Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ieee1394...
[cascardo/linux.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Amit Shah    <amit.shah@qumranet.com>
14  *   Ben-Ami Yassour <benami@il.ibm.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
28
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40 #include <trace/events/kvm.h>
41 #undef TRACE_INCLUDE_FILE
42 #define CREATE_TRACE_POINTS
43 #include "trace.h"
44
45 #include <asm/uaccess.h>
46 #include <asm/msr.h>
47 #include <asm/desc.h>
48 #include <asm/mtrr.h>
49 #include <asm/mce.h>
50
51 #define MAX_IO_MSRS 256
52 #define CR0_RESERVED_BITS                                               \
53         (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
54                           | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
55                           | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
56 #define CR4_RESERVED_BITS                                               \
57         (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
58                           | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
59                           | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR  \
60                           | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
61
62 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
63
64 #define KVM_MAX_MCE_BANKS 32
65 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
66
67 /* EFER defaults:
68  * - enable syscall per default because its emulated by KVM
69  * - enable LME and LMA per default on 64 bit KVM
70  */
71 #ifdef CONFIG_X86_64
72 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
73 #else
74 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
75 #endif
76
77 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
78 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
79
80 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
81 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
82                                     struct kvm_cpuid_entry2 __user *entries);
83
84 struct kvm_x86_ops *kvm_x86_ops;
85 EXPORT_SYMBOL_GPL(kvm_x86_ops);
86
87 int ignore_msrs = 0;
88 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
89
90 struct kvm_stats_debugfs_item debugfs_entries[] = {
91         { "pf_fixed", VCPU_STAT(pf_fixed) },
92         { "pf_guest", VCPU_STAT(pf_guest) },
93         { "tlb_flush", VCPU_STAT(tlb_flush) },
94         { "invlpg", VCPU_STAT(invlpg) },
95         { "exits", VCPU_STAT(exits) },
96         { "io_exits", VCPU_STAT(io_exits) },
97         { "mmio_exits", VCPU_STAT(mmio_exits) },
98         { "signal_exits", VCPU_STAT(signal_exits) },
99         { "irq_window", VCPU_STAT(irq_window_exits) },
100         { "nmi_window", VCPU_STAT(nmi_window_exits) },
101         { "halt_exits", VCPU_STAT(halt_exits) },
102         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
103         { "hypercalls", VCPU_STAT(hypercalls) },
104         { "request_irq", VCPU_STAT(request_irq_exits) },
105         { "irq_exits", VCPU_STAT(irq_exits) },
106         { "host_state_reload", VCPU_STAT(host_state_reload) },
107         { "efer_reload", VCPU_STAT(efer_reload) },
108         { "fpu_reload", VCPU_STAT(fpu_reload) },
109         { "insn_emulation", VCPU_STAT(insn_emulation) },
110         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
111         { "irq_injections", VCPU_STAT(irq_injections) },
112         { "nmi_injections", VCPU_STAT(nmi_injections) },
113         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
114         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
115         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
116         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
117         { "mmu_flooded", VM_STAT(mmu_flooded) },
118         { "mmu_recycled", VM_STAT(mmu_recycled) },
119         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
120         { "mmu_unsync", VM_STAT(mmu_unsync) },
121         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
122         { "largepages", VM_STAT(lpages) },
123         { NULL }
124 };
125
126 unsigned long segment_base(u16 selector)
127 {
128         struct descriptor_table gdt;
129         struct desc_struct *d;
130         unsigned long table_base;
131         unsigned long v;
132
133         if (selector == 0)
134                 return 0;
135
136         kvm_get_gdt(&gdt);
137         table_base = gdt.base;
138
139         if (selector & 4) {           /* from ldt */
140                 u16 ldt_selector = kvm_read_ldt();
141
142                 table_base = segment_base(ldt_selector);
143         }
144         d = (struct desc_struct *)(table_base + (selector & ~7));
145         v = get_desc_base(d);
146 #ifdef CONFIG_X86_64
147         if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
148                 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
149 #endif
150         return v;
151 }
152 EXPORT_SYMBOL_GPL(segment_base);
153
154 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
155 {
156         if (irqchip_in_kernel(vcpu->kvm))
157                 return vcpu->arch.apic_base;
158         else
159                 return vcpu->arch.apic_base;
160 }
161 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
162
163 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
164 {
165         /* TODO: reserve bits check */
166         if (irqchip_in_kernel(vcpu->kvm))
167                 kvm_lapic_set_base(vcpu, data);
168         else
169                 vcpu->arch.apic_base = data;
170 }
171 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
172
173 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
174 {
175         WARN_ON(vcpu->arch.exception.pending);
176         vcpu->arch.exception.pending = true;
177         vcpu->arch.exception.has_error_code = false;
178         vcpu->arch.exception.nr = nr;
179 }
180 EXPORT_SYMBOL_GPL(kvm_queue_exception);
181
182 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
183                            u32 error_code)
184 {
185         ++vcpu->stat.pf_guest;
186
187         if (vcpu->arch.exception.pending) {
188                 switch(vcpu->arch.exception.nr) {
189                 case DF_VECTOR:
190                         /* triple fault -> shutdown */
191                         set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
192                         return;
193                 case PF_VECTOR:
194                         vcpu->arch.exception.nr = DF_VECTOR;
195                         vcpu->arch.exception.error_code = 0;
196                         return;
197                 default:
198                         /* replace previous exception with a new one in a hope
199                            that instruction re-execution will regenerate lost
200                            exception */
201                         vcpu->arch.exception.pending = false;
202                         break;
203                 }
204         }
205         vcpu->arch.cr2 = addr;
206         kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
207 }
208
209 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
210 {
211         vcpu->arch.nmi_pending = 1;
212 }
213 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
214
215 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
216 {
217         WARN_ON(vcpu->arch.exception.pending);
218         vcpu->arch.exception.pending = true;
219         vcpu->arch.exception.has_error_code = true;
220         vcpu->arch.exception.nr = nr;
221         vcpu->arch.exception.error_code = error_code;
222 }
223 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
224
225 /*
226  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
227  * a #GP and return false.
228  */
229 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
230 {
231         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
232                 return true;
233         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
234         return false;
235 }
236 EXPORT_SYMBOL_GPL(kvm_require_cpl);
237
238 /*
239  * Load the pae pdptrs.  Return true is they are all valid.
240  */
241 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
242 {
243         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
244         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
245         int i;
246         int ret;
247         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
248
249         ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
250                                   offset * sizeof(u64), sizeof(pdpte));
251         if (ret < 0) {
252                 ret = 0;
253                 goto out;
254         }
255         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
256                 if (is_present_gpte(pdpte[i]) &&
257                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
258                         ret = 0;
259                         goto out;
260                 }
261         }
262         ret = 1;
263
264         memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
265         __set_bit(VCPU_EXREG_PDPTR,
266                   (unsigned long *)&vcpu->arch.regs_avail);
267         __set_bit(VCPU_EXREG_PDPTR,
268                   (unsigned long *)&vcpu->arch.regs_dirty);
269 out:
270
271         return ret;
272 }
273 EXPORT_SYMBOL_GPL(load_pdptrs);
274
275 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
276 {
277         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
278         bool changed = true;
279         int r;
280
281         if (is_long_mode(vcpu) || !is_pae(vcpu))
282                 return false;
283
284         if (!test_bit(VCPU_EXREG_PDPTR,
285                       (unsigned long *)&vcpu->arch.regs_avail))
286                 return true;
287
288         r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
289         if (r < 0)
290                 goto out;
291         changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
292 out:
293
294         return changed;
295 }
296
297 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
298 {
299         if (cr0 & CR0_RESERVED_BITS) {
300                 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
301                        cr0, vcpu->arch.cr0);
302                 kvm_inject_gp(vcpu, 0);
303                 return;
304         }
305
306         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
307                 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
308                 kvm_inject_gp(vcpu, 0);
309                 return;
310         }
311
312         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
313                 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
314                        "and a clear PE flag\n");
315                 kvm_inject_gp(vcpu, 0);
316                 return;
317         }
318
319         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
320 #ifdef CONFIG_X86_64
321                 if ((vcpu->arch.shadow_efer & EFER_LME)) {
322                         int cs_db, cs_l;
323
324                         if (!is_pae(vcpu)) {
325                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
326                                        "in long mode while PAE is disabled\n");
327                                 kvm_inject_gp(vcpu, 0);
328                                 return;
329                         }
330                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
331                         if (cs_l) {
332                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
333                                        "in long mode while CS.L == 1\n");
334                                 kvm_inject_gp(vcpu, 0);
335                                 return;
336
337                         }
338                 } else
339 #endif
340                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
341                         printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
342                                "reserved bits\n");
343                         kvm_inject_gp(vcpu, 0);
344                         return;
345                 }
346
347         }
348
349         kvm_x86_ops->set_cr0(vcpu, cr0);
350         vcpu->arch.cr0 = cr0;
351
352         kvm_mmu_reset_context(vcpu);
353         return;
354 }
355 EXPORT_SYMBOL_GPL(kvm_set_cr0);
356
357 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
358 {
359         kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
360 }
361 EXPORT_SYMBOL_GPL(kvm_lmsw);
362
363 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
364 {
365         unsigned long old_cr4 = vcpu->arch.cr4;
366         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
367
368         if (cr4 & CR4_RESERVED_BITS) {
369                 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
370                 kvm_inject_gp(vcpu, 0);
371                 return;
372         }
373
374         if (is_long_mode(vcpu)) {
375                 if (!(cr4 & X86_CR4_PAE)) {
376                         printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
377                                "in long mode\n");
378                         kvm_inject_gp(vcpu, 0);
379                         return;
380                 }
381         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
382                    && ((cr4 ^ old_cr4) & pdptr_bits)
383                    && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
384                 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
385                 kvm_inject_gp(vcpu, 0);
386                 return;
387         }
388
389         if (cr4 & X86_CR4_VMXE) {
390                 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
391                 kvm_inject_gp(vcpu, 0);
392                 return;
393         }
394         kvm_x86_ops->set_cr4(vcpu, cr4);
395         vcpu->arch.cr4 = cr4;
396         vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
397         kvm_mmu_reset_context(vcpu);
398 }
399 EXPORT_SYMBOL_GPL(kvm_set_cr4);
400
401 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
402 {
403         if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
404                 kvm_mmu_sync_roots(vcpu);
405                 kvm_mmu_flush_tlb(vcpu);
406                 return;
407         }
408
409         if (is_long_mode(vcpu)) {
410                 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
411                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
412                         kvm_inject_gp(vcpu, 0);
413                         return;
414                 }
415         } else {
416                 if (is_pae(vcpu)) {
417                         if (cr3 & CR3_PAE_RESERVED_BITS) {
418                                 printk(KERN_DEBUG
419                                        "set_cr3: #GP, reserved bits\n");
420                                 kvm_inject_gp(vcpu, 0);
421                                 return;
422                         }
423                         if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
424                                 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
425                                        "reserved bits\n");
426                                 kvm_inject_gp(vcpu, 0);
427                                 return;
428                         }
429                 }
430                 /*
431                  * We don't check reserved bits in nonpae mode, because
432                  * this isn't enforced, and VMware depends on this.
433                  */
434         }
435
436         /*
437          * Does the new cr3 value map to physical memory? (Note, we
438          * catch an invalid cr3 even in real-mode, because it would
439          * cause trouble later on when we turn on paging anyway.)
440          *
441          * A real CPU would silently accept an invalid cr3 and would
442          * attempt to use it - with largely undefined (and often hard
443          * to debug) behavior on the guest side.
444          */
445         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
446                 kvm_inject_gp(vcpu, 0);
447         else {
448                 vcpu->arch.cr3 = cr3;
449                 vcpu->arch.mmu.new_cr3(vcpu);
450         }
451 }
452 EXPORT_SYMBOL_GPL(kvm_set_cr3);
453
454 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
455 {
456         if (cr8 & CR8_RESERVED_BITS) {
457                 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
458                 kvm_inject_gp(vcpu, 0);
459                 return;
460         }
461         if (irqchip_in_kernel(vcpu->kvm))
462                 kvm_lapic_set_tpr(vcpu, cr8);
463         else
464                 vcpu->arch.cr8 = cr8;
465 }
466 EXPORT_SYMBOL_GPL(kvm_set_cr8);
467
468 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
469 {
470         if (irqchip_in_kernel(vcpu->kvm))
471                 return kvm_lapic_get_cr8(vcpu);
472         else
473                 return vcpu->arch.cr8;
474 }
475 EXPORT_SYMBOL_GPL(kvm_get_cr8);
476
477 static inline u32 bit(int bitno)
478 {
479         return 1 << (bitno & 31);
480 }
481
482 /*
483  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
484  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
485  *
486  * This list is modified at module load time to reflect the
487  * capabilities of the host cpu.
488  */
489 static u32 msrs_to_save[] = {
490         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
491         MSR_K6_STAR,
492 #ifdef CONFIG_X86_64
493         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
494 #endif
495         MSR_IA32_TSC, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
496         MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
497 };
498
499 static unsigned num_msrs_to_save;
500
501 static u32 emulated_msrs[] = {
502         MSR_IA32_MISC_ENABLE,
503 };
504
505 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
506 {
507         if (efer & efer_reserved_bits) {
508                 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
509                        efer);
510                 kvm_inject_gp(vcpu, 0);
511                 return;
512         }
513
514         if (is_paging(vcpu)
515             && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
516                 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
517                 kvm_inject_gp(vcpu, 0);
518                 return;
519         }
520
521         if (efer & EFER_FFXSR) {
522                 struct kvm_cpuid_entry2 *feat;
523
524                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
525                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
526                         printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
527                         kvm_inject_gp(vcpu, 0);
528                         return;
529                 }
530         }
531
532         if (efer & EFER_SVME) {
533                 struct kvm_cpuid_entry2 *feat;
534
535                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
536                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
537                         printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
538                         kvm_inject_gp(vcpu, 0);
539                         return;
540                 }
541         }
542
543         kvm_x86_ops->set_efer(vcpu, efer);
544
545         efer &= ~EFER_LMA;
546         efer |= vcpu->arch.shadow_efer & EFER_LMA;
547
548         vcpu->arch.shadow_efer = efer;
549
550         vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
551         kvm_mmu_reset_context(vcpu);
552 }
553
554 void kvm_enable_efer_bits(u64 mask)
555 {
556        efer_reserved_bits &= ~mask;
557 }
558 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
559
560
561 /*
562  * Writes msr value into into the appropriate "register".
563  * Returns 0 on success, non-0 otherwise.
564  * Assumes vcpu_load() was already called.
565  */
566 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
567 {
568         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
569 }
570
571 /*
572  * Adapt set_msr() to msr_io()'s calling convention
573  */
574 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
575 {
576         return kvm_set_msr(vcpu, index, *data);
577 }
578
579 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
580 {
581         static int version;
582         struct pvclock_wall_clock wc;
583         struct timespec now, sys, boot;
584
585         if (!wall_clock)
586                 return;
587
588         version++;
589
590         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
591
592         /*
593          * The guest calculates current wall clock time by adding
594          * system time (updated by kvm_write_guest_time below) to the
595          * wall clock specified here.  guest system time equals host
596          * system time for us, thus we must fill in host boot time here.
597          */
598         now = current_kernel_time();
599         ktime_get_ts(&sys);
600         boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
601
602         wc.sec = boot.tv_sec;
603         wc.nsec = boot.tv_nsec;
604         wc.version = version;
605
606         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
607
608         version++;
609         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
610 }
611
612 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
613 {
614         uint32_t quotient, remainder;
615
616         /* Don't try to replace with do_div(), this one calculates
617          * "(dividend << 32) / divisor" */
618         __asm__ ( "divl %4"
619                   : "=a" (quotient), "=d" (remainder)
620                   : "0" (0), "1" (dividend), "r" (divisor) );
621         return quotient;
622 }
623
624 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
625 {
626         uint64_t nsecs = 1000000000LL;
627         int32_t  shift = 0;
628         uint64_t tps64;
629         uint32_t tps32;
630
631         tps64 = tsc_khz * 1000LL;
632         while (tps64 > nsecs*2) {
633                 tps64 >>= 1;
634                 shift--;
635         }
636
637         tps32 = (uint32_t)tps64;
638         while (tps32 <= (uint32_t)nsecs) {
639                 tps32 <<= 1;
640                 shift++;
641         }
642
643         hv_clock->tsc_shift = shift;
644         hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
645
646         pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
647                  __func__, tsc_khz, hv_clock->tsc_shift,
648                  hv_clock->tsc_to_system_mul);
649 }
650
651 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
652
653 static void kvm_write_guest_time(struct kvm_vcpu *v)
654 {
655         struct timespec ts;
656         unsigned long flags;
657         struct kvm_vcpu_arch *vcpu = &v->arch;
658         void *shared_kaddr;
659         unsigned long this_tsc_khz;
660
661         if ((!vcpu->time_page))
662                 return;
663
664         this_tsc_khz = get_cpu_var(cpu_tsc_khz);
665         if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
666                 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
667                 vcpu->hv_clock_tsc_khz = this_tsc_khz;
668         }
669         put_cpu_var(cpu_tsc_khz);
670
671         /* Keep irq disabled to prevent changes to the clock */
672         local_irq_save(flags);
673         kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
674         ktime_get_ts(&ts);
675         local_irq_restore(flags);
676
677         /* With all the info we got, fill in the values */
678
679         vcpu->hv_clock.system_time = ts.tv_nsec +
680                                      (NSEC_PER_SEC * (u64)ts.tv_sec);
681         /*
682          * The interface expects us to write an even number signaling that the
683          * update is finished. Since the guest won't see the intermediate
684          * state, we just increase by 2 at the end.
