update takes place with the
5512          * new frequency before any guests proceed.
5513          *
5514          * Unfortunately, the combination of hotplug CPU and frequency
5515          * change creates an intractable locking scenario; the order
5516          * of when these callouts happen is undefined with respect to
5517          * CPU hotplug, and they can race with each other.  As such,
5518          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5519          * undefined; you can actually have a CPU frequency change take
5520          * place in between the computation of X and the setting of the
5521          * variable.  To protect against this problem, all updates of
5522          * the per_cpu tsc_khz variable are done in an interrupt
5523          * protected IPI, and all callers wishing to update the value
5524          * must wait for a synchronous IPI to complete (which is trivial
5525          * if the caller is on the CPU already).  This establishes the
5526          * necessary total order on variable updates.
5527          *
5528          * Note that because a guest time update may take place
5529          * anytime after the setting of the VCPU's request bit, the
5530          * correct TSC value must be set before the request.  However,
5531          * to ensure the update actually makes it to any guest which
5532          * starts running in hardware virtualization between the set
5533          * and the acquisition of the spinlock, we must also ping the
5534          * CPU after setting the request bit.
5535          *
5536          */
5537
5538         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5539                 return 0;
5540         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5541                 return 0;
5542
5543         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5544
5545         spin_lock(&kvm_lock);
5546         list_for_each_entry(kvm, &vm_list, vm_list) {
5547                 kvm_for_each_vcpu(i, vcpu, kvm) {
5548                         if (vcpu->cpu != freq->cpu)
5549                                 continue;
5550                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5551                         if (vcpu->cpu != smp_processor_id())
5552                                 send_ipi = 1;
5553                 }
5554         }
5555         spin_unlock(&kvm_lock);
5556
5557         if (freq->old < freq->new && send_ipi) {
5558                 /*
5559                  * We upscale the frequency.  Must make the guest
5560                  * doesn't see old kvmclock values while running with
5561                  * the new frequency, otherwise we risk the guest sees
5562                  * time go backwards.
5563                  *
5564                  * In case we update the frequency for another cpu
5565                  * (which might be in guest context) send an interrupt
5566                  * to kick the cpu out of guest context.  Next time
5567                  * guest context is entered kvmclock will be updated,
5568                  * so the guest will not see stale values.
5569                  */
5570                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5571         }
5572         return 0;
5573 }
5574
5575 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5576         .notifier_call  = kvmclock_cpufreq_notifier
5577 };
5578
5579 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5580                                         unsigned long action, void *hcpu)
5581 {
5582         unsigned int cpu = (unsigned long)hcpu;
5583
5584         switch (action) {
5585                 case CPU_ONLINE:
5586                 case CPU_DOWN_FAILED:
5587                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5588                         break;
5589                 case CPU_DOWN_PREPARE:
5590                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
5591                         break;
5592         }
5593         return NOTIFY_OK;
5594 }
5595
5596 static struct notifier_block kvmclock_cpu_notifier_block = {
5597         .notifier_call  = kvmclock_cpu_notifier,
5598         .priority = -INT_MAX
5599 };
5600
5601 static void kvm_timer_init(void)
5602 {
5603         int cpu;
5604
5605         max_tsc_khz = tsc_khz;
5606
5607         cpu_notifier_register_begin();
5608         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5609 #ifdef CONFIG_CPU_FREQ
5610                 struct cpufreq_policy policy;
5611                 memset(&policy, 0, sizeof(policy));
5612                 cpu = get_cpu();
5613                 cpufreq_get_policy(&policy, cpu);
5614                 if (policy.cpuinfo.max_freq)
5615                         max_tsc_khz = policy.cpuinfo.max_freq;
5616                 put_cpu();
5617 #endif
5618                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5619                                           CPUFREQ_TRANSITION_NOTIFIER);
5620         }
5621         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5622         for_each_online_cpu(cpu)
5623                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5624
5625         __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5626         cpu_notifier_register_done();
5627
5628 }
5629
5630 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5631
5632 int kvm_is_in_guest(void)
5633 {
5634         return __this_cpu_read(current_vcpu) != NULL;
5635 }
5636
5637 static int kvm_is_user_mode(void)
5638 {
5639         int user_mode = 3;
5640
5641         if (__this_cpu_read(current_vcpu))
5642                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5643
5644         return user_mode != 0;
5645 }
5646
5647 static unsigned long kvm_get_guest_ip(void)
5648 {
5649         unsigned long ip = 0;
5650
5651         if (__this_cpu_read(current_vcpu))
5652                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5653
5654         return ip;
5655 }
5656
5657 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5658         .is_in_guest            = kvm_is_in_guest,
5659         .is_user_mode           = kvm_is_user_mode,
5660         .get_guest_ip           = kvm_get_guest_ip,
5661 };
5662
5663 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5664 {
5665         __this_cpu_write(current_vcpu, vcpu);
5666 }
5667 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5668
5669 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5670 {
5671         __this_cpu_write(current_vcpu, NULL);
5672 }
5673 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5674
5675 static void kvm_set_mmio_spte_mask(void)
5676 {
5677         u64 mask;
5678         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5679
5680         /*
5681          * Set the reserved bits and the present bit of an paging-structure
5682          * entry to generate page fault with PFER.RSV = 1.
5683          */
5684          /* Mask the reserved physical address bits. */
5685         mask = rsvd_bits(maxphyaddr, 51);
5686
5687         /* Bit 62 is always reserved for 32bit host. */
5688         mask |= 0x3ull << 62;
5689
5690         /* Set the present bit. */
5691         mask |= 1ull;
5692
5693 #ifdef CONFIG_X86_64
5694         /*
5695          * If reserved bit is not supported, clear the present bit to disable
5696          * mmio page fault.
5697          */
5698         if (maxphyaddr == 52)
5699                 mask &= ~1ull;
5700 #endif
5701
5702         kvm_mmu_set_mmio_spte_mask(mask);
5703 }
5704
5705 #ifdef CONFIG_X86_64
5706 static void pvclock_gtod_update_fn(struct work_struct *work)
5707 {
5708         struct kvm *kvm;
5709
5710         struct kvm_vcpu *vcpu;
5711         int i;
5712
5713         spin_lock(&kvm_lock);
5714         list_for_each_entry(kvm, &vm_list, vm_list)
5715                 kvm_for_each_vcpu(i, vcpu, kvm)
5716                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5717         atomic_set(&kvm_guest_has_master_clock, 0);
5718         spin_unlock(&kvm_lock);
5719 }
5720
5721 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5722
5723 /*
5724  * Notification about pvclock gtod data update.
5725  */
5726 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5727                                void *priv)
5728 {
5729         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5730         struct timekeeper *tk = priv;
5731
5732         update_pvclock_gtod(tk);
5733
5734         /* disable master clock if host does not trust, or does not
5735          * use, TSC clocksource
5736          */
5737         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5738             atomic_read(&kvm_guest_has_master_clock) != 0)
5739                 queue_work(system_long_wq, &pvclock_gtod_work);
5740
5741         return 0;
5742 }
5743
5744 static struct notifier_block pvclock_gtod_notifier = {
5745         .notifier_call = pvclock_gtod_notify,
5746 };
5747 #endif
5748
5749 int kvm_arch_init(void *opaque)
5750 {
5751         int r;
5752         struct kvm_x86_ops *ops = opaque;
5753
5754         if (kvm_x86_ops) {
5755                 printk(KERN_ERR "kvm: already loaded the other module\n");
5756                 r = -EEXIST;
5757                 goto out;
5758         }
5759
5760         if (!ops->cpu_has_kvm_support()) {
5761                 printk(KERN_ERR "kvm: no hardware support\n");
5762                 r = -EOPNOTSUPP;
5763                 goto out;
5764         }
5765         if (ops->disabled_by_bios()) {
5766                 printk(KERN_ERR "kvm: disabled by bios\n");
5767                 r = -EOPNOTSUPP;
5768                 goto out;
5769         }
5770
5771         r = -ENOMEM;
5772         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5773         if (!shared_msrs) {
5774                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5775                 goto out;
5776         }
5777
5778         r = kvm_mmu_module_init();
5779         if (r)
5780                 goto out_free_percpu;
5781
5782         kvm_set_mmio_spte_mask();
5783
5784         kvm_x86_ops = ops;
5785         kvm_init_msr_list();
5786
5787         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5788                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5789
5790         kvm_timer_init();
5791
5792         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5793
5794         if (cpu_has_xsave)
5795                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5796
5797         kvm_lapic_init();
5798 #ifdef CONFIG_X86_64
5799         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5800 #endif
5801
5802         return 0;
5803
5804 out_free_percpu:
5805         free_percpu(shared_msrs);
5806 out:
5807         return r;
5808 }
5809
5810 void kvm_arch_exit(void)
5811 {
5812         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5813
5814         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5815                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5816                                             CPUFREQ_TRANSITION_NOTIFIER);
5817         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5818 #ifdef CONFIG_X86_64
5819         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5820 #endif
5821         kvm_x86_ops = NULL;
5822         kvm_mmu_module_exit();
5823         free_percpu(shared_msrs);
5824 }
5825
5826 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5827 {
5828         ++vcpu->stat.halt_exits;
5829         if (irqchip_in_kernel(vcpu->kvm)) {
5830                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5831                 return 1;
5832         } else {
5833                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5834                 return 0;
5835         }
5836 }
5837 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5838
5839 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5840 {
5841         u64 param, ingpa, outgpa, ret;
5842         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5843         bool fast, longmode;
5844
5845         /*
5846          * hypercall generates UD from non zero cpl and real mode
5847          * per HYPER-V spec
5848          */
5849         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5850                 kvm_queue_exception(vcpu, UD_VECTOR);
5851                 return 0;
5852         }
5853
5854         longmode = is_64_bit_mode(vcpu);
5855
5856         if (!longmode) {
5857                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5858                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5859                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5860                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5861                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5862                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5863         }
5864 #ifdef CONFIG_X86_64
5865         else {
5866                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5867                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5868                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5869         }
5870 #endif
5871
5872         code = param & 0xffff;
5873         fast = (param >> 16) & 0x1;
5874         rep_cnt = (param >> 32) & 0xfff;
5875         rep_idx = (param >> 48) & 0xfff;
5876
5877         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5878
5879         switch (code) {
5880         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5881                 kvm_vcpu_on_spin(vcpu);
5882                 break;
5883         default:
5884                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5885                 break;
5886         }
5887
5888         ret = res | (((u64)rep_done & 0xfff) << 32);
5889         if (longmode) {
5890                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5891         } else {
5892                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5893                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5894         }
5895
5896         return 1;
5897 }
5898
5899 /*
5900  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5901  *
5902  * @apicid - apicid of vcpu to be kicked.
5903  */
5904 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5905 {
5906         struct kvm_lapic_irq lapic_irq;
5907
5908         lapic_irq.shorthand = 0;
5909         lapic_irq.dest_mode = 0;
5910         lapic_irq.dest_id = apicid;
5911
5912         lapic_irq.delivery_mode = APIC_DM_REMRD;
5913         kvm_irq_delivery_to_apic(kvm, 0, &lapic_irq, NULL);
5914 }
5915
5916 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5917 {
5918         unsigned long nr, a0, a1, a2, a3, ret;
5919         int op_64_bit, r = 1;
5920
5921         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5922                 return kvm_hv_hypercall(vcpu);
5923
5924         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5925         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5926         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5927         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5928         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5929
5930         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5931
5932         op_64_bit = is_64_bit_mode(vcpu);
5933         if (!op_64_bit) {
5934                 nr &= 0xFFFFFFFF;
5935                 a0 &= 0xFFFFFFFF;
5936                 a1 &= 0xFFFFFFFF;
5937                 a2 &= 0xFFFFFFFF;
5938                 a3 &= 0xFFFFFFFF;
5939         }
5940
5941         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5942                 ret = -KVM_EPERM;
5943                 goto out;
5944         }
5945
5946         switch (nr) {
5947         case KVM_HC_VAPIC_POLL_IRQ:
5948                 ret = 0;
5949                 break;
5950         case KVM_HC_KICK_CPU:
5951                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5952                 ret = 0;
5953                 break;
5954         default:
5955                 ret = -KVM_ENOSYS;
5956                 break;
5957         }
5958 out:
5959         if (!op_64_bit)
5960                 ret = (u32)ret;
5961         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5962         ++vcpu->stat.hypercalls;
5963         return r;
5964 }
5965 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5966
5967 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5968 {
5969         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5970         char instruction[3];
5971         unsigned long rip = kvm_rip_read(vcpu);
5972
5973         kvm_x86_ops->patch_hypercall(vcpu, instruction);
5974
5975         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5976 }
5977
5978 /*
5979  * Check if userspace requested an interrupt window, and that the
5980  * interrupt window is open.
5981  *
5982  * No need to exit to userspace if we already have an interrupt queued.
5983  */
5984 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5985 {
5986         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5987                 vcpu->run->request_interrupt_window &&
5988                 kvm_arch_interrupt_allowed(vcpu));
5989 }
5990
5991 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5992 {
5993         struct kvm_run *kvm_run = vcpu->run;
5994
5995         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5996         kvm_run->cr8 = kvm_get_cr8(vcpu);
5997         kvm_run->apic_base = kvm_get_apic_base(vcpu);
5998         if (irqchip_in_kernel(vcpu->kvm))
5999                 kvm_run->ready_for_interrupt_injection = 1;
6000         else
6001                 kvm_run->ready_for_interrupt_injection =
6002                         kvm_arch_interrupt_allowed(vcpu) &&
6003                         !kvm_cpu_has_interrupt(vcpu) &&
6004                         !kvm_event_needs_reinjection(vcpu);
6005 }
6006
6007 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6008 {
6009         int max_irr, tpr;
6010
6011         if (!kvm_x86_ops->update_cr8_intercept)
6012                 return;
6013
6014         if (!vcpu->arch.apic)
6015                 return;
6016
6017         if (!vcpu->arch.apic->vapic_addr)
6018                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6019         else
6020                 max_irr = -1;
6021
6022         if (max_irr != -1)
6023                 max_irr >>= 4;
6024
6025         tpr = kvm_lapic_get_cr8(vcpu);
6026
6027         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6028 }
6029
6030 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6031 {
6032         int r;
6033
6034         /* try to reinject previous events if any */
6035         if (vcpu->arch.exception.pending) {
6036                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6037                                         vcpu->arch.exception.has_error_code,
6038                                         vcpu->arch.exception.error_code);
6039
6040                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6041                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6042                                              X86_EFLAGS_RF);
6043
6044                 if (vcpu->arch.exception.nr == DB_VECTOR &&
6045                     (vcpu->arch.dr7 & DR7_GD)) {
6046                         vcpu->arch.dr7 &= ~DR7_GD;
6047                         kvm_update_dr7(vcpu);
6048                 }
6049
6050                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6051                                           vcpu->arch.exception.has_error_code,
6052                                           vcpu->arch.exception.error_code,
6053                                           vcpu->arch.exception.reinject);
6054                 return 0;
6055         }
6056
6057         if (vcpu->arch.nmi_injected) {
6058                 kvm_x86_ops->set_nmi(vcpu);
6059                 return 0;
6060         }
6061
6062         if (vcpu->arch.interrupt.pending) {
6063                 kvm_x86_ops->set_irq(vcpu);
6064                 return 0;
6065         }
6066
6067         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6068                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6069                 if (r != 0)
6070                         return r;
6071         }
6072
6073         /* try to inject new event if pending */
6074         if (vcpu->arch.nmi_pending) {
6075                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
6076                         --vcpu->arch.nmi_pending;
6077                         vcpu->arch.nmi_injected = true;
6078                         kvm_x86_ops->set_nmi(vcpu);
6079                 }
6080         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6081                 /*
6082                  * Because interrupts can be injected asynchronously, we are
6083                  * calling check_nested_events again here to avoid a race condition.
6084                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6085                  * proposal and current concerns.  Perhaps we should be setting
6086                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6087                  */
6088                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6089                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6090                         if (r != 0)
6091                                 return r;
6092                 }
6093                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6094                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6095                                             false);
6096                         kvm_x86_ops->set_irq(vcpu);
6097                 }
6098         }
6099         return 0;
6100 }
6101
6102 static void process_nmi(struct kvm_vcpu *vcpu)
6103 {
6104         unsigned limit = 2;
6105
6106         /*
6107          * x86 is limited to one NMI running, and one NMI pending after it.
6108          * If an NMI is already in progress, limit further NMIs to just one.