685          */
686         vcpu->hv_clock.version += 2;
687
688         shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
689
690         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
691                sizeof(vcpu->hv_clock));
692
693         kunmap_atomic(shared_kaddr, KM_USER0);
694
695         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
696 }
697
698 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
699 {
700         struct kvm_vcpu_arch *vcpu = &v->arch;
701
702         if (!vcpu->time_page)
703                 return 0;
704         set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
705         return 1;
706 }
707
708 static bool msr_mtrr_valid(unsigned msr)
709 {
710         switch (msr) {
711         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
712         case MSR_MTRRfix64K_00000:
713         case MSR_MTRRfix16K_80000:
714         case MSR_MTRRfix16K_A0000:
715         case MSR_MTRRfix4K_C0000:
716         case MSR_MTRRfix4K_C8000:
717         case MSR_MTRRfix4K_D0000:
718         case MSR_MTRRfix4K_D8000:
719         case MSR_MTRRfix4K_E0000:
720         case MSR_MTRRfix4K_E8000:
721         case MSR_MTRRfix4K_F0000:
722         case MSR_MTRRfix4K_F8000:
723         case MSR_MTRRdefType:
724         case MSR_IA32_CR_PAT:
725                 return true;
726         case 0x2f8:
727                 return true;
728         }
729         return false;
730 }
731
732 static bool valid_pat_type(unsigned t)
733 {
734         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
735 }
736
737 static bool valid_mtrr_type(unsigned t)
738 {
739         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
740 }
741
742 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
743 {
744         int i;
745
746         if (!msr_mtrr_valid(msr))
747                 return false;
748
749         if (msr == MSR_IA32_CR_PAT) {
750                 for (i = 0; i < 8; i++)
751                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
752                                 return false;
753                 return true;
754         } else if (msr == MSR_MTRRdefType) {
755                 if (data & ~0xcff)
756                         return false;
757                 return valid_mtrr_type(data & 0xff);
758         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
759                 for (i = 0; i < 8 ; i++)
760                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
761                                 return false;
762                 return true;
763         }
764
765         /* variable MTRRs */
766         return valid_mtrr_type(data & 0xff);
767 }
768
769 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
770 {
771         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
772
773         if (!mtrr_valid(vcpu, msr, data))
774                 return 1;
775
776         if (msr == MSR_MTRRdefType) {
777                 vcpu->arch.mtrr_state.def_type = data;
778                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
779         } else if (msr == MSR_MTRRfix64K_00000)
780                 p[0] = data;
781         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
782                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
783         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
784                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
785         else if (msr == MSR_IA32_CR_PAT)
786                 vcpu->arch.pat = data;
787         else {  /* Variable MTRRs */
788                 int idx, is_mtrr_mask;
789                 u64 *pt;
790
791                 idx = (msr - 0x200) / 2;
792                 is_mtrr_mask = msr - 0x200 - 2 * idx;
793                 if (!is_mtrr_mask)
794                         pt =
795                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
796                 else
797                         pt =
798                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
799                 *pt = data;
800         }
801
802         kvm_mmu_reset_context(vcpu);
803         return 0;
804 }
805
806 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
807 {
808         u64 mcg_cap = vcpu->arch.mcg_cap;
809         unsigned bank_num = mcg_cap & 0xff;
810
811         switch (msr) {
812         case MSR_IA32_MCG_STATUS:
813                 vcpu->arch.mcg_status = data;
814                 break;
815         case MSR_IA32_MCG_CTL:
816                 if (!(mcg_cap & MCG_CTL_P))
817                         return 1;
818                 if (data != 0 && data != ~(u64)0)
819                         return -1;
820                 vcpu->arch.mcg_ctl = data;
821                 break;
822         default:
823                 if (msr >= MSR_IA32_MC0_CTL &&
824                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
825                         u32 offset = msr - MSR_IA32_MC0_CTL;
826                         /* only 0 or all 1s can be written to IA32_MCi_CTL */
827                         if ((offset & 0x3) == 0 &&
828                             data != 0 && data != ~(u64)0)
829                                 return -1;
830                         vcpu->arch.mce_banks[offset] = data;
831                         break;
832                 }
833                 return 1;
834         }
835         return 0;
836 }
837
838 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
839 {
840         switch (msr) {
841         case MSR_EFER:
842                 set_efer(vcpu, data);
843                 break;
844         case MSR_K7_HWCR:
845                 data &= ~(u64)0x40;     /* ignore flush filter disable */
846                 if (data != 0) {
847                         pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
848                                 data);
849                         return 1;
850                 }
851                 break;
852         case MSR_FAM10H_MMIO_CONF_BASE:
853                 if (data != 0) {
854                         pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
855                                 "0x%llx\n", data);
856                         return 1;
857                 }
858                 break;
859         case MSR_AMD64_NB_CFG:
860                 break;
861         case MSR_IA32_DEBUGCTLMSR:
862                 if (!data) {
863                         /* We support the non-activated case already */
864                         break;
865                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
866                         /* Values other than LBR and BTF are vendor-specific,
867                            thus reserved and should throw a #GP */
868                         return 1;
869                 }
870                 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
871                         __func__, data);
872                 break;
873         case MSR_IA32_UCODE_REV:
874         case MSR_IA32_UCODE_WRITE:
875         case MSR_VM_HSAVE_PA:
876         case MSR_AMD64_PATCH_LOADER:
877                 break;
878         case 0x200 ... 0x2ff:
879                 return set_msr_mtrr(vcpu, msr, data);
880         case MSR_IA32_APICBASE:
881                 kvm_set_apic_base(vcpu, data);
882                 break;
883         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
884                 return kvm_x2apic_msr_write(vcpu, msr, data);
885         case MSR_IA32_MISC_ENABLE:
886                 vcpu->arch.ia32_misc_enable_msr = data;
887                 break;
888         case MSR_KVM_WALL_CLOCK:
889                 vcpu->kvm->arch.wall_clock = data;
890                 kvm_write_wall_clock(vcpu->kvm, data);
891                 break;
892         case MSR_KVM_SYSTEM_TIME: {
893                 if (vcpu->arch.time_page) {
894                         kvm_release_page_dirty(vcpu->arch.time_page);
895                         vcpu->arch.time_page = NULL;
896                 }
897
898                 vcpu->arch.time = data;
899
900                 /* we verify if the enable bit is set... */
901                 if (!(data & 1))
902                         break;
903
904                 /* ...but clean it before doing the actual write */
905                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
906
907                 vcpu->arch.time_page =
908                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
909
910                 if (is_error_page(vcpu->arch.time_page)) {
911                         kvm_release_page_clean(vcpu->arch.time_page);
912                         vcpu->arch.time_page = NULL;
913                 }
914
915                 kvm_request_guest_time_update(vcpu);
916                 break;
917         }
918         case MSR_IA32_MCG_CTL:
919         case MSR_IA32_MCG_STATUS:
920         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
921                 return set_msr_mce(vcpu, msr, data);
922
923         /* Performance counters are not protected by a CPUID bit,
924          * so we should check all of them in the generic path for the sake of
925          * cross vendor migration.
926          * Writing a zero into the event select MSRs disables them,
927          * which we perfectly emulate ;-). Any other value should be at least
928          * reported, some guests depend on them.
929          */
930         case MSR_P6_EVNTSEL0:
931         case MSR_P6_EVNTSEL1:
932         case MSR_K7_EVNTSEL0:
933         case MSR_K7_EVNTSEL1:
934         case MSR_K7_EVNTSEL2:
935         case MSR_K7_EVNTSEL3:
936                 if (data != 0)
937                         pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
938                                 "0x%x data 0x%llx\n", msr, data);
939                 break;
940         /* at least RHEL 4 unconditionally writes to the perfctr registers,
941          * so we ignore writes to make it happy.
942          */
943         case MSR_P6_PERFCTR0:
944         case MSR_P6_PERFCTR1:
945         case MSR_K7_PERFCTR0:
946         case MSR_K7_PERFCTR1:
947         case MSR_K7_PERFCTR2:
948         case MSR_K7_PERFCTR3:
949                 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
950                         "0x%x data 0x%llx\n", msr, data);
951                 break;
952         default:
953                 if (!ignore_msrs) {
954                         pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
955                                 msr, data);
956                         return 1;
957                 } else {
958                         pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
959                                 msr, data);
960                         break;
961                 }
962         }
963         return 0;
964 }
965 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
966
967
968 /*
969  * Reads an msr value (of 'msr_index') into 'pdata'.
970  * Returns 0 on success, non-0 otherwise.
971  * Assumes vcpu_load() was already called.
972  */
973 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
974 {
975         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
976 }
977
978 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
979 {
980         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
981
982         if (!msr_mtrr_valid(msr))
983                 return 1;
984
985         if (msr == MSR_MTRRdefType)
986                 *pdata = vcpu->arch.mtrr_state.def_type +
987                          (vcpu->arch.mtrr_state.enabled << 10);
988         else if (msr == MSR_MTRRfix64K_00000)
989                 *pdata = p[0];
990         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
991                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
992         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
993                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
994         else if (msr == MSR_IA32_CR_PAT)
995                 *pdata = vcpu->arch.pat;
996         else {  /* Variable MTRRs */
997                 int idx, is_mtrr_mask;
998                 u64 *pt;
999
1000                 idx = (msr - 0x200) / 2;
1001                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1002                 if (!is_mtrr_mask)
1003                         pt =
1004                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1005                 else
1006                         pt =
1007                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1008                 *pdata = *pt;
1009         }
1010
1011         return 0;
1012 }
1013
1014 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1015 {
1016         u64 data;
1017         u64 mcg_cap = vcpu->arch.mcg_cap;
1018         unsigned bank_num = mcg_cap & 0xff;
1019
1020         switch (msr) {
1021         case MSR_IA32_P5_MC_ADDR:
1022         case MSR_IA32_P5_MC_TYPE:
1023                 data = 0;
1024                 break;
1025         case MSR_IA32_MCG_CAP:
1026                 data = vcpu->arch.mcg_cap;
1027                 break;
1028         case MSR_IA32_MCG_CTL:
1029                 if (!(mcg_cap & MCG_CTL_P))
1030                         return 1;
1031                 data = vcpu->arch.mcg_ctl;
1032                 break;
1033         case MSR_IA32_MCG_STATUS:
1034                 data = vcpu->arch.mcg_status;
1035                 break;
1036         default:
1037                 if (msr >= MSR_IA32_MC0_CTL &&
1038                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1039                         u32 offset = msr - MSR_IA32_MC0_CTL;
1040                         data = vcpu->arch.mce_banks[offset];
1041                         break;
1042                 }
1043                 return 1;
1044         }
1045         *pdata = data;
1046         return 0;
1047 }
1048
1049 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1050 {
1051         u64 data;
1052
1053         switch (msr) {
1054         case MSR_IA32_PLATFORM_ID:
1055         case MSR_IA32_UCODE_REV:
1056         case MSR_IA32_EBL_CR_POWERON:
1057         case MSR_IA32_DEBUGCTLMSR:
1058         case MSR_IA32_LASTBRANCHFROMIP:
1059         case MSR_IA32_LASTBRANCHTOIP:
1060         case MSR_IA32_LASTINTFROMIP:
1061         case MSR_IA32_LASTINTTOIP:
1062         case MSR_K8_SYSCFG:
1063         case MSR_K7_HWCR:
1064         case MSR_VM_HSAVE_PA:
1065         case MSR_P6_PERFCTR0:
1066         case MSR_P6_PERFCTR1:
1067         case MSR_P6_EVNTSEL0:
1068         case MSR_P6_EVNTSEL1:
1069         case MSR_K7_EVNTSEL0:
1070         case MSR_K7_PERFCTR0:
1071         case MSR_K8_INT_PENDING_MSG:
1072         case MSR_AMD64_NB_CFG:
1073         case MSR_FAM10H_MMIO_CONF_BASE:
1074                 data = 0;
1075                 break;
1076         case MSR_MTRRcap:
1077                 data = 0x500 | KVM_NR_VAR_MTRR;
1078                 break;
1079         case 0x200 ... 0x2ff:
1080                 return get_msr_mtrr(vcpu, msr, pdata);
1081         case 0xcd: /* fsb frequency */
1082                 data = 3;
1083                 break;
1084         case MSR_IA32_APICBASE:
1085                 data = kvm_get_apic_base(vcpu);
1086                 break;
1087         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1088                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1089                 break;
1090         case MSR_IA32_MISC_ENABLE:
1091                 data = vcpu->arch.ia32_misc_enable_msr;
1092                 break;
1093         case MSR_IA32_PERF_STATUS:
1094                 /* TSC increment by tick */
1095                 data = 1000ULL;
1096                 /* CPU multiplier */
1097                 data |= (((uint64_t)4ULL) << 40);
1098                 break;
1099         case MSR_EFER:
1100                 data = vcpu->arch.shadow_efer;
1101                 break;
1102         case MSR_KVM_WALL_CLOCK:
1103                 data = vcpu->kvm->arch.wall_clock;
1104                 break;
1105         case MSR_KVM_SYSTEM_TIME:
1106                 data = vcpu->arch.time;
1107                 break;
1108         case MSR_IA32_P5_MC_ADDR:
1109         case MSR_IA32_P5_MC_TYPE:
1110         case MSR_IA32_MCG_CAP:
1111         case MSR_IA32_MCG_CTL:
1112         case MSR_IA32_MCG_STATUS:
1113         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1114                 return get_msr_mce(vcpu, msr, pdata);
1115         default:
1116                 if (!ignore_msrs) {
1117                         pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1118                         return 1;
1119                 } else {
1120                         pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1121                         data = 0;
1122                 }
1123                 break;
1124         }
1125         *pdata = data;
1126         return 0;
1127 }
1128 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1129
1130 /*
1131  * Read or write a bunch of msrs. All parameters are kernel addresses.
1132  *
1133  * @return number of msrs set successfully.
1134  */
1135 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1136                     struct kvm_msr_entry *entries,
1137                     int (*do_msr)(struct kvm_vcpu *vcpu,
1138                                   unsigned index, u64 *data))
1139 {
1140         int i;
1141
1142         vcpu_load(vcpu);
1143
1144         down_read(&vcpu->kvm->slots_lock);
1145         for (i = 0; i < msrs->nmsrs; ++i)
1146                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1147                         break;
1148         up_read(&vcpu->kvm->slots_lock);
1149
1150         vcpu_put(vcpu);
1151
1152         return i;
1153 }
1154
1155 /*
1156  * Read or write a bunch of msrs. Parameters are user addresses.
1157  *
1158  * @return number of msrs set successfully.