6109          * Otherwise, allow two (and we'll inject the first one immediately).
6110          */
6111         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6112                 limit = 1;
6113
6114         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6115         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6116         kvm_make_request(KVM_REQ_EVENT, vcpu);
6117 }
6118
6119 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6120 {
6121         u64 eoi_exit_bitmap[4];
6122         u32 tmr[8];
6123
6124         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6125                 return;
6126
6127         memset(eoi_exit_bitmap, 0, 32);
6128         memset(tmr, 0, 32);
6129
6130         kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
6131         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6132         kvm_apic_update_tmr(vcpu, tmr);
6133 }
6134
6135 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6136 {
6137         ++vcpu->stat.tlb_flush;
6138         kvm_x86_ops->tlb_flush(vcpu);
6139 }
6140
6141 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6142 {
6143         struct page *page = NULL;
6144
6145         if (!irqchip_in_kernel(vcpu->kvm))
6146                 return;
6147
6148         if (!kvm_x86_ops->set_apic_access_page_addr)
6149                 return;
6150
6151         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6152         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6153
6154         /*
6155          * Do not pin apic access page in memory, the MMU notifier
6156          * will call us again if it is migrated or swapped out.
6157          */
6158         put_page(page);
6159 }
6160 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6161
6162 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6163                                            unsigned long address)
6164 {
6165         /*
6166          * The physical address of apic access page is stored in the VMCS.
6167          * Update it when it becomes invalid.
6168          */
6169         if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6170                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6171 }
6172
6173 /*
6174  * Returns 1 to let __vcpu_run() continue the guest execution loop without
6175  * exiting to the userspace.  Otherwise, the value will be returned to the
6176  * userspace.
6177  */
6178 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6179 {
6180         int r;
6181         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
6182                 vcpu->run->request_interrupt_window;
6183         bool req_immediate_exit = false;
6184
6185         if (vcpu->requests) {
6186                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6187                         kvm_mmu_unload(vcpu);
6188                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6189                         __kvm_migrate_timers(vcpu);
6190                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6191                         kvm_gen_update_masterclock(vcpu->kvm);
6192                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6193                         kvm_gen_kvmclock_update(vcpu);
6194                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6195                         r = kvm_guest_time_update(vcpu);
6196                         if (unlikely(r))
6197                                 goto out;
6198                 }
6199                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6200                         kvm_mmu_sync_roots(vcpu);
6201                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6202                         kvm_vcpu_flush_tlb(vcpu);
6203                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6204                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6205                         r = 0;
6206                         goto out;
6207                 }
6208                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6209                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6210                         r = 0;
6211                         goto out;
6212                 }
6213                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6214                         vcpu->fpu_active = 0;
6215                         kvm_x86_ops->fpu_deactivate(vcpu);
6216                 }
6217                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6218                         /* Page is swapped out. Do synthetic halt */
6219                         vcpu->arch.apf.halted = true;
6220                         r = 1;
6221                         goto out;
6222                 }
6223                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6224                         record_steal_time(vcpu);
6225                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6226                         process_nmi(vcpu);
6227                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6228                         kvm_handle_pmu_event(vcpu);
6229                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6230                         kvm_deliver_pmi(vcpu);
6231                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6232                         vcpu_scan_ioapic(vcpu);
6233                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6234                         kvm_vcpu_reload_apic_access_page(vcpu);
6235         }
6236
6237         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6238                 kvm_apic_accept_events(vcpu);
6239                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6240                         r = 1;
6241                         goto out;
6242                 }
6243
6244                 if (inject_pending_event(vcpu, req_int_win) != 0)
6245                         req_immediate_exit = true;
6246                 /* enable NMI/IRQ window open exits if needed */
6247                 else if (vcpu->arch.nmi_pending)
6248                         kvm_x86_ops->enable_nmi_window(vcpu);
6249                 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6250                         kvm_x86_ops->enable_irq_window(vcpu);
6251
6252                 if (kvm_lapic_enabled(vcpu)) {
6253                         /*
6254                          * Update architecture specific hints for APIC
6255                          * virtual interrupt delivery.
6256                          */
6257                         if (kvm_x86_ops->hwapic_irr_update)
6258                                 kvm_x86_ops->hwapic_irr_update(vcpu,
6259                                         kvm_lapic_find_highest_irr(vcpu));
6260                         update_cr8_intercept(vcpu);
6261                         kvm_lapic_sync_to_vapic(vcpu);
6262                 }
6263         }
6264
6265         r = kvm_mmu_reload(vcpu);
6266         if (unlikely(r)) {
6267                 goto cancel_injection;
6268         }
6269
6270         preempt_disable();
6271
6272         kvm_x86_ops->prepare_guest_switch(vcpu);
6273         if (vcpu->fpu_active)
6274                 kvm_load_guest_fpu(vcpu);
6275         kvm_load_guest_xcr0(vcpu);
6276
6277         vcpu->mode = IN_GUEST_MODE;
6278
6279         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6280
6281         /* We should set ->mode before check ->requests,
6282          * see the comment in make_all_cpus_request.
6283          */
6284         smp_mb__after_srcu_read_unlock();
6285
6286         local_irq_disable();
6287
6288         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6289             || need_resched() || signal_pending(current)) {
6290                 vcpu->mode = OUTSIDE_GUEST_MODE;
6291                 smp_wmb();
6292                 local_irq_enable();
6293                 preempt_enable();
6294                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6295                 r = 1;
6296                 goto cancel_injection;
6297         }
6298
6299         if (req_immediate_exit)
6300                 smp_send_reschedule(vcpu->cpu);
6301
6302         kvm_guest_enter();
6303
6304         if (unlikely(vcpu->arch.switch_db_regs)) {
6305                 set_debugreg(0, 7);
6306                 set_debugreg(vcpu->arch.eff_db[0], 0);
6307                 set_debugreg(vcpu->arch.eff_db[1], 1);
6308                 set_debugreg(vcpu->arch.eff_db[2], 2);
6309                 set_debugreg(vcpu->arch.eff_db[3], 3);
6310                 set_debugreg(vcpu->arch.dr6, 6);
6311         }
6312
6313         trace_kvm_entry(vcpu->vcpu_id);
6314         kvm_x86_ops->run(vcpu);
6315
6316         /*
6317          * Do this here before restoring debug registers on the host.  And
6318          * since we do this before handling the vmexit, a DR access vmexit
6319          * can (a) read the correct value of the debug registers, (b) set
6320          * KVM_DEBUGREG_WONT_EXIT again.
6321          */
6322         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6323                 int i;
6324
6325                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6326                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6327                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6328                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6329         }
6330
6331         /*
6332          * If the guest has used debug registers, at least dr7
6333          * will be disabled while returning to the host.
6334          * If we don't have active breakpoints in the host, we don't
6335          * care about the messed up debug address registers. But if
6336          * we have some of them active, restore the old state.
6337          */
6338         if (hw_breakpoint_active())
6339                 hw_breakpoint_restore();
6340
6341         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
6342                                                            native_read_tsc());
6343
6344         vcpu->mode = OUTSIDE_GUEST_MODE;
6345         smp_wmb();
6346
6347         /* Interrupt is enabled by handle_external_intr() */
6348         kvm_x86_ops->handle_external_intr(vcpu);
6349
6350         ++vcpu->stat.exits;
6351
6352         /*
6353          * We must have an instruction between local_irq_enable() and
6354          * kvm_guest_exit(), so the timer interrupt isn't delayed by
6355          * the interrupt shadow.  The stat.exits increment will do nicely.
6356          * But we need to prevent reordering, hence this barrier():
6357          */
6358         barrier();
6359
6360         kvm_guest_exit();
6361
6362         preempt_enable();
6363
6364         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6365
6366         /*
6367          * Profile KVM exit RIPs:
6368          */
6369         if (unlikely(prof_on == KVM_PROFILING)) {
6370                 unsigned long rip = kvm_rip_read(vcpu);
6371                 profile_hit(KVM_PROFILING, (void *)rip);
6372         }
6373
6374         if (unlikely(vcpu->arch.tsc_always_catchup))
6375                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6376
6377         if (vcpu->arch.apic_attention)
6378                 kvm_lapic_sync_from_vapic(vcpu);
6379
6380         r = kvm_x86_ops->handle_exit(vcpu);
6381         return r;
6382
6383 cancel_injection:
6384         kvm_x86_ops->cancel_injection(vcpu);
6385         if (unlikely(vcpu->arch.apic_attention))
6386                 kvm_lapic_sync_from_vapic(vcpu);
6387 out:
6388         return r;
6389 }
6390
6391
6392 static int __vcpu_run(struct kvm_vcpu *vcpu)
6393 {
6394         int r;
6395         struct kvm *kvm = vcpu->kvm;
6396
6397         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6398
6399         r = 1;
6400         while (r > 0) {
6401                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6402                     !vcpu->arch.apf.halted)
6403                         r = vcpu_enter_guest(vcpu);
6404                 else {
6405                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6406                         kvm_vcpu_block(vcpu);
6407                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6408                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
6409                                 kvm_apic_accept_events(vcpu);
6410                                 switch(vcpu->arch.mp_state) {
6411                                 case KVM_MP_STATE_HALTED:
6412                                         vcpu->arch.pv.pv_unhalted = false;
6413                                         vcpu->arch.mp_state =
6414                                                 KVM_MP_STATE_RUNNABLE;
6415                                 case KVM_MP_STATE_RUNNABLE:
6416                                         vcpu->arch.apf.halted = false;
6417                                         break;
6418                                 case KVM_MP_STATE_INIT_RECEIVED:
6419                                         break;
6420                                 default:
6421                                         r = -EINTR;
6422                                         break;
6423                                 }
6424                         }
6425                 }
6426
6427                 if (r <= 0)
6428                         break;
6429
6430                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6431                 if (kvm_cpu_has_pending_timer(vcpu))
6432                         kvm_inject_pending_timer_irqs(vcpu);
6433
6434                 if (dm_request_for_irq_injection(vcpu)) {
6435                         r = -EINTR;
6436                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6437                         ++vcpu->stat.request_irq_exits;
6438                 }
6439
6440                 kvm_check_async_pf_completion(vcpu);
6441
6442                 if (signal_pending(current)) {
6443                         r = -EINTR;
6444                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6445                         ++vcpu->stat.signal_exits;
6446                 }
6447                 if (need_resched()) {
6448                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6449                         cond_resched();
6450                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6451                 }
6452         }
6453
6454         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6455
6456         return r;
6457 }
6458
6459 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6460 {
6461         int r;
6462         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6463         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6464         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6465         if (r != EMULATE_DONE)
6466                 return 0;
6467         return 1;
6468 }
6469
6470 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6471 {
6472         BUG_ON(!vcpu->arch.pio.count);
6473
6474         return complete_emulated_io(vcpu);
6475 }
6476
6477 /*
6478  * Implements the following, as a state machine:
6479  *
6480  * read:
6481  *   for each fragment
6482  *     for each mmio piece in the fragment
6483  *       write gpa, len
6484  *       exit
6485  *       copy data
6486  *   execute insn
6487  *
6488  * write:
6489  *   for each fragment
6490  *     for each mmio piece in the fragment
6491  *       write gpa, len
6492  *       copy data
6493  *       exit
6494  */
6495 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6496 {
6497         struct kvm_run *run = vcpu->run;
6498         struct kvm_mmio_fragment *frag;
6499         unsigned len;
6500
6501         BUG_ON(!vcpu->mmio_needed);
6502
6503         /* Complete previous fragment */
6504         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6505         len = min(8u, frag->len);
6506         if (!vcpu->mmio_is_write)
6507                 memcpy(frag->data, run->mmio.data, len);
6508
6509         if (frag->len <= 8) {
6510                 /* Switch to the next fragment. */
6511                 frag++;
6512                 vcpu->mmio_cur_fragment++;
6513         } else {
6514                 /* Go forward to the next mmio piece. */
6515                 frag->data += len;
6516                 frag->gpa += len;
6517                 frag->len -= len;
6518         }
6519
6520         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6521                 vcpu->mmio_needed = 0;
6522
6523                 /* FIXME: return into emulator if single-stepping.  */
6524                 if (vcpu->mmio_is_write)
6525                         return 1;
6526                 vcpu->mmio_read_completed = 1;
6527                 return complete_emulated_io(vcpu);
6528         }
6529
6530         run->exit_reason = KVM_EXIT_MMIO;
6531         run->mmio.phys_addr = frag->gpa;
6532         if (vcpu->mmio_is_write)
6533                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6534         run->mmio.len = min(8u, frag->len);
6535         run->mmio.is_write = vcpu->mmio_is_write;
6536         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6537         return 0;
6538 }
6539
6540
6541 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6542 {
6543         int r;
6544         sigset_t sigsaved;
6545
6546         if (!tsk_used_math(current) && init_fpu(current))
6547                 return -ENOMEM;
6548
6549         if (vcpu->sigset_active)
6550                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6551
6552         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6553                 kvm_vcpu_block(vcpu);
6554                 kvm_apic_accept_events(vcpu);
6555                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6556                 r = -EAGAIN;
6557                 goto out;
6558         }
6559
6560         /* re-sync apic's tpr */
6561         if (!irqchip_in_kernel(vcpu->kvm)) {
6562                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6563                         r = -EINVAL;
6564                         goto out;
6565                 }
6566         }
6567
6568         if (unlikely(vcpu->arch.complete_userspace_io)) {
6569                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6570                 vcpu->arch.complete_userspace_io = NULL;
6571                 r = cui(vcpu);
6572                 if (r <= 0)
6573                         goto out;
6574         } else
6575                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6576
6577         r = __vcpu_run(vcpu);
6578
6579 out:
6580         post_kvm_run_save(vcpu);
6581         if (vcpu->sigset_active)
6582                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6583
6584         return r;
6585 }
6586
6587 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6588 {
6589         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6590                 /*
6591                  * We are here if userspace calls get_regs() in the middle of
6592                  * instruction emulation. Registers state needs to be copied
6593                  * back from emulation context to vcpu. Userspace shouldn't do
6594                  * that usually, but some bad designed PV devices (vmware
6595                  * backdoor interface) need this to work
6596                  */
6597                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6598                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6599         }
6600         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6601         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6602         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6603         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6604         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6605         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6606         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6607         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6608 #ifdef CONFIG_X86_64
6609         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6610         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6611         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6612         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6613         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6614         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6615         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6616         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6617 #endif
6618
6619         regs->rip = kvm_rip_read(vcpu);
6620         regs->rflags = kvm_get_rflags(vcpu);
6621
6622         return 0;
6623 }
6624
6625 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6626 {
6627         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6628         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6629
6630         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6631         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6632         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6633         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6634         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6635         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6636         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6637         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6638 #ifdef CONFIG_X86_64
6639         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6640         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6641         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6642         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6643         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6644         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6645         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6646         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6647 #endif
6648
6649         kvm_rip_write(vcpu, regs->rip);
6650         kvm_set_rflags(vcpu, regs->rflags);
6651
6652         vcpu->arch.exception.pending = false;
6653
6654         kvm_make_request(KVM_REQ_EVENT, vcpu);
6655
6656         return 0;
6657 }
6658
6659 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6660 {
6661         struct kvm_segment cs;
6662
6663         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6664         *db = cs.db;