1159  */
1160 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1161                   int (*do_msr)(struct kvm_vcpu *vcpu,
1162                                 unsigned index, u64 *data),
1163                   int writeback)
1164 {
1165         struct kvm_msrs msrs;
1166         struct kvm_msr_entry *entries;
1167         int r, n;
1168         unsigned size;
1169
1170         r = -EFAULT;
1171         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1172                 goto out;
1173
1174         r = -E2BIG;
1175         if (msrs.nmsrs >= MAX_IO_MSRS)
1176                 goto out;
1177
1178         r = -ENOMEM;
1179         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1180         entries = vmalloc(size);
1181         if (!entries)
1182                 goto out;
1183
1184         r = -EFAULT;
1185         if (copy_from_user(entries, user_msrs->entries, size))
1186                 goto out_free;
1187
1188         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1189         if (r < 0)
1190                 goto out_free;
1191
1192         r = -EFAULT;
1193         if (writeback && copy_to_user(user_msrs->entries, entries, size))
1194                 goto out_free;
1195
1196         r = n;
1197
1198 out_free:
1199         vfree(entries);
1200 out:
1201         return r;
1202 }
1203
1204 int kvm_dev_ioctl_check_extension(long ext)
1205 {
1206         int r;
1207
1208         switch (ext) {
1209         case KVM_CAP_IRQCHIP:
1210         case KVM_CAP_HLT:
1211         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1212         case KVM_CAP_SET_TSS_ADDR:
1213         case KVM_CAP_EXT_CPUID:
1214         case KVM_CAP_CLOCKSOURCE:
1215         case KVM_CAP_PIT:
1216         case KVM_CAP_NOP_IO_DELAY:
1217         case KVM_CAP_MP_STATE:
1218         case KVM_CAP_SYNC_MMU:
1219         case KVM_CAP_REINJECT_CONTROL:
1220         case KVM_CAP_IRQ_INJECT_STATUS:
1221         case KVM_CAP_ASSIGN_DEV_IRQ:
1222         case KVM_CAP_IRQFD:
1223         case KVM_CAP_IOEVENTFD:
1224         case KVM_CAP_PIT2:
1225         case KVM_CAP_PIT_STATE2:
1226         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1227                 r = 1;
1228                 break;
1229         case KVM_CAP_COALESCED_MMIO:
1230                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1231                 break;
1232         case KVM_CAP_VAPIC:
1233                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1234                 break;
1235         case KVM_CAP_NR_VCPUS:
1236                 r = KVM_MAX_VCPUS;
1237                 break;
1238         case KVM_CAP_NR_MEMSLOTS:
1239                 r = KVM_MEMORY_SLOTS;
1240                 break;
1241         case KVM_CAP_PV_MMU:
1242                 r = !tdp_enabled;
1243                 break;
1244         case KVM_CAP_IOMMU:
1245                 r = iommu_found();
1246                 break;
1247         case KVM_CAP_MCE:
1248                 r = KVM_MAX_MCE_BANKS;
1249                 break;
1250         default:
1251                 r = 0;
1252                 break;
1253         }
1254         return r;
1255
1256 }
1257
1258 long kvm_arch_dev_ioctl(struct file *filp,
1259                         unsigned int ioctl, unsigned long arg)
1260 {
1261         void __user *argp = (void __user *)arg;
1262         long r;
1263
1264         switch (ioctl) {
1265         case KVM_GET_MSR_INDEX_LIST: {
1266                 struct kvm_msr_list __user *user_msr_list = argp;
1267                 struct kvm_msr_list msr_list;
1268                 unsigned n;
1269
1270                 r = -EFAULT;
1271                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1272                         goto out;
1273                 n = msr_list.nmsrs;
1274                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1275                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1276                         goto out;
1277                 r = -E2BIG;
1278                 if (n < msr_list.nmsrs)
1279                         goto out;
1280                 r = -EFAULT;
1281                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1282                                  num_msrs_to_save * sizeof(u32)))
1283                         goto out;
1284                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1285                                  &emulated_msrs,
1286                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1287                         goto out;
1288                 r = 0;
1289                 break;
1290         }
1291         case KVM_GET_SUPPORTED_CPUID: {
1292                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1293                 struct kvm_cpuid2 cpuid;
1294
1295                 r = -EFAULT;
1296                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1297                         goto out;
1298                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1299                                                       cpuid_arg->entries);
1300                 if (r)
1301                         goto out;
1302
1303                 r = -EFAULT;
1304                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1305                         goto out;
1306                 r = 0;
1307                 break;
1308         }
1309         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1310                 u64 mce_cap;
1311
1312                 mce_cap = KVM_MCE_CAP_SUPPORTED;
1313                 r = -EFAULT;
1314                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1315                         goto out;
1316                 r = 0;
1317                 break;
1318         }
1319         default:
1320                 r = -EINVAL;
1321         }
1322 out:
1323         return r;
1324 }
1325
1326 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1327 {
1328         kvm_x86_ops->vcpu_load(vcpu, cpu);
1329         kvm_request_guest_time_update(vcpu);
1330 }
1331
1332 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1333 {
1334         kvm_x86_ops->vcpu_put(vcpu);
1335         kvm_put_guest_fpu(vcpu);
1336 }
1337
1338 static int is_efer_nx(void)
1339 {
1340         unsigned long long efer = 0;
1341
1342         rdmsrl_safe(MSR_EFER, &efer);
1343         return efer & EFER_NX;
1344 }
1345
1346 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1347 {
1348         int i;
1349         struct kvm_cpuid_entry2 *e, *entry;
1350
1351         entry = NULL;
1352         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1353                 e = &vcpu->arch.cpuid_entries[i];
1354                 if (e->function == 0x80000001) {
1355                         entry = e;
1356                         break;
1357                 }
1358         }
1359         if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1360                 entry->edx &= ~(1 << 20);
1361                 printk(KERN_INFO "kvm: guest NX capability removed\n");
1362         }
1363 }
1364
1365 /* when an old userspace process fills a new kernel module */
1366 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1367                                     struct kvm_cpuid *cpuid,
1368                                     struct kvm_cpuid_entry __user *entries)
1369 {
1370         int r, i;
1371         struct kvm_cpuid_entry *cpuid_entries;
1372
1373         r = -E2BIG;
1374         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1375                 goto out;
1376         r = -ENOMEM;
1377         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1378         if (!cpuid_entries)
1379                 goto out;
1380         r = -EFAULT;
1381         if (copy_from_user(cpuid_entries, entries,
1382                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1383                 goto out_free;
1384         for (i = 0; i < cpuid->nent; i++) {
1385                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1386                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1387                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1388                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1389                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1390                 vcpu->arch.cpuid_entries[i].index = 0;
1391                 vcpu->arch.cpuid_entries[i].flags = 0;
1392                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1393                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1394                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1395         }
1396         vcpu->arch.cpuid_nent = cpuid->nent;
1397         cpuid_fix_nx_cap(vcpu);
1398         r = 0;
1399         kvm_apic_set_version(vcpu);
1400
1401 out_free:
1402         vfree(cpuid_entries);
1403 out:
1404         return r;
1405 }
1406
1407 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1408                                      struct kvm_cpuid2 *cpuid,
1409                                      struct kvm_cpuid_entry2 __user *entries)
1410 {
1411         int r;
1412
1413         r = -E2BIG;
1414         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1415                 goto out;
1416         r = -EFAULT;
1417         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1418                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1419                 goto out;
1420         vcpu->arch.cpuid_nent = cpuid->nent;
1421         kvm_apic_set_version(vcpu);
1422         return 0;
1423
1424 out:
1425         return r;
1426 }
1427
1428 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1429                                      struct kvm_cpuid2 *cpuid,
1430                                      struct kvm_cpuid_entry2 __user *entries)
1431 {
1432         int r;
1433
1434         r = -E2BIG;
1435         if (cpuid->nent < vcpu->arch.cpuid_nent)
1436                 goto out;
1437         r = -EFAULT;
1438         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1439                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1440                 goto out;
1441         return 0;
1442
1443 out:
1444         cpuid->nent = vcpu->arch.cpuid_nent;
1445         return r;
1446 }
1447
1448 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1449                            u32 index)
1450 {
1451         entry->function = function;
1452         entry->index = index;
1453         cpuid_count(entry->function, entry->index,
1454                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1455         entry->flags = 0;
1456 }
1457
1458 #define F(x) bit(X86_FEATURE_##x)
1459
1460 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1461                          u32 index, int *nent, int maxnent)
1462 {
1463         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
1464         unsigned f_gbpages = kvm_x86_ops->gb_page_enable() ? F(GBPAGES) : 0;
1465 #ifdef CONFIG_X86_64
1466         unsigned f_lm = F(LM);
1467 #else
1468         unsigned f_lm = 0;
1469 #endif
1470
1471         /* cpuid 1.edx */
1472         const u32 kvm_supported_word0_x86_features =
1473                 F(FPU) | F(VME) | F(DE) | F(PSE) |
1474                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1475                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
1476                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1477                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
1478                 0 /* Reserved, DS, ACPI */ | F(MMX) |
1479                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
1480                 0 /* HTT, TM, Reserved, PBE */;
1481         /* cpuid 0x80000001.edx */
1482         const u32 kvm_supported_word1_x86_features =
1483                 F(FPU) | F(VME) | F(DE) | F(PSE) |
1484                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1485                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
1486                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1487                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
1488                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
1489                 F(FXSR) | F(FXSR_OPT) | f_gbpages | 0 /* RDTSCP */ |
1490                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
1491         /* cpuid 1.ecx */
1492         const u32 kvm_supported_word4_x86_features =
1493                 F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
1494                 0 /* DS-CPL, VMX, SMX, EST */ |
1495                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1496                 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
1497                 0 /* Reserved, DCA */ | F(XMM4_1) |
1498                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
1499                 0 /* Reserved, XSAVE, OSXSAVE */;
1500         /* cpuid 0x80000001.ecx */
1501         const u32 kvm_supported_word6_x86_features =
1502                 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
1503                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
1504                 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
1505                 0 /* SKINIT */ | 0 /* WDT */;
1506
1507         /* all calls to cpuid_count() should be made on the same cpu */
1508         get_cpu();
1509         do_cpuid_1_ent(entry, function, index);
1510         ++*nent;
1511
1512         switch (function) {
1513         case 0:
1514                 entry->eax = min(entry->eax, (u32)0xb);
1515                 break;
1516         case 1:
1517                 entry->edx &= kvm_supported_word0_x86_features;
1518                 entry->ecx &= kvm_supported_word4_x86_features;
1519                 /* we support x2apic emulation even if host does not support
1520                  * it since we emulate x2apic in software */
1521                 entry->ecx |= F(X2APIC);
1522                 break;
1523         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1524          * may return different values. This forces us to get_cpu() before
1525          * issuing the first command, and also to emulate this annoying behavior
1526          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1527         case 2: {
1528                 int t, times = entry->eax & 0xff;
1529
1530                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1531                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1532                 for (t = 1; t < times && *nent < maxnent; ++t) {
1533                         do_cpuid_1_ent(&entry[t], function, 0);
1534                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1535                         ++*nent;
1536                 }
1537                 break;
1538         }
1539         /* function 4 and 0xb have additional index. */
1540         case 4: {
1541                 int i, cache_type;
1542
1543                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1544                 /* read more entries until cache_type is zero */
1545                 for (i = 1; *nent < maxnent; ++i) {
1546                         cache_type = entry[i - 1].eax & 0x1f;
1547                         if (!cache_type)
1548                                 break;
1549                         do_cpuid_1_ent(&entry[i], function, i);
1550                         entry[i].flags |=
1551                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1552                         ++*nent;
1553                 }
1554                 break;
1555         }
1556         case 0xb: {
1557                 int i, level_type;
1558
1559                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1560                 /* read more entries until level_type is zero */
1561                 for (i = 1; *nent < maxnent; ++i) {
1562                         level_type = entry[i - 1].ecx & 0xff00;
1563                         if (!level_type)
1564                                 break;
1565                         do_cpuid_1_ent(&entry[i], function, i);
1566                         entry[i].flags |=
1567                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1568                         ++*nent;
1569                 }
1570                 break;
1571         }
1572         case 0x80000000:
1573                 entry->eax = min(entry->eax, 0x8000001a);
1574                 break;
1575         case 0x80000001:
1576                 entry->edx &= kvm_supported_word1_x86_features;
1577                 entry->ecx &= kvm_supported_word6_x86_features;
1578                 break;
1579         }
1580         put_cpu();
1581 }
1582
1583 #undef F
1584
1585 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1586                                      struct kvm_cpuid_entry2 __user *entries)
1587 {
1588         struct kvm_cpuid_entry2 *cpuid_entries;
1589         int limit, nent = 0, r = -E2BIG;
1590         u32 func;
1591
1592         if (cpuid->nent < 1)
1593                 goto out;
1594         r = -ENOMEM;
1595         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1596         if (!cpuid_entries)
1597                 goto out;
1598
1599         do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1600         limit = cpuid_entries[0].eax;
1601         for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1602                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1603                              &nent, cpuid->nent);
1604         r = -E2BIG;
1605         if (nent >= cpuid->nent)
1606                 goto out_free;
1607
1608         do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1609         limit = cpuid_entries[nent - 1].eax;
1610         for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1611                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1612                              &nent, cpuid->nent);
1613         r = -E2BIG;
1614         if (nent >= cpuid->nent)
1615                 goto out_free;
1616
1617         r = -EFAULT;
1618         if (copy_to_user(entries, cpuid_entries,
1619                          nent * sizeof(struct kvm_cpuid_entry2)))
1620                 goto out_free;
1621         cpuid->nent = nent;
1622         r = 0;
1623
1624 out_free:
1625         vfree(cpuid_entries);
1626 out:
1627         return r;
1628 }
1629
1630 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1631                                     struct kvm_lapic_state *s)
1632 {
1633         vcpu_load(vcpu);
1634         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1635         vcpu_put(vcpu);
1636
1637         return 0;
1638 }
1639
1640 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1641                                     struct kvm_lapic_state *s)
1642 {
1643         vcpu_load(vcpu);
1644         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1645         kvm_apic_post_state_restore(vcpu);
1646         update_cr8_intercept(vcpu);
1647         vcpu_put(vcpu);
1648
1649         return 0;
1650 }
1651
1652 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1653                                     struct kvm_interrupt *irq)
1654 {
1655         if (irq->irq < 0 || irq->irq >= 256)
1656                 return -EINVAL;
1657         if (irqchip_in_kernel(vcpu->kvm))
1658                 return -ENXIO;
1659         vcpu_load(vcpu);
1660
1661         kvm_queue_interrupt(vcpu, irq->irq, false);
1662
1663         vcpu_put(vcpu);
1664
1665         return 0;
1666 }
1667
1668 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
1669 {
1670         vcpu_load(vcpu);
1671         kvm_inject_nmi(vcpu);
1672         vcpu_put(vcpu);
1673
1674         return 0;
1675 }
1676
1677 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1678                                            struct kvm_tpr_access_ctl *tac)
1679 {
1680         if (tac->flags)
1681                 return -EINVAL;
1682         vcpu->arch.tpr_access_reporting = !!tac->enabled;
1683         return 0;
1684 }
1685
1686 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
1687                                         u64 mcg_cap)
1688 {
1689         int r;
1690         unsigned bank_num = mcg_cap & 0xff, bank;
1691
1692         r = -EINVAL;
1693         if (!bank_num)
1694                 goto out;
1695         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
1696                 goto out;
1697         r = 0;
1698         vcpu->arch.mcg_cap = mcg_cap;
1699         /* Init IA32_MCG_CTL to all 1s */
1700         if (mcg_cap & MCG_CTL_P)
1701                 vcpu->arch.mcg_ctl = ~(u64)0;
1702         /* Init IA32_MCi_CTL to all 1s */
1703         for (bank = 0; bank < bank_num; bank++)
1704                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
1705 out:
1706         return r;
1707 }
1708
1709 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
1710                                       struct kvm_x86_mce *mce)
1711 {
1712         u64 mcg_cap = vcpu->arch.mcg_cap;
1713         unsigned bank_num = mcg_cap & 0xff;
1714         u64 *banks = vcpu->arch.mce_banks;
1715
1716         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
1717                 return -EINVAL;
1718         /*
1719          * if IA32_MCG_CTL is not all 1s, the uncorrected error
1720          * reporting is disabled
1721          */
1722         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
1723             vcpu->arch.mcg_ctl != ~(u64)0)
1724                 return 0;
1725         banks += 4 * mce->bank;
1726         /*
1727          * if IA32_MCi_CTL is not all 1s, the uncorrected error
1728          * reporting is disabled for the bank
1729          */
1730         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
1731                 return 0;
1732         if (mce->status & MCI_STATUS_UC) {
1733                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
1734                     !(vcpu->arch.cr4 & X86_CR4_MCE)) {
1735                         printk(KERN_DEBUG "kvm: set_mce: "
1736                                "injects mce exception while "
1737                                "previous one is in progress!\n");
1738                         set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
1739                         return 0;
1740                 }
1741                 if (banks[1] & MCI_STATUS_VAL)
1742                         mce->status |= MCI_STATUS_OVER;
1743                 banks[2] = mce->addr;
1744                 banks[3] = mce->misc;
1745                 vcpu->arch.mcg_status = mce->mcg_status;
1746                 banks[1] = mce->status;
1747                 kvm_queue_exception(vcpu, MC_VECTOR);
1748         } else if (!(banks[1] & MCI_STATUS_VAL)
1749                    || !(banks[1] & MCI_STATUS_UC)) {
1750                 if (banks[1] & MCI_STATUS_VAL)
1751                         mce->status |= MCI_STATUS_OVER;
1752                 banks[2] = mce->addr;
1753                 banks[3] = mce->misc;
1754                 banks[1] = mce->status;
1755         } else
1756                 banks[1] |= MCI_STATUS_OVER;
1757         return 0;
1758 }
1759
1760 long kvm_arch_vcpu_ioctl(struct file *filp,
1761                          unsigned int ioctl, unsigned long arg)
1762 {
1763         struct kvm_vcpu *vcpu = filp->private_data;
1764         void __user *argp = (void __user *)arg;
1765         int r;
1766         struct kvm_lapic_state *lapic = NULL;
1767
1768         switch (ioctl) {
1769         case KVM_GET_LAPIC: {
1770                 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1771
1772                 r = -ENOMEM;
1773                 if (!lapic)
1774                         goto out;
1775                 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
1776                 if (r)
1777                         goto out;
1778                 r = -EFAULT;
1779                 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
1780                         goto out;
1781                 r = 0;
1782                 break;
1783         }
1784         case KVM_SET_LAPIC: {
1785                 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1786                 r = -ENOMEM;
1787                 if (!lapic)
1788                         goto out;
1789                 r = -EFAULT;
1790                 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
1791                         goto out;
1792                 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
1793                 if (r)
1794                         goto out;
1795                 r = 0;
1796                 break;
1797         }
1798         case KVM_INTERRUPT: {
1799                 struct kvm_interrupt irq;
1800
1801                 r = -EFAULT;
1802                 if (copy_from_user(&irq, argp, sizeof irq))
1803                         goto out;
1804                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1805                 if (r)
1806                         goto out;
1807                 r = 0;
1808                 break;
1809         }
1810         case KVM_NMI: {
1811                 r = kvm_vcpu_ioctl_nmi(vcpu);
1812                 if (r)
1813                         goto out;
1814                 r = 0;
1815                 break;
1816         }
1817         case KVM_SET_CPUID: {
1818                 struct kvm_cpuid __user *cpuid_arg = argp;
1819                 struct kvm_cpuid cpuid;
1820
1821                 r = -EFAULT;
1822                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1823                         goto out;
1824                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1825                 if (r)
1826                         goto out;
1827                 break;
1828         }
1829         case KVM_SET_CPUID2: {
1830                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1831                 struct kvm_cpuid2 cpuid;
1832
1833                 r = -EFAULT;
1834                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1835                         goto out;
1836                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1837                                               cpuid_arg->entries);
1838                 if (r)
1839                         goto out;
1840                 break;
1841         }
1842         case KVM_GET_CPUID2: {
1843                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1844                 struct kvm_cpuid2 cpuid;
1845
1846                 r = -EFAULT;
1847                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1848                         goto out;
1849                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1850                                               cpuid_arg->entries);
1851                 if (r)
1852                         goto out;
1853                 r = -EFAULT;
1854                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1855                         goto out;
1856                 r = 0;
1857                 break;
1858         }
1859         case KVM_GET_MSRS:
1860                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1861                 break;
1862         case KVM_SET_MSRS:
1863                 r = msr_io(vcpu, argp, do_set_msr, 0);
1864                 break;
1865         case KVM_TPR_ACCESS_REPORTING: {
1866                 struct kvm_tpr_access_ctl tac;
1867
1868                 r = -EFAULT;
1869                 if (copy_from_user(&tac, argp, sizeof tac))
1870                         goto out;
1871                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1872                 if (r)
1873                         goto out;
1874                 r = -EFAULT;
1875                 if (copy_to_user(argp, &tac, sizeof tac))
1876                         goto out;
1877                 r = 0;
1878                 break;
1879         };
1880         case KVM_SET_VAPIC_ADDR: {
1881                 struct kvm_vapic_addr va;
1882
1883                 r = -EINVAL;
1884                 if (!irqchip_in_kernel(vcpu->kvm))
1885                         goto out;
1886                 r = -EFAULT;
1887                 if (copy_from_user(&va, argp, sizeof va))
1888                         goto out;
1889                 r = 0;
1890                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1891                 break;
1892         }
1893         case KVM_X86_SETUP_MCE: {
1894                 u64 mcg_cap;
1895
1896                 r = -EFAULT;
1897                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
1898                         goto out;
1899                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
1900                 break;
1901         }
1902         case KVM_X86_SET_MCE: {
1903                 struct kvm_x86_mce mce;
1904
1905                 r = -EFAULT;
1906                 if (copy_from_user(&mce, argp, sizeof mce))
1907                         goto out;
1908                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
1909                 break;
1910         }
1911         default:
1912                 r = -EINVAL;
1913         }
1914 out:
1915         kfree(lapic);
1916         return r;
1917 }
1918
1919 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1920 {
1921         int ret;
1922
1923         if (addr > (unsigned int)(-3 * PAGE_SIZE))
1924                 return -1;
1925         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1926         return ret;
1927 }
1928
1929 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
1930                                               u64 ident_addr)
1931 {
1932         kvm->arch.ept_identity_map_addr = ident_addr;
1933         return 0;
1934 }
1935
1936 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1937                                           u32 kvm_nr_mmu_pages)
1938 {
1939         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1940                 return -EINVAL;
1941
1942         down_write(&kvm->slots_lock);
1943         spin_lock(&kvm->mmu_lock);
1944
1945         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1946         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1947
1948         spin_unlock(&kvm->mmu_lock);
1949         up_write(&kvm->slots_lock);
1950         return 0;
1951 }
1952
1953 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1954 {
1955         return kvm->arch.n_alloc_mmu_pages;
1956 }
1957
1958 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1959 {
1960         int i;
1961         struct kvm_mem_alias *alias;
1962
1963         for (i = 0; i < kvm->arch.naliases; ++i) {
1964                 alias = &kvm->arch.aliases[i];
1965                 if (gfn >= alias->base_gfn
1966                     && gfn < alias->base_gfn + alias->npages)
1967                         return alias->target_gfn + gfn - alias->base_gfn;
1968         }
1969         return gfn;
1970 }
1971
1972 /*
1973  * Set a new alias region.  Aliases map a portion of physical memory into
1974  * another portion.  This is useful for memory windows, for example the PC
1975  * VGA region.