6665         *l = cs.l;
6666 }
6667 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6668
6669 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6670                                   struct kvm_sregs *sregs)
6671 {
6672         struct desc_ptr dt;
6673
6674         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6675         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6676         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6677         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6678         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6679         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6680
6681         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6682         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6683
6684         kvm_x86_ops->get_idt(vcpu, &dt);
6685         sregs->idt.limit = dt.size;
6686         sregs->idt.base = dt.address;
6687         kvm_x86_ops->get_gdt(vcpu, &dt);
6688         sregs->gdt.limit = dt.size;
6689         sregs->gdt.base = dt.address;
6690
6691         sregs->cr0 = kvm_read_cr0(vcpu);
6692         sregs->cr2 = vcpu->arch.cr2;
6693         sregs->cr3 = kvm_read_cr3(vcpu);
6694         sregs->cr4 = kvm_read_cr4(vcpu);
6695         sregs->cr8 = kvm_get_cr8(vcpu);
6696         sregs->efer = vcpu->arch.efer;
6697         sregs->apic_base = kvm_get_apic_base(vcpu);
6698
6699         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6700
6701         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6702                 set_bit(vcpu->arch.interrupt.nr,
6703                         (unsigned long *)sregs->interrupt_bitmap);
6704
6705         return 0;
6706 }
6707
6708 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6709                                     struct kvm_mp_state *mp_state)
6710 {
6711         kvm_apic_accept_events(vcpu);
6712         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6713                                         vcpu->arch.pv.pv_unhalted)
6714                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6715         else
6716                 mp_state->mp_state = vcpu->arch.mp_state;
6717
6718         return 0;
6719 }
6720
6721 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6722                                     struct kvm_mp_state *mp_state)
6723 {
6724         if (!kvm_vcpu_has_lapic(vcpu) &&
6725             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6726                 return -EINVAL;
6727
6728         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6729                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6730                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6731         } else
6732                 vcpu->arch.mp_state = mp_state->mp_state;
6733         kvm_make_request(KVM_REQ_EVENT, vcpu);
6734         return 0;
6735 }
6736
6737 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6738                     int reason, bool has_error_code, u32 error_code)
6739 {
6740         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6741         int ret;
6742
6743         init_emulate_ctxt(vcpu);
6744
6745         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6746                                    has_error_code, error_code);
6747
6748         if (ret)
6749                 return EMULATE_FAIL;
6750
6751         kvm_rip_write(vcpu, ctxt->eip);
6752         kvm_set_rflags(vcpu, ctxt->eflags);
6753         kvm_make_request(KVM_REQ_EVENT, vcpu);
6754         return EMULATE_DONE;
6755 }
6756 EXPORT_SYMBOL_GPL(kvm_task_switch);
6757
6758 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6759                                   struct kvm_sregs *sregs)
6760 {
6761         struct msr_data apic_base_msr;
6762         int mmu_reset_needed = 0;
6763         int pending_vec, max_bits, idx;
6764         struct desc_ptr dt;
6765
6766         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6767                 return -EINVAL;
6768
6769         dt.size = sregs->idt.limit;
6770         dt.address = sregs->idt.base;
6771         kvm_x86_ops->set_idt(vcpu, &dt);
6772         dt.size = sregs->gdt.limit;
6773         dt.address = sregs->gdt.base;
6774         kvm_x86_ops->set_gdt(vcpu, &dt);
6775
6776         vcpu->arch.cr2 = sregs->cr2;
6777         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6778         vcpu->arch.cr3 = sregs->cr3;
6779         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6780
6781         kvm_set_cr8(vcpu, sregs->cr8);
6782
6783         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6784         kvm_x86_ops->set_efer(vcpu, sregs->efer);
6785         apic_base_msr.data = sregs->apic_base;
6786         apic_base_msr.host_initiated = true;
6787         kvm_set_apic_base(vcpu, &apic_base_msr);
6788
6789         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6790         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6791         vcpu->arch.cr0 = sregs->cr0;
6792
6793         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6794         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6795         if (sregs->cr4 & X86_CR4_OSXSAVE)
6796                 kvm_update_cpuid(vcpu);
6797
6798         idx = srcu_read_lock(&vcpu->kvm->srcu);
6799         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6800                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6801                 mmu_reset_needed = 1;
6802         }
6803         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6804
6805         if (mmu_reset_needed)
6806                 kvm_mmu_reset_context(vcpu);
6807
6808         max_bits = KVM_NR_INTERRUPTS;
6809         pending_vec = find_first_bit(
6810                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6811         if (pending_vec < max_bits) {
6812                 kvm_queue_interrupt(vcpu, pending_vec, false);
6813                 pr_debug("Set back pending irq %d\n", pending_vec);
6814         }
6815
6816         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6817         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6818         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6819         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6820         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6821         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6822
6823         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6824         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6825
6826         update_cr8_intercept(vcpu);
6827
6828         /* Older userspace won't unhalt the vcpu on reset. */
6829         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6830             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6831             !is_protmode(vcpu))
6832                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6833
6834         kvm_make_request(KVM_REQ_EVENT, vcpu);
6835
6836         return 0;
6837 }
6838
6839 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6840                                         struct kvm_guest_debug *dbg)
6841 {
6842         unsigned long rflags;
6843         int i, r;
6844
6845         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6846                 r = -EBUSY;
6847                 if (vcpu->arch.exception.pending)
6848                         goto out;
6849                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6850                         kvm_queue_exception(vcpu, DB_VECTOR);
6851                 else
6852                         kvm_queue_exception(vcpu, BP_VECTOR);
6853         }
6854
6855         /*
6856          * Read rflags as long as potentially injected trace flags are still
6857          * filtered out.
6858          */
6859         rflags = kvm_get_rflags(vcpu);
6860
6861         vcpu->guest_debug = dbg->control;
6862         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6863                 vcpu->guest_debug = 0;
6864
6865         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6866                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6867                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6868                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6869         } else {
6870                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6871                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6872         }
6873         kvm_update_dr7(vcpu);
6874
6875         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6876                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6877                         get_segment_base(vcpu, VCPU_SREG_CS);
6878
6879         /*
6880          * Trigger an rflags update that will inject or remove the trace
6881          * flags.
6882          */
6883         kvm_set_rflags(vcpu, rflags);
6884
6885         kvm_x86_ops->update_db_bp_intercept(vcpu);
6886
6887         r = 0;
6888
6889 out:
6890
6891         return r;
6892 }
6893
6894 /*
6895  * Translate a guest virtual address to a guest physical address.
6896  */
6897 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6898                                     struct kvm_translation *tr)
6899 {
6900         unsigned long vaddr = tr->linear_address;
6901         gpa_t gpa;
6902         int idx;
6903
6904         idx = srcu_read_lock(&vcpu->kvm->srcu);
6905         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6906         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6907         tr->physical_address = gpa;
6908         tr->valid = gpa != UNMAPPED_GVA;
6909         tr->writeable = 1;
6910         tr->usermode = 0;
6911
6912         return 0;
6913 }
6914
6915 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6916 {
6917         struct i387_fxsave_struct *fxsave =
6918                         &vcpu->arch.guest_fpu.state->fxsave;
6919
6920         memcpy(fpu->fpr, fxsave->st_space, 128);
6921         fpu->fcw = fxsave->cwd;
6922         fpu->fsw = fxsave->swd;
6923         fpu->ftwx = fxsave->twd;
6924         fpu->last_opcode = fxsave->fop;
6925         fpu->last_ip = fxsave->rip;
6926         fpu->last_dp = fxsave->rdp;
6927         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6928
6929         return 0;
6930 }
6931
6932 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6933 {
6934         struct i387_fxsave_struct *fxsave =
6935                         &vcpu->arch.guest_fpu.state->fxsave;
6936
6937         memcpy(fxsave->st_space, fpu->fpr, 128);
6938         fxsave->cwd = fpu->fcw;
6939         fxsave->swd = fpu->fsw;
6940         fxsave->twd = fpu->ftwx;
6941         fxsave->fop = fpu->last_opcode;
6942         fxsave->rip = fpu->last_ip;
6943         fxsave->rdp = fpu->last_dp;
6944         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6945
6946         return 0;
6947 }
6948
6949 int fx_init(struct kvm_vcpu *vcpu)
6950 {
6951         int err;
6952
6953         err = fpu_alloc(&vcpu->arch.guest_fpu);
6954         if (err)
6955                 return err;
6956
6957         fpu_finit(&vcpu->arch.guest_fpu);
6958         if (cpu_has_xsaves)
6959                 vcpu->arch.guest_fpu.state->xsave.xsave_hdr.xcomp_bv =
6960                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
6961
6962         /*
6963          * Ensure guest xcr0 is valid for loading
6964          */
6965         vcpu->arch.xcr0 = XSTATE_FP;
6966
6967         vcpu->arch.cr0 |= X86_CR0_ET;
6968
6969         return 0;
6970 }
6971 EXPORT_SYMBOL_GPL(fx_init);
6972
6973 static void fx_free(struct kvm_vcpu *vcpu)
6974 {
6975         fpu_free(&vcpu->arch.guest_fpu);
6976 }
6977
6978 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6979 {
6980         if (vcpu->guest_fpu_loaded)
6981                 return;
6982
6983         /*
6984          * Restore all possible states in the guest,
6985          * and assume host would use all available bits.
6986          * Guest xcr0 would be loaded later.