1976  */
1977 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1978                                          struct kvm_memory_alias *alias)
1979 {
1980         int r, n;
1981         struct kvm_mem_alias *p;
1982
1983         r = -EINVAL;
1984         /* General sanity checks */
1985         if (alias->memory_size & (PAGE_SIZE - 1))
1986                 goto out;
1987         if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1988                 goto out;
1989         if (alias->slot >= KVM_ALIAS_SLOTS)
1990                 goto out;
1991         if (alias->guest_phys_addr + alias->memory_size
1992             < alias->guest_phys_addr)
1993                 goto out;
1994         if (alias->target_phys_addr + alias->memory_size
1995             < alias->target_phys_addr)
1996                 goto out;
1997
1998         down_write(&kvm->slots_lock);
1999         spin_lock(&kvm->mmu_lock);
2000
2001         p = &kvm->arch.aliases[alias->slot];
2002         p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
2003         p->npages = alias->memory_size >> PAGE_SHIFT;
2004         p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
2005
2006         for (n = KVM_ALIAS_SLOTS; n > 0; --n)
2007                 if (kvm->arch.aliases[n - 1].npages)
2008                         break;
2009         kvm->arch.naliases = n;
2010
2011         spin_unlock(&kvm->mmu_lock);
2012         kvm_mmu_zap_all(kvm);
2013
2014         up_write(&kvm->slots_lock);
2015
2016         return 0;
2017
2018 out:
2019         return r;
2020 }
2021
2022 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2023 {
2024         int r;
2025
2026         r = 0;
2027         switch (chip->chip_id) {
2028         case KVM_IRQCHIP_PIC_MASTER:
2029                 memcpy(&chip->chip.pic,
2030                         &pic_irqchip(kvm)->pics[0],
2031                         sizeof(struct kvm_pic_state));
2032                 break;
2033         case KVM_IRQCHIP_PIC_SLAVE:
2034                 memcpy(&chip->chip.pic,
2035                         &pic_irqchip(kvm)->pics[1],
2036                         sizeof(struct kvm_pic_state));
2037                 break;
2038         case KVM_IRQCHIP_IOAPIC:
2039                 memcpy(&chip->chip.ioapic,
2040                         ioapic_irqchip(kvm),
2041                         sizeof(struct kvm_ioapic_state));
2042                 break;
2043         default:
2044                 r = -EINVAL;
2045                 break;
2046         }
2047         return r;
2048 }
2049
2050 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2051 {
2052         int r;
2053
2054         r = 0;
2055         switch (chip->chip_id) {
2056         case KVM_IRQCHIP_PIC_MASTER:
2057                 spin_lock(&pic_irqchip(kvm)->lock);
2058                 memcpy(&pic_irqchip(kvm)->pics[0],
2059                         &chip->chip.pic,
2060                         sizeof(struct kvm_pic_state));
2061                 spin_unlock(&pic_irqchip(kvm)->lock);
2062                 break;
2063         case KVM_IRQCHIP_PIC_SLAVE:
2064                 spin_lock(&pic_irqchip(kvm)->lock);
2065                 memcpy(&pic_irqchip(kvm)->pics[1],
2066                         &chip->chip.pic,
2067                         sizeof(struct kvm_pic_state));
2068                 spin_unlock(&pic_irqchip(kvm)->lock);
2069                 break;
2070         case KVM_IRQCHIP_IOAPIC:
2071                 mutex_lock(&kvm->irq_lock);
2072                 memcpy(ioapic_irqchip(kvm),
2073                         &chip->chip.ioapic,
2074                         sizeof(struct kvm_ioapic_state));
2075                 mutex_unlock(&kvm->irq_lock);
2076                 break;
2077         default:
2078                 r = -EINVAL;
2079                 break;
2080         }
2081         kvm_pic_update_irq(pic_irqchip(kvm));
2082         return r;
2083 }
2084
2085 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2086 {
2087         int r = 0;
2088
2089         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2090         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2091         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2092         return r;
2093 }
2094
2095 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2096 {
2097         int r = 0;
2098
2099         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2100         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2101         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2102         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2103         return r;
2104 }
2105
2106 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2107 {
2108         int r = 0;
2109
2110         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2111         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2112                 sizeof(ps->channels));
2113         ps->flags = kvm->arch.vpit->pit_state.flags;
2114         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2115         return r;
2116 }
2117
2118 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2119 {
2120         int r = 0, start = 0;
2121         u32 prev_legacy, cur_legacy;
2122         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2123         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2124         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2125         if (!prev_legacy && cur_legacy)
2126                 start = 1;
2127         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2128                sizeof(kvm->arch.vpit->pit_state.channels));
2129         kvm->arch.vpit->pit_state.flags = ps->flags;
2130         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2131         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2132         return r;
2133 }
2134
2135 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2136                                  struct kvm_reinject_control *control)
2137 {
2138         if (!kvm->arch.vpit)
2139                 return -ENXIO;
2140         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2141         kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2142         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2143         return 0;
2144 }
2145
2146 /*
2147  * Get (and clear) the dirty memory log for a memory slot.
2148  */
2149 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2150                                       struct kvm_dirty_log *log)
2151 {
2152         int r;
2153         int n;
2154         struct kvm_memory_slot *memslot;
2155         int is_dirty = 0;
2156
2157         down_write(&kvm->slots_lock);
2158
2159         r = kvm_get_dirty_log(kvm, log, &is_dirty);
2160         if (r)
2161                 goto out;
2162
2163         /* If nothing is dirty, don't bother messing with page tables. */
2164         if (is_dirty) {
2165                 spin_lock(&kvm->mmu_lock);
2166                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
2167                 spin_unlock(&kvm->mmu_lock);
2168                 memslot = &kvm->memslots[log->slot];
2169                 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
2170                 memset(memslot->dirty_bitmap, 0, n);
2171         }
2172         r = 0;
2173 out:
2174         up_write(&kvm->slots_lock);
2175         return r;
2176 }
2177
2178 long kvm_arch_vm_ioctl(struct file *filp,
2179                        unsigned int ioctl, unsigned long arg)
2180 {
2181         struct kvm *kvm = filp->private_data;
2182         void __user *argp = (void __user *)arg;
2183         int r = -EINVAL;
2184         /*
2185          * This union makes it completely explicit to gcc-3.x
2186          * that these two variables' stack usage should be
2187          * combined, not added together.
2188          */
2189         union {
2190                 struct kvm_pit_state ps;
2191                 struct kvm_pit_state2 ps2;
2192                 struct kvm_memory_alias alias;
2193                 struct kvm_pit_config pit_config;
2194         } u;
2195
2196         switch (ioctl) {
2197         case KVM_SET_TSS_ADDR:
2198                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
2199                 if (r < 0)
2200                         goto out;
2201                 break;
2202         case KVM_SET_IDENTITY_MAP_ADDR: {
2203                 u64 ident_addr;
2204
2205                 r = -EFAULT;
2206                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
2207                         goto out;
2208                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
2209                 if (r < 0)
2210                         goto out;
2211                 break;
2212         }
2213         case KVM_SET_MEMORY_REGION: {
2214                 struct kvm_memory_region kvm_mem;
2215                 struct kvm_userspace_memory_region kvm_userspace_mem;
2216
2217                 r = -EFAULT;
2218                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2219                         goto out;
2220                 kvm_userspace_mem.slot = kvm_mem.slot;
2221                 kvm_userspace_mem.flags = kvm_mem.flags;
2222                 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
2223                 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
2224                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
2225                 if (r)
2226                         goto out;
2227                 break;
2228         }
2229         case KVM_SET_NR_MMU_PAGES:
2230                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
2231                 if (r)
2232                         goto out;
2233                 break;
2234         case KVM_GET_NR_MMU_PAGES:
2235                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
2236                 break;
2237         case KVM_SET_MEMORY_ALIAS:
2238                 r = -EFAULT;
2239                 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
2240                         goto out;
2241                 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
2242                 if (r)
2243                         goto out;
2244                 break;
2245         case KVM_CREATE_IRQCHIP:
2246                 r = -ENOMEM;
2247                 kvm->arch.vpic = kvm_create_pic(kvm);
2248                 if (kvm->arch.vpic) {
2249                         r = kvm_ioapic_init(kvm);
2250                         if (r) {
2251                                 kfree(kvm->arch.vpic);
2252                                 kvm->arch.vpic = NULL;
2253                                 goto out;
2254                         }
2255                 } else
2256                         goto out;
2257                 r = kvm_setup_default_irq_routing(kvm);
2258                 if (r) {
2259                         kfree(kvm->arch.vpic);
2260                         kfree(kvm->arch.vioapic);
2261                         goto out;
2262                 }
2263                 break;
2264         case KVM_CREATE_PIT:
2265                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
2266                 goto create_pit;
2267         case KVM_CREATE_PIT2:
2268                 r = -EFAULT;
2269                 if (copy_from_user(&u.pit_config, argp,
2270                                    sizeof(struct kvm_pit_config)))
2271                         goto out;
2272         create_pit:
2273                 down_write(&kvm->slots_lock);
2274                 r = -EEXIST;
2275                 if (kvm->arch.vpit)
2276                         goto create_pit_unlock;
2277                 r = -ENOMEM;
2278                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
2279                 if (kvm->arch.vpit)
2280                         r = 0;
2281         create_pit_unlock:
2282                 up_write(&kvm->slots_lock);
2283                 break;
2284         case KVM_IRQ_LINE_STATUS:
2285         case KVM_IRQ_LINE: {
2286                 struct kvm_irq_level irq_event;
2287
2288                 r = -EFAULT;
2289                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2290                         goto out;
2291                 if (irqchip_in_kernel(kvm)) {
2292                         __s32 status;
2293                         mutex_lock(&kvm->irq_lock);
2294                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2295                                         irq_event.irq, irq_event.level);
2296                         mutex_unlock(&kvm->irq_lock);
2297                         if (ioctl == KVM_IRQ_LINE_STATUS) {
2298                                 irq_event.status = status;
2299                                 if (copy_to_user(argp, &irq_event,
2300                                                         sizeof irq_event))
2301                                         goto out;
2302                         }
2303                         r = 0;
2304                 }
2305                 break;
2306         }
2307         case KVM_GET_IRQCHIP: {
2308                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2309                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2310
2311                 r = -ENOMEM;
2312                 if (!chip)
2313                         goto out;
2314                 r = -EFAULT;
2315                 if (copy_from_user(chip, argp, sizeof *chip))
2316                         goto get_irqchip_out;
2317                 r = -ENXIO;
2318                 if (!irqchip_in_kernel(kvm))
2319                         goto get_irqchip_out;
2320                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
2321                 if (r)
2322                         goto get_irqchip_out;
2323                 r = -EFAULT;
2324                 if (copy_to_user(argp, chip, sizeof *chip))
2325                         goto get_irqchip_out;
2326                 r = 0;
2327         get_irqchip_out:
2328                 kfree(chip);
2329                 if (r)
2330                         goto out;
2331                 break;
2332         }
2333         case KVM_SET_IRQCHIP: {
2334                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2335                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
2336
2337                 r = -ENOMEM;
2338                 if (!chip)
2339                         goto out;
2340                 r = -EFAULT;
2341                 if (copy_from_user(chip, argp, sizeof *chip))
2342                         goto set_irqchip_out;
2343                 r = -ENXIO;
2344                 if (!irqchip_in_kernel(kvm))
2345                         goto set_irqchip_out;
2346                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
2347                 if (r)
2348                         goto set_irqchip_out;
2349                 r = 0;
2350         set_irqchip_out:
2351                 kfree(chip);
2352                 if (r)
2353                         goto out;
2354                 break;
2355         }
2356         case KVM_GET_PIT: {
2357                 r = -EFAULT;
2358                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
2359                         goto out;
2360                 r = -ENXIO;
2361                 if (!kvm->arch.vpit)
2362                         goto out;
2363                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
2364                 if (r)
2365                         goto out;
2366                 r = -EFAULT;
2367                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
2368                         goto out;
2369                 r = 0;
2370                 break;
2371         }
2372         case KVM_SET_PIT: {
2373                 r = -EFAULT;
2374                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
2375                         goto out;
2376                 r = -ENXIO;
2377                 if (!kvm->arch.vpit)
2378                         goto out;
2379                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
2380                 if (r)
2381                         goto out;
2382                 r = 0;
2383                 break;
2384         }
2385         case KVM_GET_PIT2: {
2386                 r = -ENXIO;
2387                 if (!kvm->arch.vpit)
2388                         goto out;
2389                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
2390                 if (r)
2391                         goto out;
2392                 r = -EFAULT;
2393                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
2394                         goto out;
2395                 r = 0;
2396                 break;
2397         }
2398         case KVM_SET_PIT2: {
2399                 r = -EFAULT;
2400                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
2401                         goto out;
2402                 r = -ENXIO;
2403                 if (!kvm->arch.vpit)
2404                         goto out;
2405                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
2406                 if (r)
2407                         goto out;
2408                 r = 0;
2409                 break;
2410         }
2411         case KVM_REINJECT_CONTROL: {
2412                 struct kvm_reinject_control control;
2413                 r =  -EFAULT;
2414                 if (copy_from_user(&control, argp, sizeof(control)))
2415                         goto out;
2416                 r = kvm_vm_ioctl_reinject(kvm, &control);
2417                 if (r)
2418                         goto out;
2419                 r = 0;
2420                 break;
2421         }
2422         default:
2423                 ;
2424         }
2425 out:
2426         return r;
2427 }
2428
2429 static void kvm_init_msr_list(void)
2430 {
2431         u32 dummy[2];
2432         unsigned i, j;
2433
2434         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2435                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2436                         continue;
2437                 if (j < i)
2438                         msrs_to_save[j] = msrs_to_save[i];
2439                 j++;
2440         }
2441         num_msrs_to_save = j;
2442 }
2443
2444 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
2445                            const void *v)
2446 {
2447         if (vcpu->arch.apic &&
2448             !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
2449                 return 0;
2450
2451         return kvm_io_bus_write(&vcpu->kvm->mmio_bus, addr, len, v);
2452 }
2453
2454 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
2455 {
2456         if (vcpu->arch.apic &&
2457             !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
2458                 return 0;
2459
2460         return kvm_io_bus_read(&vcpu->kvm->mmio_bus, addr, len, v);
2461 }
2462
2463 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
2464                                struct kvm_vcpu *vcpu)
2465 {
2466         void *data = val;
2467         int r = X86EMUL_CONTINUE;
2468
2469         while (bytes) {
2470                 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2471                 unsigned offset = addr & (PAGE_SIZE-1);
2472                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
2473                 int ret;
2474
2475                 if (gpa == UNMAPPED_GVA) {
2476                         r = X86EMUL_PROPAGATE_FAULT;
2477                         goto out;
2478                 }
2479                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
2480                 if (ret < 0) {
2481                         r = X86EMUL_UNHANDLEABLE;
2482                         goto out;
2483                 }
2484
2485                 bytes -= toread;
2486                 data += toread;
2487                 addr += toread;
2488         }
2489 out:
2490         return r;
2491 }
2492
2493 static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
2494                                 struct kvm_vcpu *vcpu)
2495 {
2496         void *data = val;
2497         int r = X86EMUL_CONTINUE;
2498
2499         while (bytes) {
2500                 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2501                 unsigned offset = addr & (PAGE_SIZE-1);
2502                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
2503                 int ret;
2504
2505                 if (gpa == UNMAPPED_GVA) {
2506                         r = X86EMUL_PROPAGATE_FAULT;
2507                         goto out;
2508                 }
2509                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
2510                 if (ret < 0) {
2511                         r = X86EMUL_UNHANDLEABLE;
2512                         goto out;
2513                 }
2514
2515                 bytes -= towrite;
2516                 data += towrite;
2517                 addr += towrite;
2518         }
2519 out:
2520         return r;
2521 }
2522
2523
2524 static int emulator_read_emulated(unsigned long addr,
2525                                   void *val,
2526                                   unsigned int bytes,
2527                                   struct kvm_vcpu *vcpu)
2528 {
2529         gpa_t                 gpa;
2530
2531         if (vcpu->mmio_read_completed) {
2532                 memcpy(val, vcpu->mmio_data, bytes);
2533                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
2534                                vcpu->mmio_phys_addr, *(u64 *)val);
2535                 vcpu->mmio_read_completed = 0;
2536                 return X86EMUL_CONTINUE;
2537         }
2538
2539         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2540
2541         /* For APIC access vmexit */
2542         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2543                 goto mmio;
2544
2545         if (kvm_read_guest_virt(addr, val, bytes, vcpu)
2546                                 == X86EMUL_CONTINUE)
2547                 return X86EMUL_CONTINUE;
2548         if (gpa == UNMAPPED_GVA)
2549                 return X86EMUL_PROPAGATE_FAULT;
2550
2551 mmio:
2552         /*
2553          * Is this MMIO handled locally?
2554          */
2555         if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
2556                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
2557                 return X86EMUL_CONTINUE;
2558         }
2559
2560         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
2561
2562         vcpu->mmio_needed = 1;
2563         vcpu->mmio_phys_addr = gpa;
2564         vcpu->mmio_size = bytes;
2565         vcpu->mmio_is_write = 0;
2566
2567         return X86EMUL_UNHANDLEABLE;
2568 }
2569
2570 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2571                           const void *val, int bytes)
2572 {
2573         int ret;
2574
2575         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
2576         if (ret < 0)
2577                 return 0;
2578         kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
2579         return 1;
2580 }
2581
2582 static int emulator_write_emulated_onepage(unsigned long addr,
2583                                            const void *val,
2584                                            unsigned int bytes,
2585                                            struct kvm_vcpu *vcpu)
2586 {
2587         gpa_t                 gpa;
2588
2589         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2590
2591         if (gpa == UNMAPPED_GVA) {
2592                 kvm_inject_page_fault(vcpu, addr, 2);
2593                 return X86EMUL_PROPAGATE_FAULT;
2594         }
2595
2596         /* For APIC access vmexit */
2597         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2598                 goto mmio;
2599
2600         if (emulator_write_phys(vcpu, gpa, val, bytes))
2601                 return X86EMUL_CONTINUE;
2602
2603 mmio:
2604         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
2605         /*
2606          * Is this MMIO handled locally?
2607          */
2608         if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
2609                 return X86EMUL_CONTINUE;
2610
2611         vcpu->mmio_needed = 1;
2612         vcpu->mmio_phys_addr = gpa;
2613         vcpu->mmio_size = bytes;
2614         vcpu->mmio_is_write = 1;
2615         memcpy(vcpu->mmio_data, val, bytes);
2616
2617         return X86EMUL_CONTINUE;
2618 }
2619
2620 int emulator_write_emulated(unsigned long addr,
2621                                    const void *val,
2622                                    unsigned int bytes,
2623                                    struct kvm_vcpu *vcpu)
2624 {
2625         /* Crossing a page boundary? */
2626         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
2627                 int rc, now;
2628
2629                 now = -addr & ~PAGE_MASK;
2630                 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
2631                 if (rc != X86EMUL_CONTINUE)
2632                         return rc;
2633                 addr += now;
2634                 val += now;
2635                 bytes -= now;
2636         }
2637         return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
2638 }
2639 EXPORT_SYMBOL_GPL(emulator_write_emulated);
2640
2641 static int emulator_cmpxchg_emulated(unsigned long addr,
2642                                      const void *old,
2643                                      const void *new,
2644                                      unsigned int bytes,
2645                                      struct kvm_vcpu *vcpu)
2646 {
2647         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
2648 #ifndef CONFIG_X86_64
2649         /* guests cmpxchg8b have to be emulated atomically */
2650         if (bytes == 8) {
2651                 gpa_t gpa;
2652                 struct page *page;
2653                 char *kaddr;
2654                 u64 val;
2655
2656                 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2657
2658                 if (gpa == UNMAPPED_GVA ||
2659                    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2660                         goto emul_write;
2661
2662                 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2663                         goto emul_write;
2664
2665                 val = *(u64 *)new;
2666
2667                 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2668
2669                 kaddr = kmap_atomic(page, KM_USER0);
2670                 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2671                 kunmap_atomic(kaddr, KM_USER0);
2672                 kvm_release_page_dirty(page);
2673         }
2674 emul_write:
2675 #endif
2676
2677         return emulator_write_emulated(addr, new, bytes, vcpu);
2678 }
2679
2680 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2681 {
2682         return kvm_x86_ops->get_segment_base(vcpu, seg);
2683 }
2684
2685 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2686 {
2687         kvm_mmu_invlpg(vcpu, address);
2688         return X86EMUL_CONTINUE;
2689 }
2690
2691 int emulate_clts(struct kvm_vcpu *vcpu)
2692 {
2693         kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2694         return X86EMUL_CONTINUE;
2695 }
2696
2697 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2698 {
2699         struct kvm_vcpu *vcpu = ctxt->vcpu;
2700
2701         switch (dr) {
2702         case 0 ... 3:
2703                 *dest = kvm_x86_ops->get_dr(vcpu, dr);
2704                 return X86EMUL_CONTINUE;
2705         default:
2706                 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2707                 return X86EMUL_UNHANDLEABLE;
2708         }
2709 }
2710
2711 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2712 {
2713         unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2714         int exception;
2715
2716         kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2717         if (exception) {
2718                 /* FIXME: better handling */
2719                 return X86EMUL_UNHANDLEABLE;
2720         }
2721         return X86EMUL_CONTINUE;
2722 }
2723
2724 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2725 {
2726         u8 opcodes[4];
2727         unsigned long rip = kvm_rip_read(vcpu);
2728         unsigned long rip_linear;
2729
2730         if (!printk_ratelimit())
2731                 return;
2732
2733         rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2734
2735         kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
2736
2737         printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2738                context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2739 }
2740 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2741
2742 static struct x86_emulate_ops emulate_ops = {
2743         .read_std            = kvm_read_guest_virt,
2744         .read_emulated       = emulator_read_emulated,
2745         .write_emulated      = emulator_write_emulated,
2746         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
2747 };
2748
2749 static void cache_all_regs(struct kvm_vcpu *vcpu)
2750 {
2751         kvm_register_read(vcpu, VCPU_REGS_RAX);
2752         kvm_register_read(vcpu, VCPU_REGS_RSP);
2753         kvm_register_read(vcpu, VCPU_REGS_RIP);
2754         vcpu->arch.regs_dirty = ~0;
2755 }
2756
2757 int emulate_instruction(struct kvm_vcpu *vcpu,
2758                         struct kvm_run *run,
2759                         unsigned long cr2,
2760                         u16 error_code,
2761                         int emulation_type)
2762 {
2763         int r, shadow_mask;
2764         struct decode_cache *c;
2765
2766         kvm_clear_exception_queue(vcpu);
2767         vcpu->arch.mmio_fault_cr2 = cr2;
2768         /*
2769          * TODO: fix emulate.c to use guest_read/write_register
2770          * instead of direct ->regs accesses, can save hundred cycles
2771          * on Intel for instructions that don't read/change RSP, for
2772          * for example.
2773          */
2774         cache_all_regs(vcpu);
2775
2776         vcpu->mmio_is_write = 0;
2777         vcpu->arch.pio.string = 0;
2778
2779         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2780                 int cs_db, cs_l;
2781                 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2782
2783                 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2784                 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2785                 vcpu->arch.emulate_ctxt.mode =
2786                         (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2787                         ? X86EMUL_MODE_REAL : cs_l
2788                         ? X86EMUL_MODE_PROT64 : cs_db
2789                         ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2790
2791                 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2792
2793                 /* Only allow emulation of specific instructions on #UD
2794                  * (namely VMMCALL, sysenter, sysexit, syscall)*/
2795                 c = &vcpu->arch.emulate_ctxt.decode;
2796                 if (emulation_type & EMULTYPE_TRAP_UD) {
2797                         if (!c->twobyte)
2798                                 return EMULATE_FAIL;
2799                         switch (c->b) {
2800                         case 0x01: /* VMMCALL */
2801                                 if (c->modrm_mod != 3 || c->modrm_rm != 1)
2802                                         return EMULATE_FAIL;
2803                                 break;
2804                         case 0x34: /* sysenter */
2805                         case 0x35: /* sysexit */
2806                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
2807                                         return EMULATE_FAIL;
2808                                 break;
2809                         case 0x05: /* syscall */
2810                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
2811                                         return EMULATE_FAIL;
2812                                 break;
2813                         default:
2814                                 return EMULATE_FAIL;
2815                         }
2816
2817                         if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
2818                                 return EMULATE_FAIL;
2819                 }
2820
2821                 ++vcpu->stat.insn_emulation;
2822                 if (r)  {
2823                         ++vcpu->stat.insn_emulation_fail;
2824                         if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2825                                 return EMULATE_DONE;
2826                         return EMULATE_FAIL;
2827                 }
2828         }
2829
2830         if (emulation_type & EMULTYPE_SKIP) {
2831                 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
2832                 return EMULATE_DONE;
2833         }
2834
2835         r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2836         shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
2837
2838         if (r == 0)
2839                 kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
2840
2841         if (vcpu->arch.pio.string)
2842                 return EMULATE_DO_MMIO;
2843
2844         if ((r || vcpu->mmio_is_write) && run) {
2845                 run->exit_reason = KVM_EXIT_MMIO;
2846                 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2847                 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2848                 run->mmio.len = vcpu->mmio_size;
2849                 run->mmio.is_write = vcpu->mmio_is_write;
2850         }
2851
2852         if (r) {
2853                 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2854                         return EMULATE_DONE;
2855                 if (!vcpu->mmio_needed) {
2856                         kvm_report_emulation_failure(vcpu, "mmio");
2857                         return EMULATE_FAIL;
2858                 }
2859                 return EMULATE_DO_MMIO;
2860         }
2861
2862         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2863
2864         if (vcpu->mmio_is_write) {
2865                 vcpu->mmio_needed = 0;
2866                 return EMULATE_DO_MMIO;
2867         }
2868
2869         return EMULATE_DONE;
2870 }
2871 EXPORT_SYMBOL_GPL(emulate_instruction);
2872
2873 static int pio_copy_data(struct kvm_vcpu *vcpu)
2874 {
2875         void *p = vcpu->arch.pio_data;
2876         gva_t q = vcpu->arch.pio.guest_gva;
2877         unsigned bytes;
2878         int ret;
2879
2880         bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2881         if (vcpu->arch.pio.in)
2882                 ret = kvm_write_guest_virt(q, p, bytes, vcpu);
2883         else
2884                 ret = kvm_read_guest_virt(q, p, bytes, vcpu);
2885         return ret;
2886 }
2887
2888 int complete_pio(struct kvm_vcpu *vcpu)
2889 {
2890         struct kvm_pio_request *io = &vcpu->arch.pio;
2891         long delta;
2892         int r;
2893         unsigned long val;
2894
2895         if (!io->string) {
2896                 if (io->in) {
2897                         val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2898                         memcpy(&val, vcpu->arch.pio_data, io->size);
2899                         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
2900                 }
2901         } else {
2902                 if (io->in) {
2903                         r = pio_copy_data(vcpu);
2904                         if (r)
2905                                 return r;
2906                 }
2907
2908                 delta = 1;
2909                 if (io->rep) {
2910                         delta *= io->cur_count;
2911                         /*
2912                          * The size of the register should really depend on
2913                          * current address size.
2914                          */
2915                         val = kvm_register_read(vcpu, VCPU_REGS_RCX);
2916                         val -= delta;
2917                         kvm_register_write(vcpu, VCPU_REGS_RCX, val);
2918                 }
2919                 if (io->down)
2920                         delta = -delta;
2921                 delta *= io->size;
2922                 if (io->in) {
2923                         val = kvm_register_read(vcpu, VCPU_REGS_RDI);
2924                         val += delta;
2925                         kvm_register_write(vcpu, VCPU_REGS_RDI, val);
2926                 } else {
2927                         val = kvm_register_read(vcpu, VCPU_REGS_RSI);
2928                         val += delta;
2929                         kvm_register_write(vcpu, VCPU_REGS_RSI, val);
2930                 }
2931         }
2932
2933         io->count -= io->cur_count;
2934         io->cur_count = 0;
2935
2936         return 0;
2937 }
2938
2939 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
2940 {
2941         /* TODO: String I/O for in kernel device */
2942         int r;
2943
2944         if (vcpu->arch.pio.in)
2945                 r = kvm_io_bus_read(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
2946                                     vcpu->arch.pio.size, pd);
2947         else
2948                 r = kvm_io_bus_write(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
2949                                      vcpu->arch.pio.size, pd);
2950         return r;
2951 }
2952
2953 static int pio_string_write(struct kvm_vcpu *vcpu)
2954 {
2955         struct kvm_pio_request *io = &vcpu->arch.pio;
2956         void *pd = vcpu->arch.pio_data;
2957         int i, r = 0;
2958
2959         for (i = 0; i < io->cur_count; i++) {
2960                 if (kvm_io_bus_write(&vcpu->kvm->pio_bus,
2961                                      io->port, io->size, pd)) {
2962                         r = -EOPNOTSUPP;
2963                         break;
2964                 }
2965                 pd += io->size;
2966         }
2967         return r;
2968 }
2969
2970 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2971                   int size, unsigned port)
2972 {
2973         unsigned long val;
2974
2975         vcpu->run->exit_reason = KVM_EXIT_IO;
2976         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2977         vcpu->run->io.size = vcpu->arch.pio.size = size;
2978         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2979         vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2980         vcpu->run->io.port = vcpu->arch.pio.port = port;
2981         vcpu->arch.pio.in = in;
2982         vcpu->arch.pio.string = 0;
2983         vcpu->arch.pio.down = 0;
2984         vcpu->arch.pio.rep = 0;
2985
2986         trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
2987                       size, 1);
2988
2989         val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2990         memcpy(vcpu->arch.pio_data, &val, 4);
2991
2992         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
2993                 complete_pio(vcpu);
2994                 return 1;
2995         }
2996         return 0;
2997 }
2998 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2999
3000 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
3001                   int size, unsigned long count, int down,
3002                   gva_t address, int rep, unsigned port)
3003 {
3004         unsigned now, in_page;
3005         int ret = 0;
3006
3007         vcpu->run->exit_reason = KVM_EXIT_IO;
3008         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3009         vcpu->run->io.size = vcpu->arch.pio.size = size;
3010         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3011         vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
3012         vcpu->run->io.port = vcpu->arch.pio.port = port;
3013         vcpu->arch.pio.in = in;
3014         vcpu->arch.pio.string = 1;
3015         vcpu->arch.pio.down = down;
3016         vcpu->arch.pio.rep = rep;
3017
3018         trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
3019                       size, count);
3020
3021         if (!count) {
3022                 kvm_x86_ops->skip_emulated_instruction(vcpu);
3023                 return 1;
3024         }
3025
3026         if (!down)
3027                 in_page = PAGE_SIZE - offset_in_page(address);
3028         else
3029                 in_page = offset_in_page(address) + size;
3030         now = min(count, (unsigned long)in_page / size);
3031         if (!now)
3032                 now = 1;
3033         if (down) {
3034                 /*
3035                  * String I/O in reverse.  Yuck.  Kill the guest, fix later.