6987          */
6988         kvm_put_guest_xcr0(vcpu);
6989         vcpu->guest_fpu_loaded = 1;
6990         __kernel_fpu_begin();
6991         fpu_restore_checking(&vcpu->arch.guest_fpu);
6992         trace_kvm_fpu(1);
6993 }
6994
6995 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6996 {
6997         kvm_put_guest_xcr0(vcpu);
6998
6999         if (!vcpu->guest_fpu_loaded)
7000                 return;
7001
7002         vcpu->guest_fpu_loaded = 0;
7003         fpu_save_init(&vcpu->arch.guest_fpu);
7004         __kernel_fpu_end();
7005         ++vcpu->stat.fpu_reload;
7006         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7007         trace_kvm_fpu(0);
7008 }
7009
7010 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7011 {
7012         kvmclock_reset(vcpu);
7013
7014         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7015         fx_free(vcpu);
7016         kvm_x86_ops->vcpu_free(vcpu);
7017 }
7018
7019 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7020                                                 unsigned int id)
7021 {
7022         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7023                 printk_once(KERN_WARNING
7024                 "kvm: SMP vm created on host with unstable TSC; "
7025                 "guest TSC will not be reliable\n");
7026         return kvm_x86_ops->vcpu_create(kvm, id);
7027 }
7028
7029 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7030 {
7031         int r;
7032
7033         vcpu->arch.mtrr_state.have_fixed = 1;
7034         r = vcpu_load(vcpu);
7035         if (r)
7036                 return r;
7037         kvm_vcpu_reset(vcpu);
7038         kvm_mmu_setup(vcpu);
7039         vcpu_put(vcpu);
7040
7041         return r;
7042 }
7043
7044 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7045 {
7046         int r;
7047         struct msr_data msr;
7048         struct kvm *kvm = vcpu->kvm;
7049
7050         r = vcpu_load(vcpu);
7051         if (r)
7052                 return r;
7053         msr.data = 0x0;
7054         msr.index = MSR_IA32_TSC;
7055         msr.host_initiated = true;
7056         kvm_write_tsc(vcpu, &msr);
7057         vcpu_put(vcpu);
7058
7059         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7060                                         KVMCLOCK_SYNC_PERIOD);
7061
7062         return r;
7063 }
7064
7065 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7066 {
7067         int r;
7068         vcpu->arch.apf.msr_val = 0;
7069
7070         r = vcpu_load(vcpu);
7071         BUG_ON(r);
7072         kvm_mmu_unload(vcpu);
7073         vcpu_put(vcpu);
7074
7075         fx_free(vcpu);
7076         kvm_x86_ops->vcpu_free(vcpu);
7077 }
7078
7079 void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
7080 {
7081         atomic_set(&vcpu->arch.nmi_queued, 0);
7082         vcpu->arch.nmi_pending = 0;
7083         vcpu->arch.nmi_injected = false;
7084         kvm_clear_interrupt_queue(vcpu);
7085         kvm_clear_exception_queue(vcpu);
7086
7087         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7088         vcpu->arch.dr6 = DR6_INIT;
7089         kvm_update_dr6(vcpu);
7090         vcpu->arch.dr7 = DR7_FIXED_1;
7091         kvm_update_dr7(vcpu);
7092
7093         kvm_make_request(KVM_REQ_EVENT, vcpu);
7094         vcpu->arch.apf.msr_val = 0;
7095         vcpu->arch.st.msr_val = 0;
7096
7097         kvmclock_reset(vcpu);
7098
7099         kvm_clear_async_pf_completion_queue(vcpu);
7100         kvm_async_pf_hash_reset(vcpu);
7101         vcpu->arch.apf.halted = false;
7102
7103         kvm_pmu_reset(vcpu);
7104
7105         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7106         vcpu->arch.regs_avail = ~0;
7107         vcpu->arch.regs_dirty = ~0;
7108
7109         kvm_x86_ops->vcpu_reset(vcpu);
7110 }
7111
7112 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7113 {
7114         struct kvm_segment cs;
7115
7116         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7117         cs.selector = vector << 8;
7118         cs.base = vector << 12;
7119         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7120         kvm_rip_write(vcpu, 0);
7121 }
7122
7123 int kvm_arch_hardware_enable(void)
7124 {
7125         struct kvm *kvm;
7126         struct kvm_vcpu *vcpu;
7127         int i;
7128         int ret;
7129         u64 local_tsc;
7130         u64 max_tsc = 0;
7131         bool stable, backwards_tsc = false;
7132
7133         kvm_shared_msr_cpu_online();
7134         ret = kvm_x86_ops->hardware_enable();
7135         if (ret != 0)
7136                 return ret;
7137
7138         local_tsc = native_read_tsc();
7139         stable = !check_tsc_unstable();
7140         list_for_each_entry(kvm, &vm_list, vm_list) {
7141                 kvm_for_each_vcpu(i, vcpu, kvm) {
7142                         if (!stable && vcpu->cpu == smp_processor_id())
7143                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7144                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7145                                 backwards_tsc = true;
7146                                 if (vcpu->arch.last_host_tsc > max_tsc)
7147                                         max_tsc = vcpu->arch.last_host_tsc;
7148                         }
7149                 }
7150         }
7151
7152         /*
7153          * Sometimes, even reliable TSCs go backwards.  This happens on
7154          * platforms that reset TSC during suspend or hibernate actions, but
7155          * maintain synchronization.  We must compensate.  Fortunately, we can
7156          * detect that condition here, which happens early in CPU bringup,
7157          * before any KVM threads can be running.  Unfortunately, we can't
7158          * bring the TSCs fully up to date with real time, as we aren't yet far
7159          * enough into CPU bringup that we know how much real time has actually
7160          * elapsed; our helper function, get_kernel_ns() will be using boot
7161          * variables that haven't been updated yet.
7162          *
7163          * So we simply find the maximum observed TSC above, then record the
7164          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7165          * the adjustment will be applied.  Note that we accumulate
7166          * adjustments, in case multiple suspend cycles happen before some VCPU
7167          * gets a chance to run again.  In the event that no KVM threads get a
7168          * chance to run, we will miss the entire elapsed period, as we'll have
7169          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7170          * loose cycle time.  This isn't too big a deal, since the loss will be
7171          * uniform across all VCPUs (not to mention the scenario is extremely
7172          * unlikely). It is possible that a second hibernate recovery happens
7173          * much faster than a first, causing the observed TSC here to be
7174          * smaller; this would require additional padding adjustment, which is
7175          * why we set last_host_tsc to the local tsc observed here.
7176          *
7177          * N.B. - this code below runs only on platforms with reliable TSC,
7178          * as that is the only way backwards_tsc is set above.  Also note
7179          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7180          * have the same delta_cyc adjustment applied if backwards_tsc
7181          * is detected.  Note further, this adjustment is only done once,
7182          * as we reset last_host_tsc on all VCPUs to stop this from being
7183          * called multiple times (one for each physical CPU bringup).
7184          *
7185          * Platforms with unreliable TSCs don't have to deal with this, they
7186          * will be compensated by the logic in vcpu_load, which sets the TSC to
7187          * catchup mode.  This will catchup all VCPUs to real time, but cannot
7188          * guarantee that they stay in perfect synchronization.
7189          */
7190         if (backwards_tsc) {
7191                 u64 delta_cyc = max_tsc - local_tsc;
7192                 backwards_tsc_observed = true;
7193                 list_for_each_entry(kvm, &vm_list, vm_list) {
7194                         kvm_for_each_vcpu(i, vcpu, kvm) {
7195                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7196                                 vcpu->arch.last_host_tsc = local_tsc;
7197                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7198                         }
7199
7200                         /*
7201                          * We have to disable TSC offset matching.. if you were
7202                          * booting a VM while issuing an S4 host suspend....
7203                          * you may have some problem.  Solving this issue is
7204                          * left as an exercise to the reader.