3036                  */
3037                 pr_unimpl(vcpu, "guest string pio down\n");
3038                 kvm_inject_gp(vcpu, 0);
3039                 return 1;
3040         }
3041         vcpu->run->io.count = now;
3042         vcpu->arch.pio.cur_count = now;
3043
3044         if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
3045                 kvm_x86_ops->skip_emulated_instruction(vcpu);
3046
3047         vcpu->arch.pio.guest_gva = address;
3048
3049         if (!vcpu->arch.pio.in) {
3050                 /* string PIO write */
3051                 ret = pio_copy_data(vcpu);
3052                 if (ret == X86EMUL_PROPAGATE_FAULT) {
3053                         kvm_inject_gp(vcpu, 0);
3054                         return 1;
3055                 }
3056                 if (ret == 0 && !pio_string_write(vcpu)) {
3057                         complete_pio(vcpu);
3058                         if (vcpu->arch.pio.count == 0)
3059                                 ret = 1;
3060                 }
3061         }
3062         /* no string PIO read support yet */
3063
3064         return ret;
3065 }
3066 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
3067
3068 static void bounce_off(void *info)
3069 {
3070         /* nothing */
3071 }
3072
3073 static unsigned int  ref_freq;
3074 static unsigned long tsc_khz_ref;
3075
3076 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
3077                                      void *data)
3078 {
3079         struct cpufreq_freqs *freq = data;
3080         struct kvm *kvm;
3081         struct kvm_vcpu *vcpu;
3082         int i, send_ipi = 0;
3083
3084         if (!ref_freq)
3085                 ref_freq = freq->old;
3086
3087         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
3088                 return 0;
3089         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
3090                 return 0;
3091         per_cpu(cpu_tsc_khz, freq->cpu) = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
3092
3093         spin_lock(&kvm_lock);
3094         list_for_each_entry(kvm, &vm_list, vm_list) {
3095                 kvm_for_each_vcpu(i, vcpu, kvm) {
3096                         if (vcpu->cpu != freq->cpu)
3097                                 continue;
3098                         if (!kvm_request_guest_time_update(vcpu))
3099                                 continue;
3100                         if (vcpu->cpu != smp_processor_id())
3101                                 send_ipi++;
3102                 }
3103         }
3104         spin_unlock(&kvm_lock);
3105
3106         if (freq->old < freq->new && send_ipi) {
3107                 /*
3108                  * We upscale the frequency.  Must make the guest
3109                  * doesn't see old kvmclock values while running with
3110                  * the new frequency, otherwise we risk the guest sees
3111                  * time go backwards.
3112                  *
3113                  * In case we update the frequency for another cpu
3114                  * (which might be in guest context) send an interrupt
3115                  * to kick the cpu out of guest context.  Next time
3116                  * guest context is entered kvmclock will be updated,
3117                  * so the guest will not see stale values.
3118                  */
3119                 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
3120         }
3121         return 0;
3122 }
3123
3124 static struct notifier_block kvmclock_cpufreq_notifier_block = {
3125         .notifier_call  = kvmclock_cpufreq_notifier
3126 };
3127
3128 int kvm_arch_init(void *opaque)
3129 {
3130         int r, cpu;
3131         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
3132
3133         if (kvm_x86_ops) {
3134                 printk(KERN_ERR "kvm: already loaded the other module\n");
3135                 r = -EEXIST;
3136                 goto out;
3137         }
3138
3139         if (!ops->cpu_has_kvm_support()) {
3140                 printk(KERN_ERR "kvm: no hardware support\n");
3141                 r = -EOPNOTSUPP;
3142                 goto out;
3143         }
3144         if (ops->disabled_by_bios()) {
3145                 printk(KERN_ERR "kvm: disabled by bios\n");
3146                 r = -EOPNOTSUPP;
3147                 goto out;
3148         }
3149
3150         r = kvm_mmu_module_init();
3151         if (r)
3152                 goto out;
3153
3154         kvm_init_msr_list();
3155
3156         kvm_x86_ops = ops;
3157         kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
3158         kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
3159         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
3160                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
3161
3162         for_each_possible_cpu(cpu)
3163                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
3164         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
3165                 tsc_khz_ref = tsc_khz;
3166                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
3167                                           CPUFREQ_TRANSITION_NOTIFIER);
3168         }
3169
3170         return 0;
3171
3172 out:
3173         return r;
3174 }
3175
3176 void kvm_arch_exit(void)
3177 {
3178         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
3179                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
3180                                             CPUFREQ_TRANSITION_NOTIFIER);
3181         kvm_x86_ops = NULL;
3182         kvm_mmu_module_exit();
3183 }
3184
3185 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
3186 {
3187         ++vcpu->stat.halt_exits;
3188         if (irqchip_in_kernel(vcpu->kvm)) {
3189                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
3190                 return 1;
3191         } else {
3192                 vcpu->run->exit_reason = KVM_EXIT_HLT;
3193                 return 0;
3194         }
3195 }
3196 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
3197
3198 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
3199                            unsigned long a1)
3200 {
3201         if (is_long_mode(vcpu))
3202                 return a0;
3203         else
3204                 return a0 | ((gpa_t)a1 << 32);
3205 }
3206
3207 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
3208 {
3209         unsigned long nr, a0, a1, a2, a3, ret;
3210         int r = 1;
3211
3212         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
3213         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
3214         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
3215         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
3216         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
3217
3218         trace_kvm_hypercall(nr, a0, a1, a2, a3);
3219
3220         if (!is_long_mode(vcpu)) {
3221                 nr &= 0xFFFFFFFF;
3222                 a0 &= 0xFFFFFFFF;
3223                 a1 &= 0xFFFFFFFF;
3224                 a2 &= 0xFFFFFFFF;
3225                 a3 &= 0xFFFFFFFF;
3226         }
3227
3228         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
3229                 ret = -KVM_EPERM;
3230                 goto out;
3231         }
3232
3233         switch (nr) {
3234         case KVM_HC_VAPIC_POLL_IRQ:
3235                 ret = 0;
3236                 break;
3237         case KVM_HC_MMU_OP:
3238                 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
3239                 break;
3240         default:
3241                 ret = -KVM_ENOSYS;
3242                 break;
3243         }
3244 out:
3245         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
3246         ++vcpu->stat.hypercalls;
3247         return r;
3248 }
3249 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
3250
3251 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
3252 {
3253         char instruction[3];
3254         int ret = 0;
3255         unsigned long rip = kvm_rip_read(vcpu);
3256
3257
3258         /*
3259          * Blow out the MMU to ensure that no other VCPU has an active mapping
3260          * to ensure that the updated hypercall appears atomically across all
3261          * VCPUs.
3262          */
3263         kvm_mmu_zap_all(vcpu->kvm);
3264
3265         kvm_x86_ops->patch_hypercall(vcpu, instruction);
3266         if (emulator_write_emulated(rip, instruction, 3, vcpu)
3267             != X86EMUL_CONTINUE)
3268                 ret = -EFAULT;
3269
3270         return ret;
3271 }
3272
3273 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3274 {
3275         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3276 }
3277
3278 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3279 {
3280         struct descriptor_table dt = { limit, base };
3281
3282         kvm_x86_ops->set_gdt(vcpu, &dt);
3283 }
3284
3285 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
3286 {
3287         struct descriptor_table dt = { limit, base };
3288
3289         kvm_x86_ops->set_idt(vcpu, &dt);
3290 }
3291
3292 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
3293                    unsigned long *rflags)
3294 {
3295         kvm_lmsw(vcpu, msw);
3296         *rflags = kvm_x86_ops->get_rflags(vcpu);
3297 }
3298
3299 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
3300 {
3301         unsigned long value;
3302
3303         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3304         switch (cr) {
3305         case 0:
3306                 value = vcpu->arch.cr0;
3307                 break;
3308         case 2:
3309                 value = vcpu->arch.cr2;
3310                 break;
3311         case 3:
3312                 value = vcpu->arch.cr3;
3313                 break;
3314         case 4:
3315                 value = vcpu->arch.cr4;
3316                 break;
3317         case 8:
3318                 value = kvm_get_cr8(vcpu);
3319                 break;
3320         default:
3321                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3322                 return 0;
3323         }
3324
3325         return value;
3326 }
3327
3328 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
3329                      unsigned long *rflags)
3330 {
3331         switch (cr) {
3332         case 0:
3333                 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
3334                 *rflags = kvm_x86_ops->get_rflags(vcpu);
3335                 break;
3336         case 2:
3337                 vcpu->arch.cr2 = val;
3338                 break;
3339         case 3:
3340                 kvm_set_cr3(vcpu, val);
3341                 break;
3342         case 4:
3343                 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
3344                 break;
3345         case 8:
3346                 kvm_set_cr8(vcpu, val & 0xfUL);
3347                 break;
3348         default:
3349                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3350         }
3351 }
3352
3353 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
3354 {
3355         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
3356         int j, nent = vcpu->arch.cpuid_nent;
3357
3358         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
3359         /* when no next entry is found, the current entry[i] is reselected */
3360         for (j = i + 1; ; j = (j + 1) % nent) {
3361                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
3362                 if (ej->function == e->function) {
3363                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
3364                         return j;
3365                 }
3366         }
3367         return 0; /* silence gcc, even though control never reaches here */
3368 }
3369
3370 /* find an entry with matching function, matching index (if needed), and that
3371  * should be read next (if it's stateful) */
3372 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
3373         u32 function, u32 index)
3374 {
3375         if (e->function != function)
3376                 return 0;
3377         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
3378                 return 0;
3379         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
3380             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
3381                 return 0;
3382         return 1;
3383 }
3384
3385 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
3386                                               u32 function, u32 index)
3387 {
3388         int i;
3389         struct kvm_cpuid_entry2 *best = NULL;
3390
3391         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
3392                 struct kvm_cpuid_entry2 *e;
3393
3394                 e = &vcpu->arch.cpuid_entries[i];
3395                 if (is_matching_cpuid_entry(e, function, index)) {
3396                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
3397                                 move_to_next_stateful_cpuid_entry(vcpu, i);
3398                         best = e;
3399                         break;
3400                 }
3401                 /*
3402                  * Both basic or both extended?
3403                  */
3404                 if (((e->function ^ function) & 0x80000000) == 0)
3405                         if (!best || e->function > best->function)
3406                                 best = e;
3407         }
3408         return best;
3409 }
3410
3411 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
3412 {
3413         struct kvm_cpuid_entry2 *best;
3414
3415         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
3416         if (best)
3417                 return best->eax & 0xff;
3418         return 36;
3419 }
3420
3421 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
3422 {
3423         u32 function, index;
3424         struct kvm_cpuid_entry2 *best;
3425
3426         function = kvm_register_read(vcpu, VCPU_REGS_RAX);
3427         index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3428         kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
3429         kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
3430         kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
3431         kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
3432         best = kvm_find_cpuid_entry(vcpu, function, index);
3433         if (best) {
3434                 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
3435                 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
3436                 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
3437                 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
3438         }
3439         kvm_x86_ops->skip_emulated_instruction(vcpu);
3440         trace_kvm_cpuid(function,
3441                         kvm_register_read(vcpu, VCPU_REGS_RAX),
3442                         kvm_register_read(vcpu, VCPU_REGS_RBX),
3443                         kvm_register_read(vcpu, VCPU_REGS_RCX),
3444                         kvm_register_read(vcpu, VCPU_REGS_RDX));
3445 }
3446 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
3447
3448 /*
3449  * Check if userspace requested an interrupt window, and that the
3450  * interrupt window is open.
3451  *
3452  * No need to exit to userspace if we already have an interrupt queued.
3453  */
3454 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
3455                                           struct kvm_run *kvm_run)
3456 {
3457         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
3458                 kvm_run->request_interrupt_window &&
3459                 kvm_arch_interrupt_allowed(vcpu));
3460 }
3461
3462 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
3463                               struct kvm_run *kvm_run)
3464 {
3465         kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
3466         kvm_run->cr8 = kvm_get_cr8(vcpu);
3467         kvm_run->apic_base = kvm_get_apic_base(vcpu);
3468         if (irqchip_in_kernel(vcpu->kvm))
3469                 kvm_run->ready_for_interrupt_injection = 1;
3470         else
3471                 kvm_run->ready_for_interrupt_injection =
3472                         kvm_arch_interrupt_allowed(vcpu) &&
3473                         !kvm_cpu_has_interrupt(vcpu) &&
3474                         !kvm_event_needs_reinjection(vcpu);
3475 }
3476
3477 static void vapic_enter(struct kvm_vcpu *vcpu)
3478 {
3479         struct kvm_lapic *apic = vcpu->arch.apic;
3480         struct page *page;
3481
3482         if (!apic || !apic->vapic_addr)
3483                 return;
3484
3485         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3486
3487         vcpu->arch.apic->vapic_page = page;
3488 }
3489
3490 static void vapic_exit(struct kvm_vcpu *vcpu)
3491 {
3492         struct kvm_lapic *apic = vcpu->arch.apic;
3493
3494         if (!apic || !apic->vapic_addr)
3495                 return;
3496
3497         down_read(&vcpu->kvm->slots_lock);
3498         kvm_release_page_dirty(apic->vapic_page);
3499         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3500         up_read(&vcpu->kvm->slots_lock);
3501 }
3502
3503 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
3504 {
3505         int max_irr, tpr;
3506
3507         if (!kvm_x86_ops->update_cr8_intercept)
3508                 return;
3509
3510         if (!vcpu->arch.apic)
3511                 return;
3512
3513         if (!vcpu->arch.apic->vapic_addr)
3514                 max_irr = kvm_lapic_find_highest_irr(vcpu);
3515         else
3516                 max_irr = -1;
3517
3518         if (max_irr != -1)
3519                 max_irr >>= 4;
3520
3521         tpr = kvm_lapic_get_cr8(vcpu);
3522
3523         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
3524 }
3525
3526 static void inject_pending_event(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3527 {
3528         /* try to reinject previous events if any */
3529         if (vcpu->arch.exception.pending) {
3530                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
3531                                           vcpu->arch.exception.has_error_code,
3532                                           vcpu->arch.exception.error_code);
3533                 return;
3534         }
3535
3536         if (vcpu->arch.nmi_injected) {
3537                 kvm_x86_ops->set_nmi(vcpu);
3538                 return;
3539         }
3540
3541         if (vcpu->arch.interrupt.pending) {
3542                 kvm_x86_ops->set_irq(vcpu);
3543                 return;
3544         }
3545
3546         /* try to inject new event if pending */
3547         if (vcpu->arch.nmi_pending) {
3548                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
3549                         vcpu->arch.nmi_pending = false;
3550                         vcpu->arch.nmi_injected = true;
3551                         kvm_x86_ops->set_nmi(vcpu);
3552                 }
3553         } else if (kvm_cpu_has_interrupt(vcpu)) {
3554                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
3555                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
3556                                             false);
3557                         kvm_x86_ops->set_irq(vcpu);
3558                 }
3559         }
3560 }
3561
3562 static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3563 {
3564         int r;
3565         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
3566                 kvm_run->request_interrupt_window;
3567
3568         if (vcpu->requests)
3569                 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
3570                         kvm_mmu_unload(vcpu);
3571
3572         r = kvm_mmu_reload(vcpu);
3573         if (unlikely(r))
3574                 goto out;
3575
3576         if (vcpu->requests) {
3577                 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
3578                         __kvm_migrate_timers(vcpu);
3579                 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
3580                         kvm_write_guest_time(vcpu);
3581                 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
3582                         kvm_mmu_sync_roots(vcpu);
3583                 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
3584                         kvm_x86_ops->tlb_flush(vcpu);
3585                 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
3586                                        &vcpu->requests)) {
3587                         kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
3588                         r = 0;
3589                         goto out;
3590                 }
3591                 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
3592                         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
3593                         r = 0;
3594                         goto out;
3595                 }
3596         }
3597
3598         preempt_disable();
3599
3600         kvm_x86_ops->prepare_guest_switch(vcpu);
3601         kvm_load_guest_fpu(vcpu);
3602
3603         local_irq_disable();
3604
3605         clear_bit(KVM_REQ_KICK, &vcpu->requests);
3606         smp_mb__after_clear_bit();
3607
3608         if (vcpu->requests || need_resched() || signal_pending(current)) {
3609                 set_bit(KVM_REQ_KICK, &vcpu->requests);
3610                 local_irq_enable();
3611                 preempt_enable();
3612                 r = 1;
3613                 goto out;
3614         }
3615
3616         inject_pending_event(vcpu, kvm_run);
3617
3618         /* enable NMI/IRQ window open exits if needed */
3619         if (vcpu->arch.nmi_pending)
3620                 kvm_x86_ops->enable_nmi_window(vcpu);
3621         else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
3622                 kvm_x86_ops->enable_irq_window(vcpu);
3623
3624         if (kvm_lapic_enabled(vcpu)) {
3625                 update_cr8_intercept(vcpu);
3626                 kvm_lapic_sync_to_vapic(vcpu);
3627         }
3628
3629         up_read(&vcpu->kvm->slots_lock);
3630
3631         kvm_guest_enter();
3632
3633         if (unlikely(vcpu->arch.switch_db_regs)) {
3634                 set_debugreg(0, 7);
3635                 set_debugreg(vcpu->arch.eff_db[0], 0);
3636                 set_debugreg(vcpu->arch.eff_db[1], 1);
3637                 set_debugreg(vcpu->arch.eff_db[2], 2);
3638                 set_debugreg(vcpu->arch.eff_db[3], 3);
3639         }
3640
3641         trace_kvm_entry(vcpu->vcpu_id);
3642         kvm_x86_ops->run(vcpu, kvm_run);
3643
3644         if (unlikely(vcpu->arch.switch_db_regs || test_thread_flag(TIF_DEBUG))) {
3645                 set_debugreg(current->thread.debugreg0, 0);
3646                 set_debugreg(current->thread.debugreg1, 1);
3647                 set_debugreg(current->thread.debugreg2, 2);
3648                 set_debugreg(current->thread.debugreg3, 3);
3649                 set_debugreg(current->thread.debugreg6, 6);
3650                 set_debugreg(current->thread.debugreg7, 7);
3651         }
3652
3653         set_bit(KVM_REQ_KICK, &vcpu->requests);
3654         local_irq_enable();
3655
3656         ++vcpu->stat.exits;
3657
3658         /*
3659          * We must have an instruction between local_irq_enable() and
3660          * kvm_guest_exit(), so the timer interrupt isn't delayed by
3661          * the interrupt shadow.  The stat.exits increment will do nicely.
3662          * But we need to prevent reordering, hence this barrier():
3663          */
3664         barrier();
3665
3666         kvm_guest_exit();
3667
3668         preempt_enable();
3669
3670         down_read(&vcpu->kvm->slots_lock);
3671
3672         /*
3673          * Profile KVM exit RIPs:
3674          */
3675         if (unlikely(prof_on == KVM_PROFILING)) {
3676                 unsigned long rip = kvm_rip_read(vcpu);
3677                 profile_hit(KVM_PROFILING, (void *)rip);
3678         }
3679
3680
3681         kvm_lapic_sync_from_vapic(vcpu);
3682
3683         r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
3684 out:
3685         return r;
3686 }
3687
3688
3689 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3690 {
3691         int r;
3692
3693         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
3694                 pr_debug("vcpu %d received sipi with vector # %x\n",
3695                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
3696                 kvm_lapic_reset(vcpu);
3697                 r = kvm_arch_vcpu_reset(vcpu);
3698                 if (r)
3699                         return r;
3700                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3701         }
3702
3703         down_read(&vcpu->kvm->slots_lock);
3704         vapic_enter(vcpu);
3705
3706         r = 1;
3707         while (r > 0) {
3708                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
3709                         r = vcpu_enter_guest(vcpu, kvm_run);
3710                 else {
3711                         up_read(&vcpu->kvm->slots_lock);
3712                         kvm_vcpu_block(vcpu);
3713                         down_read(&vcpu->kvm->slots_lock);
3714                         if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
3715                         {
3716                                 switch(vcpu->arch.mp_state) {
3717                                 case KVM_MP_STATE_HALTED:
3718                                         vcpu->arch.mp_state =
3719                                                 KVM_MP_STATE_RUNNABLE;
3720                                 case KVM_MP_STATE_RUNNABLE:
3721                                         break;
3722                                 case KVM_MP_STATE_SIPI_RECEIVED:
3723                                 default:
3724                                         r = -EINTR;
3725                                         break;
3726                                 }
3727                         }
3728                 }
3729
3730                 if (r <= 0)
3731                         break;
3732
3733                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
3734                 if (kvm_cpu_has_pending_timer(vcpu))
3735                         kvm_inject_pending_timer_irqs(vcpu);
3736
3737                 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
3738                         r = -EINTR;
3739                         kvm_run->exit_reason = KVM_EXIT_INTR;
3740                         ++vcpu->stat.request_irq_exits;
3741                 }
3742                 if (signal_pending(current)) {
3743                         r = -EINTR;
3744                         kvm_run->exit_reason = KVM_EXIT_INTR;
3745                         ++vcpu->stat.signal_exits;
3746                 }
3747                 if (need_resched()) {
3748                         up_read(&vcpu->kvm->slots_lock);
3749                         kvm_resched(vcpu);
3750                         down_read(&vcpu->kvm->slots_lock);
3751                 }
3752         }
3753
3754         up_read(&vcpu->kvm->slots_lock);
3755         post_kvm_run_save(vcpu, kvm_run);
3756
3757         vapic_exit(vcpu);
3758
3759         return r;
3760 }
3761
3762 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3763 {
3764         int r;
3765         sigset_t sigsaved;
3766
3767         vcpu_load(vcpu);
3768
3769         if (vcpu->sigset_active)
3770                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
3771
3772         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
3773                 kvm_vcpu_block(vcpu);
3774                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
3775                 r = -EAGAIN;
3776                 goto out;
3777         }
3778
3779         /* re-sync apic's tpr */
3780         if (!irqchip_in_kernel(vcpu->kvm))
3781                 kvm_set_cr8(vcpu, kvm_run->cr8);
3782
3783         if (vcpu->arch.pio.cur_count) {
3784                 r = complete_pio(vcpu);
3785                 if (r)
3786                         goto out;
3787         }
3788 #if CONFIG_HAS_IOMEM
3789         if (vcpu->mmio_needed) {
3790                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
3791                 vcpu->mmio_read_completed = 1;
3792                 vcpu->mmio_needed = 0;
3793
3794                 down_read(&vcpu->kvm->slots_lock);
3795                 r = emulate_instruction(vcpu, kvm_run,
3796                                         vcpu->arch.mmio_fault_cr2, 0,
3797                                         EMULTYPE_NO_DECODE);
3798                 up_read(&vcpu->kvm->slots_lock);
3799                 if (r == EMULATE_DO_MMIO) {
3800                         /*
3801                          * Read-modify-write.  Back to userspace.
3802                          */
3803                         r = 0;
3804                         goto out;
3805                 }
3806         }
3807 #endif
3808         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
3809                 kvm_register_write(vcpu, VCPU_REGS_RAX,
3810                                      kvm_run->hypercall.ret);
3811
3812         r = __vcpu_run(vcpu, kvm_run);
3813
3814 out:
3815         if (vcpu->sigset_active)
3816                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
3817
3818         vcpu_put(vcpu);
3819         return r;
3820 }
3821
3822 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3823 {
3824         vcpu_load(vcpu);
3825
3826         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3827         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3828         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3829         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3830         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3831         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3832         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3833         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3834 #ifdef CONFIG_X86_64
3835         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
3836         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
3837         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
3838         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
3839         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
3840         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
3841         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
3842         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
3843 #endif
3844
3845         regs->rip = kvm_rip_read(vcpu);
3846         regs->rflags = kvm_x86_ops->get_rflags(vcpu);
3847
3848         /*
3849          * Don't leak debug flags in case they were set for guest debugging
3850          */
3851         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3852                 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
3853
3854         vcpu_put(vcpu);
3855
3856         return 0;
3857 }
3858
3859 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3860 {
3861         vcpu_load(vcpu);
3862
3863         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
3864         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
3865         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
3866         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
3867         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
3868         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
3869         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
3870         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
3871 #ifdef CONFIG_X86_64
3872         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
3873         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
3874         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
3875         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
3876         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
3877         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
3878         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
3879         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
3880
3881 #endif
3882
3883         kvm_rip_write(vcpu, regs->rip);
3884         kvm_x86_ops->set_rflags(vcpu, regs->rflags);
3885
3886
3887         vcpu->arch.exception.pending = false;
3888
3889         vcpu_put(vcpu);
3890
3891         return 0;
3892 }
3893
3894 void kvm_get_segment(struct kvm_vcpu *vcpu,
3895                      struct kvm_segment *var, int seg)
3896 {
3897         kvm_x86_ops->get_segment(vcpu, var, seg);
3898 }
3899
3900 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3901 {
3902         struct kvm_segment cs;
3903
3904         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3905         *db = cs.db;
3906         *l = cs.l;
3907 }
3908 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3909
3910 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3911                                   struct kvm_sregs *sregs)
3912 {
3913         struct descriptor_table dt;
3914
3915         vcpu_load(vcpu);
3916
3917         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3918         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3919         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3920         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3921         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3922         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3923
3924         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3925         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3926
3927         kvm_x86_ops->get_idt(vcpu, &dt);
3928         sregs->idt.limit = dt.limit;
3929         sregs->idt.base = dt.base;
3930         kvm_x86_ops->get_gdt(vcpu, &dt);
3931         sregs->gdt.limit = dt.limit;
3932         sregs->gdt.base = dt.base;
3933
3934         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3935         sregs->cr0 = vcpu->arch.cr0;
3936         sregs->cr2 = vcpu->arch.cr2;
3937         sregs->cr3 = vcpu->arch.cr3;
3938         sregs->cr4 = vcpu->arch.cr4;
3939         sregs->cr8 = kvm_get_cr8(vcpu);
3940         sregs->efer = vcpu->arch.shadow_efer;
3941         sregs->apic_base = kvm_get_apic_base(vcpu);
3942
3943         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
3944
3945         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
3946                 set_bit(vcpu->arch.interrupt.nr,
3947                         (unsigned long *)sregs->interrupt_bitmap);
3948
3949         vcpu_put(vcpu);
3950
3951         return 0;
3952 }
3953
3954 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3955                                     struct kvm_mp_state *mp_state)
3956 {
3957         vcpu_load(vcpu);
3958         mp_state->mp_state = vcpu->arch.mp_state;
3959         vcpu_put(vcpu);
3960         return 0;
3961 }
3962
3963 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3964                                     struct kvm_mp_state *mp_state)
3965 {
3966         vcpu_load(vcpu);
3967         vcpu->arch.mp_state = mp_state->mp_state;
3968         vcpu_put(vcpu);
3969         return 0;
3970 }
3971
3972 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3973                         struct kvm_segment *var, int seg)
3974 {
3975         kvm_x86_ops->set_segment(vcpu, var, seg);
3976 }
3977
3978 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
3979                                    struct kvm_segment *kvm_desct)
3980 {
3981         kvm_desct->base = get_desc_base(seg_desc);
3982         kvm_desct->limit = get_desc_limit(seg_desc);
3983         if (seg_desc->g) {
3984                 kvm_desct->limit <<= 12;
3985                 kvm_desct->limit |= 0xfff;
3986         }
3987         kvm_desct->selector = selector;
3988         kvm_desct->type = seg_desc->type;
3989         kvm_desct->present = seg_desc->p;
3990         kvm_desct->dpl = seg_desc->dpl;
3991         kvm_desct->db = seg_desc->d;
3992         kvm_desct->s = seg_desc->s;
3993         kvm_desct->l = seg_desc->l;
3994         kvm_desct->g = seg_desc->g;
3995         kvm_desct->avl = seg_desc->avl;
3996         if (!selector)
3997                 kvm_desct->unusable = 1;
3998         else
3999                 kvm_desct->unusable = 0;
4000         kvm_desct->padding = 0;
4001 }
4002
4003 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
4004                                           u16 selector,
4005                                           struct descriptor_table *dtable)
4006 {
4007         if (selector & 1 << 2) {
4008                 struct kvm_segment kvm_seg;
4009
4010                 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
4011
4012                 if (kvm_seg.unusable)
4013                         dtable->limit = 0;
4014                 else
4015                         dtable->limit = kvm_seg.limit;
4016                 dtable->base = kvm_seg.base;
4017         }
4018         else
4019                 kvm_x86_ops->get_gdt(vcpu, dtable);
4020 }
4021
4022 /* allowed just for 8 bytes segments */
4023 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4024                                          struct desc_struct *seg_desc)
4025 {
4026         struct descriptor_table dtable;
4027         u16 index = selector >> 3;
4028
4029         get_segment_descriptor_dtable(vcpu, selector, &dtable);
4030
4031         if (dtable.limit < index * 8 + 7) {
4032                 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
4033                 return 1;
4034         }
4035         return kvm_read_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
4036 }
4037
4038 /* allowed just for 8 bytes segments */
4039 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4040                                          struct desc_struct *seg_desc)
4041 {
4042         struct descriptor_table dtable;
4043         u16 index = selector >> 3;
4044
4045         get_segment_descriptor_dtable(vcpu, selector, &dtable);
4046
4047         if (dtable.limit < index * 8 + 7)
4048                 return 1;
4049         return kvm_write_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
4050 }
4051
4052 static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
4053                              struct desc_struct *seg_desc)
4054 {
4055         u32 base_addr = get_desc_base(seg_desc);
4056
4057         return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
4058 }
4059
4060 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
4061 {
4062         struct kvm_segment kvm_seg;
4063
4064         kvm_get_segment(vcpu, &kvm_seg, seg);
4065         return kvm_seg.selector;
4066 }
4067
4068 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
4069                                                 u16 selector,
4070                                                 struct kvm_segment *kvm_seg)
4071 {
4072         struct desc_struct seg_desc;
4073
4074         if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
4075                 return 1;
4076         seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
4077         return 0;
4078 }
4079
4080 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
4081 {
4082         struct kvm_segment segvar = {
4083                 .base = selector << 4,
4084                 .limit = 0xffff,
4085                 .selector = selector,
4086                 .type = 3,
4087                 .present = 1,
4088                 .dpl = 3,
4089                 .db = 0,
4090                 .s = 1,
4091                 .l = 0,
4092                 .g = 0,
4093                 .avl = 0,
4094                 .unusable = 0,
4095         };
4096         kvm_x86_ops->set_segment(vcpu, &segvar, seg);
4097         return 0;
4098 }
4099
4100 static int is_vm86_segment(struct kvm_vcpu *vcpu, int seg)
4101 {
4102         return (seg != VCPU_SREG_LDTR) &&
4103                 (seg != VCPU_SREG_TR) &&
4104                 (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_VM);
4105 }
4106
4107 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
4108                                 int type_bits, int seg)
4109 {
4110         struct kvm_segment kvm_seg;
4111
4112         if (is_vm86_segment(vcpu, seg) || !(vcpu->arch.cr0 & X86_CR0_PE))
4113                 return kvm_load_realmode_segment(vcpu, selector, seg);
4114         if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
4115                 return 1;
4116         kvm_seg.type |= type_bits;
4117
4118         if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
4119             seg != VCPU_SREG_LDTR)
4120                 if (!kvm_seg.s)
4121                         kvm_seg.unusable = 1;
4122
4123         kvm_set_segment(vcpu, &kvm_seg, seg);
4124         return 0;
4125 }
4126
4127 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
4128                                 struct tss_segment_32 *tss)
4129 {
4130         tss->cr3 = vcpu->arch.cr3;
4131         tss->eip = kvm_rip_read(vcpu);
4132         tss->eflags = kvm_x86_ops->get_rflags(vcpu);
4133         tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4134         tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4135         tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4136         tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4137         tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4138         tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4139         tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4140         tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4141         tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4142         tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4143         tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4144         tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4145         tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
4146         tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
4147         tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4148 }
4149
4150 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
4151                                   struct tss_segment_32 *tss)
4152 {
4153         kvm_set_cr3(vcpu, tss->cr3);
4154
4155         kvm_rip_write(vcpu, tss->eip);
4156         kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
4157
4158         kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
4159         kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
4160         kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
4161         kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
4162         kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
4163         kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
4164         kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
4165         kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
4166
4167         if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
4168                 return 1;
4169
4170         if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4171                 return 1;
4172
4173         if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4174                 return 1;
4175
4176         if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4177                 return 1;
4178
4179         if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4180                 return 1;
4181
4182         if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
4183                 return 1;
4184
4185         if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
4186                 return 1;
4187         return 0;
4188 }
4189
4190 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
4191                                 struct tss_segment_16 *tss)
4192 {
4193         tss->ip = kvm_rip_read(vcpu);
4194         tss->flag = kvm_x86_ops->get_rflags(vcpu);
4195         tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4196         tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4197         tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4198         tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4199         tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4200         tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4201         tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
4202         tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
4203
4204         tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
4205         tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
4206         tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
4207         tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
4208         tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
4209         tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
4210 }
4211
4212 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
4213                                  struct tss_segment_16 *tss)
4214 {
4215         kvm_rip_write(vcpu, tss->ip);
4216         kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
4217         kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
4218         kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
4219         kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
4220         kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
4221         kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
4222         kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
4223         kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
4224         kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
4225
4226         if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
4227                 return 1;
4228
4229         if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
4230                 return 1;
4231
4232         if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
4233                 return 1;
4234
4235         if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
4236                 return 1;
4237
4238         if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
4239                 return 1;
4240         return 0;
4241 }
4242
4243 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
4244                               u16 old_tss_sel, u32 old_tss_base,
4245                               struct desc_struct *nseg_desc)
4246 {
4247         struct tss_segment_16 tss_segment_16;
4248         int ret = 0;
4249
4250         if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4251                            sizeof tss_segment_16))
4252                 goto out;
4253
4254         save_state_to_tss16(vcpu, &tss_segment_16);
4255
4256         if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
4257                             sizeof tss_segment_16))
4258                 goto out;
4259
4260         if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4261                            &tss_segment_16, sizeof tss_segment_16))
4262                 goto out;
4263
4264         if (old_tss_sel != 0xffff) {
4265                 tss_segment_16.prev_task_link = old_tss_sel;
4266
4267                 if (kvm_write_guest(vcpu->kvm,
4268                                     get_tss_base_addr(vcpu, nseg_desc),
4269                                     &tss_segment_16.prev_task_link,
4270                                     sizeof tss_segment_16.prev_task_link))
4271                         goto out;
4272         }
4273
4274         if (load_state_from_tss16(vcpu, &tss_segment_16))
4275                 goto out;
4276
4277         ret = 1;
4278 out:
4279         return ret;
4280 }
4281
4282 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
4283                        u16 old_tss_sel, u32 old_tss_base,
4284                        struct desc_struct *nseg_desc)
4285 {
4286         struct tss_segment_32 tss_segment_32;
4287         int ret = 0;
4288
4289         if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4290                            sizeof tss_segment_32))
4291                 goto out;
4292
4293         save_state_to_tss32(vcpu, &tss_segment_32);
4294
4295         if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
4296                             sizeof tss_segment_32))
4297                 goto out;
4298
4299         if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
4300                            &tss_segment_32, sizeof tss_segment_32))
4301                 goto out;
4302
4303         if (old_tss_sel != 0xffff) {
4304                 tss_segment_32.prev_task_link = old_tss_sel;
4305
4306                 if (kvm_write_guest(vcpu->kvm,
4307                                     get_tss_base_addr(vcpu, nseg_desc),
4308                                     &tss_segment_32.prev_task_link,
4309                                     sizeof tss_segment_32.prev_task_link))
4310                         goto out;
4311         }
4312
4313         if (load_state_from_tss32(vcpu, &tss_segment_32))
4314                 goto out;
4315
4316         ret = 1;
4317 out:
4318         return ret;
4319 }
4320
4321 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
4322 {
4323         struct kvm_segment tr_seg;
4324         struct desc_struct cseg_desc;
4325         struct desc_struct nseg_desc;
4326         int ret = 0;
4327         u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
4328         u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
4329
4330         old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
4331
4332         /* FIXME: Handle errors. Failure to read either TSS or their
4333          * descriptors should generate a pagefault.