7205                          */
7206                         kvm->arch.last_tsc_nsec = 0;
7207                         kvm->arch.last_tsc_write = 0;
7208                 }
7209
7210         }
7211         return 0;
7212 }
7213
7214 void kvm_arch_hardware_disable(void)
7215 {
7216         kvm_x86_ops->hardware_disable();
7217         drop_user_return_notifiers();
7218 }
7219
7220 int kvm_arch_hardware_setup(void)
7221 {
7222         return kvm_x86_ops->hardware_setup();
7223 }
7224
7225 void kvm_arch_hardware_unsetup(void)
7226 {
7227         kvm_x86_ops->hardware_unsetup();
7228 }
7229
7230 void kvm_arch_check_processor_compat(void *rtn)
7231 {
7232         kvm_x86_ops->check_processor_compatibility(rtn);
7233 }
7234
7235 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7236 {
7237         return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
7238 }
7239
7240 struct static_key kvm_no_apic_vcpu __read_mostly;
7241
7242 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7243 {
7244         struct page *page;
7245         struct kvm *kvm;
7246         int r;
7247
7248         BUG_ON(vcpu->kvm == NULL);
7249         kvm = vcpu->kvm;
7250
7251         vcpu->arch.pv.pv_unhalted = false;
7252         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7253         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
7254                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7255         else
7256                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7257
7258         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7259         if (!page) {
7260                 r = -ENOMEM;
7261                 goto fail;
7262         }
7263         vcpu->arch.pio_data = page_address(page);
7264
7265         kvm_set_tsc_khz(vcpu, max_tsc_khz);
7266
7267         r = kvm_mmu_create(vcpu);
7268         if (r < 0)
7269                 goto fail_free_pio_data;
7270
7271         if (irqchip_in_kernel(kvm)) {
7272                 r = kvm_create_lapic(vcpu);
7273                 if (r < 0)
7274                         goto fail_mmu_destroy;
7275         } else
7276                 static_key_slow_inc(&kvm_no_apic_vcpu);
7277
7278         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7279                                        GFP_KERNEL);
7280         if (!vcpu->arch.mce_banks) {
7281                 r = -ENOMEM;
7282                 goto fail_free_lapic;
7283         }
7284         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7285
7286         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7287                 r = -ENOMEM;
7288                 goto fail_free_mce_banks;
7289         }
7290
7291         r = fx_init(vcpu);
7292         if (r)
7293                 goto fail_free_wbinvd_dirty_mask;
7294
7295         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7296         vcpu->arch.pv_time_enabled = false;
7297
7298         vcpu->arch.guest_supported_xcr0 = 0;
7299         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7300
7301         kvm_async_pf_hash_reset(vcpu);
7302         kvm_pmu_init(vcpu);
7303
7304         return 0;
7305 fail_free_wbinvd_dirty_mask:
7306         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7307 fail_free_mce_banks:
7308         kfree(vcpu->arch.mce_banks);
7309 fail_free_lapic:
7310         kvm_free_lapic(vcpu);
7311 fail_mmu_destroy:
7312         kvm_mmu_destroy(vcpu);
7313 fail_free_pio_data:
7314         free_page((unsigned long)vcpu->arch.pio_data);
7315 fail:
7316         return r;
7317 }
7318
7319 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7320 {
7321         int idx;
7322
7323         kvm_pmu_destroy(vcpu);
7324         kfree(vcpu->arch.mce_banks);
7325         kvm_free_lapic(vcpu);
7326         idx = srcu_read_lock(&vcpu->kvm->srcu);
7327         kvm_mmu_destroy(vcpu);
7328         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7329         free_page((unsigned long)vcpu->arch.pio_data);
7330         if (!irqchip_in_kernel(vcpu->kvm))
7331                 static_key_slow_dec(&kvm_no_apic_vcpu);
7332 }
7333
7334 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7335 {
7336         kvm_x86_ops->sched_in(vcpu, cpu);
7337 }
7338
7339 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7340 {
7341         if (type)
7342                 return -EINVAL;
7343
7344         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7345         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7346         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7347         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7348         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7349
7350         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7351         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7352         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7353         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7354                 &kvm->arch.irq_sources_bitmap);
7355
7356         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7357         mutex_init(&kvm->arch.apic_map_lock);
7358         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7359
7360         pvclock_update_vm_gtod_copy(kvm);
7361
7362         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7363         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7364
7365         return 0;
7366 }
7367
7368 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7369 {
7370         int r;
7371         r = vcpu_load(vcpu);
7372         BUG_ON(r);
7373         kvm_mmu_unload(vcpu);
7374         vcpu_put(vcpu);
7375 }
7376
7377 static void kvm_free_vcpus(struct kvm *kvm)
7378 {
7379         unsigned int i;
7380         struct kvm_vcpu *vcpu;
7381
7382         /*
7383          * Unpin any mmu pages first.
7384          */
7385         kvm_for_each_vcpu(i, vcpu, kvm) {
7386                 kvm_clear_async_pf_completion_queue(vcpu);
7387                 kvm_unload_vcpu_mmu(vcpu);
7388         }
7389         kvm_for_each_vcpu(i, vcpu, kvm)
7390                 kvm_arch_vcpu_free(vcpu);
7391
7392         mutex_lock(&kvm->lock);
7393         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7394                 kvm->vcpus[i] = NULL;
7395
7396         atomic_set(&kvm->online_vcpus, 0);
7397         mutex_unlock(&kvm->lock);
7398 }
7399
7400 void kvm_arch_sync_events(struct kvm *kvm)
7401 {
7402         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7403         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7404         kvm_free_all_assigned_devices(kvm);
7405         kvm_free_pit(kvm);
7406 }
7407
7408 void kvm_arch_destroy_vm(struct kvm *kvm)
7409 {
7410         if (current->mm == kvm->mm) {
7411                 /*
7412                  * Free memory regions allocated on behalf of userspace,
7413                  * unless the the memory map has changed due to process exit
7414                  * or fd copying.
7415                  */
7416                 struct kvm_userspace_memory_region mem;
7417                 memset(&mem, 0, sizeof(mem));
7418                 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7419                 kvm_set_memory_region(kvm, &mem);
7420
7421                 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7422                 kvm_set_memory_region(kvm, &mem);
7423
7424                 mem.slot = TSS_PRIVATE_MEMSLOT;
7425                 kvm_set_memory_region(kvm, &mem);
7426         }
7427         kvm_iommu_unmap_guest(kvm);
7428         kfree(kvm->arch.vpic);
7429         kfree(kvm->arch.vioapic);
7430         kvm_free_vcpus(kvm);
7431         kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7432 }
7433
7434 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7435                            struct kvm_memory_slot *dont)
7436 {
7437         int i;
7438
7439         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7440                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7441                         kvm_kvfree(free->arch.rmap[i]);
7442                         free->arch.rmap[i] = NULL;
7443                 }
7444                 if (i == 0)
7445                         continue;
7446
7447                 if (!dont || free->arch.lpage_info[i - 1] !=
7448                              dont->arch.lpage_info[i - 1]) {
7449                         kvm_kvfree(free->arch.lpage_info[i - 1]);
7450                         free->arch.lpage_info[i - 1] = NULL;
7451                 }
7452         }
7453 }
7454
7455 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7456                             unsigned long npages)
7457 {
7458         int i;
7459
7460         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7461                 unsigned long ugfn;
7462                 int lpages;
7463                 int level = i + 1;
7464
7465                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7466                                       slot->base_gfn, level) + 1;
7467
7468                 slot->arch.rmap[i] =
7469                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7470                 if (!slot->arch.rmap[i])
7471                         goto out_free;
7472                 if (i == 0)
7473                         continue;
7474
7475                 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7476                                         sizeof(*slot->arch.lpage_info[i - 1]));
7477                 if (!slot->arch.lpage_info[i - 1])
7478                         goto out_free;
7479
7480                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7481                         slot->arch.lpage_info[i - 1][0].write_count = 1;
7482                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7483                         slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7484                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7485                 /*
7486                  * If the gfn and userspace address are not aligned wrt each
7487                  * other, or if explicitly asked to, disable large page
7488                  * support for this slot
7489                  */
7490                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7491                     !kvm_largepages_enabled()) {
7492                         unsigned long j;
7493
7494                         for (j = 0; j < lpages; ++j)
7495                                 slot->arch.lpage_info[i - 1][j].write_count = 1;
7496                 }
7497         }
7498
7499         return 0;
7500
7501 out_free:
7502         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7503                 kvm_kvfree(slot->arch.rmap[i]);
7504                 slot->arch.rmap[i] = NULL;
7505                 if (i == 0)
7506                         continue;
7507
7508                 kvm_kvfree(slot->arch.lpage_info[i - 1]);
7509                 slot->arch.lpage_info[i - 1] = NULL;
7510         }
7511         return -ENOMEM;
7512 }
7513
7514 void kvm_arch_memslots_updated(struct kvm *kvm)
7515 {
7516         /*
7517          * memslots->generation has been incremented.
7518          * mmio generation may have reached its maximum value.
7519          */
7520         kvm_mmu_invalidate_mmio_sptes(kvm);
7521 }
7522
7523 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7524                                 struct kvm_memory_slot *memslot,
7525                                 struct kvm_userspace_memory_region *mem,
7526                                 enum kvm_mr_change change)
7527 {
7528         /*
7529          * Only private memory slots need to be mapped here since
7530          * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7531          */
7532         if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7533                 unsigned long userspace_addr;
7534
7535                 /*
7536                  * MAP_SHARED to prevent internal slot pages from being moved
7537                  * by fork()/COW.
7538                  */
7539                 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7540                                          PROT_READ | PROT_WRITE,
7541                                          MAP_SHARED | MAP_ANONYMOUS, 0);
7542
7543                 if (IS_ERR((void *)userspace_addr))
7544                         return PTR_ERR((void *)userspace_addr);
7545
7546                 memslot->userspace_addr = userspace_addr;
7547         }
7548
7549         return 0;
7550 }
7551
7552 void kvm_arch_commit_memory_region(struct kvm *kvm,
7553                                 struct kvm_userspace_memory_region *mem,
7554                                 const struct kvm_memory_slot *old,
7555                                 enum kvm_mr_change change)
7556 {
7557
7558         int nr_mmu_pages = 0;
7559
7560         if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7561                 int ret;
7562
7563                 ret = vm_munmap(old->userspace_addr,
7564                                 old->npages * PAGE_SIZE);
7565                 if (ret < 0)
7566                         printk(KERN_WARNING
7567                                "kvm_vm_ioctl_set_memory_region: "
7568                                "failed to munmap memory\n");
7569         }
7570
7571         if (!kvm->arch.n_requested_mmu_pages)
7572                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7573
7574         if (nr_mmu_pages)
7575                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7576         /*
7577          * Write protect all pages for dirty logging.
7578          *
7579          * All the sptes including the large sptes which point to this
7580          * slot are set to readonly. We can not create any new large
7581          * spte on this slot until the end of the logging.
7582          *
7583          * See the comments in fast_page_fault().
7584          */
7585         if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES))
7586                 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
7587 }
7588
7589 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7590 {
7591         kvm_mmu_invalidate_zap_all_pages(kvm);
7592 }
7593
7594 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7595                                    struct kvm_memory_slot *slot)
7596 {
7597         kvm_mmu_invalidate_zap_all_pages(kvm);
7598 }
7599
7600 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7601 {
7602         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7603                 kvm_x86_ops->check_nested_events(vcpu, false);
7604
7605         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7606                 !vcpu->arch.apf.halted)
7607                 || !list_empty_careful(&vcpu->async_pf.done)
7608                 || kvm_apic_has_events(vcpu)
7609                 || vcpu->arch.pv.pv_unhalted
7610                 || atomic_read(&vcpu->arch.nmi_queued) ||
7611                 (kvm_arch_interrupt_allowed(vcpu) &&
7612                  kvm_cpu_has_interrupt(vcpu));
7613 }
7614
7615 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7616 {
7617         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7618 }
7619
7620 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7621 {
7622         return kvm_x86_ops->interrupt_allowed(vcpu);
7623 }
7624
7625 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
7626 {
7627         if (is_64_bit_mode(vcpu))
7628                 return kvm_rip_read(vcpu);
7629         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
7630                      kvm_rip_read(vcpu));
7631 }
7632 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
7633
7634 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7635 {
7636         return kvm_get_linear_rip(vcpu) == linear_rip;
7637 }
7638 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7639
7640 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7641 {
7642         unsigned long rflags;
7643
7644         rflags = kvm_x86_ops->get_rflags(vcpu);
7645         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7646                 rflags &= ~X86_EFLAGS_TF;
7647         return rflags;
7648 }
7649 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7650
7651 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7652 {
7653         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7654             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7655                 rflags |= X86_EFLAGS_TF;
7656         kvm_x86_ops->set_rflags(vcpu, rflags);
7657 }
7658
7659 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7660 {
7661         __kvm_set_rflags(vcpu, rflags);
7662         kvm_make_request(KVM_REQ_EVENT, vcpu);
7663 }
7664 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7665
7666 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7667 {
7668         int r;
7669
7670         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7671               work->wakeup_all)
7672                 return;
7673
7674         r = kvm_mmu_reload(vcpu);
7675         if (unlikely(r))
7676                 return;
7677
7678         if (!vcpu->arch.mmu.direct_map &&
7679               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7680                 return;
7681
7682         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7683 }
7684
7685 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7686 {
7687         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7688 }
7689
7690 static inline u32 kvm_async_pf_next_probe(u32 key)
7691 {
7692         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7693 }
7694
7695 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7696 {
7697         u32 key = kvm_async_pf_hash_fn(gfn);
7698
7699         while (vcpu->arch.apf.gfns[key] != ~0)
7700                 key = kvm_async_pf_next_probe(key);
7701
7702         vcpu->arch.apf.gfns[key] = gfn;
7703 }
7704
7705 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7706 {
7707         int i;
7708         u32 key = kvm_async_pf_hash_fn(gfn);
7709
7710         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7711                      (vcpu->arch.apf.gfns[key] != gfn &&
7712                       vcpu->arch.apf.gfns[key] != ~0); i++)
7713                 key = kvm_async_pf_next_probe(key);
7714
7715         return key;
7716 }
7717
7718 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7719 {
7720         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7721 }
7722
7723 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7724 {
7725         u32 i, j, k;
7726
7727         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7728         while (true) {
7729                 vcpu->arch.apf.gfns[i] = ~0;
7730                 do {
7731                         j = kvm_async_pf_next_probe(j);
7732                         if (vcpu->arch.apf.gfns[j] == ~0)
7733                                 return;
7734                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7735                         /*
7736                          * k lies cyclically in ]i,j]
7737                          * |    i.k.j |
7738                          * |....j i.k.| or  |.k..j i...|
7739                          */
7740                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7741                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7742                 i = j;
7743         }
7744 }
7745
7746 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7747 {
7748
7749         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7750                                       sizeof(val));
7751 }
7752
7753 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7754                                      struct kvm_async_pf *work)
7755 {
7756         struct x86_exception fault;
7757
7758         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7759         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7760
7761         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7762             (vcpu->arch.apf.send_user_only &&
7763              kvm_x86_ops->get_cpl(vcpu) == 0))
7764                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7765         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7766                 fault.vector = PF_VECTOR;
7767                 fault.error_code_valid = true;
7768                 fault.error_code = 0;
7769                 fault.nested_page_fault = false;
7770                 fault.address = work->arch.token;
7771                 kvm_inject_page_fault(vcpu, &fault);
7772         }
7773 }
7774
7775 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7776                                  struct kvm_async_pf *work)
7777 {
7778         struct x86_exception fault;
7779
7780         trace_kvm_async_pf_ready(work->arch.token, work->gva);
7781         if (work->wakeup_all)
7782                 work->arch.token = ~0; /* broadcast wakeup */
7783         else
7784                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7785
7786         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7787             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7788                 fault.vector = PF_VECTOR;
7789                 fault.error_code_valid = true;
7790                 fault.error_code = 0;
7791                 fault.nested_page_fault = false;
7792                 fault.address = work->arch.token;
7793                 kvm_inject_page_fault(vcpu, &fault);
7794         }
7795         vcpu->arch.apf.halted = false;
7796         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7797 }
7798
7799 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7800 {
7801         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7802                 return true;
7803         else
7804                 return !kvm_event_needs_reinjection(vcpu) &&
7805                         kvm_x86_ops->interrupt_allowed(vcpu);
7806 }
7807
7808 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
7809 {
7810         atomic_inc(&kvm->arch.noncoherent_dma_count);
7811 }
7812 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
7813
7814 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
7815 {
7816         atomic_dec(&kvm->arch.noncoherent_dma_count);
7817 }
7818 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
7819
7820 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
7821 {
7822         return atomic_read(&kvm->arch.noncoherent_dma_count);
7823 }
7824 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
7825
7826 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7827 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7828 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7829 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7830 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7831 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7832 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7833 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7834 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7835 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7836 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7837 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
7838 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
7839 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);