4334          */
4335         if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
4336                 goto out;
4337
4338         if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
4339                 goto out;
4340
4341         if (reason != TASK_SWITCH_IRET) {
4342                 int cpl;
4343
4344                 cpl = kvm_x86_ops->get_cpl(vcpu);
4345                 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
4346                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4347                         return 1;
4348                 }
4349         }
4350
4351         if (!nseg_desc.p || get_desc_limit(&nseg_desc) < 0x67) {
4352                 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
4353                 return 1;
4354         }
4355
4356         if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
4357                 cseg_desc.type &= ~(1 << 1); //clear the B flag
4358                 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
4359         }
4360
4361         if (reason == TASK_SWITCH_IRET) {
4362                 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
4363                 kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
4364         }
4365
4366         /* set back link to prev task only if NT bit is set in eflags
4367            note that old_tss_sel is not used afetr this point */
4368         if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4369                 old_tss_sel = 0xffff;
4370
4371         /* set back link to prev task only if NT bit is set in eflags
4372            note that old_tss_sel is not used afetr this point */
4373         if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4374                 old_tss_sel = 0xffff;
4375
4376         if (nseg_desc.type & 8)
4377                 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
4378                                          old_tss_base, &nseg_desc);
4379         else
4380                 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
4381                                          old_tss_base, &nseg_desc);
4382
4383         if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
4384                 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
4385                 kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
4386         }
4387
4388         if (reason != TASK_SWITCH_IRET) {
4389                 nseg_desc.type |= (1 << 1);
4390                 save_guest_segment_descriptor(vcpu, tss_selector,
4391                                               &nseg_desc);
4392         }
4393
4394         kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
4395         seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
4396         tr_seg.type = 11;
4397         kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
4398 out:
4399         return ret;
4400 }
4401 EXPORT_SYMBOL_GPL(kvm_task_switch);
4402
4403 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
4404                                   struct kvm_sregs *sregs)
4405 {
4406         int mmu_reset_needed = 0;
4407         int pending_vec, max_bits;
4408         struct descriptor_table dt;
4409
4410         vcpu_load(vcpu);
4411
4412         dt.limit = sregs->idt.limit;
4413         dt.base = sregs->idt.base;
4414         kvm_x86_ops->set_idt(vcpu, &dt);
4415         dt.limit = sregs->gdt.limit;
4416         dt.base = sregs->gdt.base;
4417         kvm_x86_ops->set_gdt(vcpu, &dt);
4418
4419         vcpu->arch.cr2 = sregs->cr2;
4420         mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
4421         vcpu->arch.cr3 = sregs->cr3;
4422
4423         kvm_set_cr8(vcpu, sregs->cr8);
4424
4425         mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
4426         kvm_x86_ops->set_efer(vcpu, sregs->efer);
4427         kvm_set_apic_base(vcpu, sregs->apic_base);
4428
4429         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
4430
4431         mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
4432         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
4433         vcpu->arch.cr0 = sregs->cr0;
4434
4435         mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
4436         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
4437         if (!is_long_mode(vcpu) && is_pae(vcpu))
4438                 load_pdptrs(vcpu, vcpu->arch.cr3);
4439
4440         if (mmu_reset_needed)
4441                 kvm_mmu_reset_context(vcpu);
4442
4443         max_bits = (sizeof sregs->interrupt_bitmap) << 3;
4444         pending_vec = find_first_bit(
4445                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
4446         if (pending_vec < max_bits) {
4447                 kvm_queue_interrupt(vcpu, pending_vec, false);
4448                 pr_debug("Set back pending irq %d\n", pending_vec);
4449                 if (irqchip_in_kernel(vcpu->kvm))
4450                         kvm_pic_clear_isr_ack(vcpu->kvm);
4451         }
4452
4453         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4454         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4455         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4456         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4457         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4458         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4459
4460         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4461         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4462
4463         update_cr8_intercept(vcpu);
4464
4465         /* Older userspace won't unhalt the vcpu on reset. */
4466         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
4467             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
4468             !(vcpu->arch.cr0 & X86_CR0_PE))
4469                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4470
4471         vcpu_put(vcpu);
4472
4473         return 0;
4474 }
4475
4476 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
4477                                         struct kvm_guest_debug *dbg)
4478 {
4479         int i, r;
4480
4481         vcpu_load(vcpu);
4482
4483         if ((dbg->control & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) ==
4484             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) {
4485                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
4486                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
4487                 vcpu->arch.switch_db_regs =
4488                         (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
4489         } else {
4490                 for (i = 0; i < KVM_NR_DB_REGS; i++)
4491                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
4492                 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
4493         }
4494
4495         r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
4496
4497         if (dbg->control & KVM_GUESTDBG_INJECT_DB)
4498                 kvm_queue_exception(vcpu, DB_VECTOR);
4499         else if (dbg->control & KVM_GUESTDBG_INJECT_BP)
4500                 kvm_queue_exception(vcpu, BP_VECTOR);
4501
4502         vcpu_put(vcpu);
4503
4504         return r;
4505 }
4506
4507 /*
4508  * fxsave fpu state.  Taken from x86_64/processor.h.  To be killed when
4509  * we have asm/x86/processor.h
4510  */
4511 struct fxsave {
4512         u16     cwd;
4513         u16     swd;
4514         u16     twd;
4515         u16     fop;
4516         u64     rip;
4517         u64     rdp;
4518         u32     mxcsr;
4519         u32     mxcsr_mask;
4520         u32     st_space[32];   /* 8*16 bytes for each FP-reg = 128 bytes */
4521 #ifdef CONFIG_X86_64
4522         u32     xmm_space[64];  /* 16*16 bytes for each XMM-reg = 256 bytes */
4523 #else
4524         u32     xmm_space[32];  /* 8*16 bytes for each XMM-reg = 128 bytes */
4525 #endif
4526 };
4527
4528 /*
4529  * Translate a guest virtual address to a guest physical address.
4530  */
4531 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
4532                                     struct kvm_translation *tr)
4533 {
4534         unsigned long vaddr = tr->linear_address;
4535         gpa_t gpa;
4536
4537         vcpu_load(vcpu);
4538         down_read(&vcpu->kvm->slots_lock);
4539         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
4540         up_read(&vcpu->kvm->slots_lock);
4541         tr->physical_address = gpa;
4542         tr->valid = gpa != UNMAPPED_GVA;
4543         tr->writeable = 1;
4544         tr->usermode = 0;
4545         vcpu_put(vcpu);
4546
4547         return 0;
4548 }
4549
4550 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4551 {
4552         struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4553
4554         vcpu_load(vcpu);
4555
4556         memcpy(fpu->fpr, fxsave->st_space, 128);
4557         fpu->fcw = fxsave->cwd;
4558         fpu->fsw = fxsave->swd;
4559         fpu->ftwx = fxsave->twd;
4560         fpu->last_opcode = fxsave->fop;
4561         fpu->last_ip = fxsave->rip;
4562         fpu->last_dp = fxsave->rdp;
4563         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
4564
4565         vcpu_put(vcpu);
4566
4567         return 0;
4568 }
4569
4570 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4571 {
4572         struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4573
4574         vcpu_load(vcpu);
4575
4576         memcpy(fxsave->st_space, fpu->fpr, 128);
4577         fxsave->cwd = fpu->fcw;
4578         fxsave->swd = fpu->fsw;
4579         fxsave->twd = fpu->ftwx;
4580         fxsave->fop = fpu->last_opcode;
4581         fxsave->rip = fpu->last_ip;
4582         fxsave->rdp = fpu->last_dp;
4583         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
4584
4585         vcpu_put(vcpu);
4586
4587         return 0;
4588 }
4589
4590 void fx_init(struct kvm_vcpu *vcpu)
4591 {
4592         unsigned after_mxcsr_mask;
4593
4594         /*
4595          * Touch the fpu the first time in non atomic context as if
4596          * this is the first fpu instruction the exception handler
4597          * will fire before the instruction returns and it'll have to
4598          * allocate ram with GFP_KERNEL.
4599          */
4600         if (!used_math())
4601                 kvm_fx_save(&vcpu->arch.host_fx_image);
4602
4603         /* Initialize guest FPU by resetting ours and saving into guest's */
4604         preempt_disable();
4605         kvm_fx_save(&vcpu->arch.host_fx_image);
4606         kvm_fx_finit();
4607         kvm_fx_save(&vcpu->arch.guest_fx_image);
4608         kvm_fx_restore(&vcpu->arch.host_fx_image);
4609         preempt_enable();
4610
4611         vcpu->arch.cr0 |= X86_CR0_ET;
4612         after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
4613         vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
4614         memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
4615                0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
4616 }
4617 EXPORT_SYMBOL_GPL(fx_init);
4618
4619 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
4620 {
4621         if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
4622                 return;
4623
4624         vcpu->guest_fpu_loaded = 1;
4625         kvm_fx_save(&vcpu->arch.host_fx_image);
4626         kvm_fx_restore(&vcpu->arch.guest_fx_image);
4627 }
4628 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
4629
4630 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
4631 {
4632         if (!vcpu->guest_fpu_loaded)
4633                 return;
4634
4635         vcpu->guest_fpu_loaded = 0;
4636         kvm_fx_save(&vcpu->arch.guest_fx_image);
4637         kvm_fx_restore(&vcpu->arch.host_fx_image);
4638         ++vcpu->stat.fpu_reload;
4639 }
4640 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
4641
4642 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
4643 {
4644         if (vcpu->arch.time_page) {
4645                 kvm_release_page_dirty(vcpu->arch.time_page);
4646                 vcpu->arch.time_page = NULL;
4647         }
4648
4649         kvm_x86_ops->vcpu_free(vcpu);
4650 }
4651
4652 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
4653                                                 unsigned int id)
4654 {
4655         return kvm_x86_ops->vcpu_create(kvm, id);
4656 }
4657
4658 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
4659 {
4660         int r;
4661
4662         /* We do fxsave: this must be aligned. */
4663         BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
4664
4665         vcpu->arch.mtrr_state.have_fixed = 1;
4666         vcpu_load(vcpu);
4667         r = kvm_arch_vcpu_reset(vcpu);
4668         if (r == 0)
4669                 r = kvm_mmu_setup(vcpu);
4670         vcpu_put(vcpu);
4671         if (r < 0)
4672                 goto free_vcpu;
4673
4674         return 0;
4675 free_vcpu:
4676         kvm_x86_ops->vcpu_free(vcpu);
4677         return r;
4678 }
4679
4680 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
4681 {
4682         vcpu_load(vcpu);
4683         kvm_mmu_unload(vcpu);
4684         vcpu_put(vcpu);
4685
4686         kvm_x86_ops->vcpu_free(vcpu);
4687 }
4688
4689 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
4690 {
4691         vcpu->arch.nmi_pending = false;
4692         vcpu->arch.nmi_injected = false;
4693
4694         vcpu->arch.switch_db_regs = 0;
4695         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
4696         vcpu->arch.dr6 = DR6_FIXED_1;
4697         vcpu->arch.dr7 = DR7_FIXED_1;
4698
4699         return kvm_x86_ops->vcpu_reset(vcpu);
4700 }
4701
4702 void kvm_arch_hardware_enable(void *garbage)
4703 {
4704         kvm_x86_ops->hardware_enable(garbage);
4705 }
4706
4707 void kvm_arch_hardware_disable(void *garbage)
4708 {
4709         kvm_x86_ops->hardware_disable(garbage);
4710 }
4711
4712 int kvm_arch_hardware_setup(void)
4713 {
4714         return kvm_x86_ops->hardware_setup();
4715 }
4716
4717 void kvm_arch_hardware_unsetup(void)
4718 {
4719         kvm_x86_ops->hardware_unsetup();
4720 }
4721
4722 void kvm_arch_check_processor_compat(void *rtn)
4723 {
4724         kvm_x86_ops->check_processor_compatibility(rtn);
4725 }
4726
4727 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
4728 {
4729         struct page *page;
4730         struct kvm *kvm;
4731         int r;
4732
4733         BUG_ON(vcpu->kvm == NULL);
4734         kvm = vcpu->kvm;
4735
4736         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4737         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
4738                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4739         else
4740                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
4741
4742         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
4743         if (!page) {
4744                 r = -ENOMEM;
4745                 goto fail;
4746         }
4747         vcpu->arch.pio_data = page_address(page);
4748
4749         r = kvm_mmu_create(vcpu);
4750         if (r < 0)
4751                 goto fail_free_pio_data;
4752
4753         if (irqchip_in_kernel(kvm)) {
4754                 r = kvm_create_lapic(vcpu);
4755                 if (r < 0)
4756                         goto fail_mmu_destroy;
4757         }
4758
4759         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
4760                                        GFP_KERNEL);
4761         if (!vcpu->arch.mce_banks) {
4762                 r = -ENOMEM;
4763                 goto fail_mmu_destroy;
4764         }
4765         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
4766
4767         return 0;
4768
4769 fail_mmu_destroy:
4770         kvm_mmu_destroy(vcpu);
4771 fail_free_pio_data:
4772         free_page((unsigned long)vcpu->arch.pio_data);
4773 fail:
4774         return r;
4775 }
4776
4777 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
4778 {
4779         kvm_free_lapic(vcpu);
4780         down_read(&vcpu->kvm->slots_lock);
4781         kvm_mmu_destroy(vcpu);
4782         up_read(&vcpu->kvm->slots_lock);
4783         free_page((unsigned long)vcpu->arch.pio_data);
4784 }
4785
4786 struct  kvm *kvm_arch_create_vm(void)
4787 {
4788         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
4789
4790         if (!kvm)
4791                 return ERR_PTR(-ENOMEM);
4792
4793         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
4794         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
4795
4796         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
4797         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
4798
4799         rdtscll(kvm->arch.vm_init_tsc);
4800
4801         return kvm;
4802 }
4803
4804 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
4805 {
4806         vcpu_load(vcpu);
4807         kvm_mmu_unload(vcpu);
4808         vcpu_put(vcpu);
4809 }
4810
4811 static void kvm_free_vcpus(struct kvm *kvm)
4812 {
4813         unsigned int i;
4814         struct kvm_vcpu *vcpu;
4815
4816         /*
4817          * Unpin any mmu pages first.
4818          */
4819         kvm_for_each_vcpu(i, vcpu, kvm)
4820                 kvm_unload_vcpu_mmu(vcpu);
4821         kvm_for_each_vcpu(i, vcpu, kvm)
4822                 kvm_arch_vcpu_free(vcpu);
4823
4824         mutex_lock(&kvm->lock);
4825         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
4826                 kvm->vcpus[i] = NULL;
4827
4828         atomic_set(&kvm->online_vcpus, 0);
4829         mutex_unlock(&kvm->lock);
4830 }
4831
4832 void kvm_arch_sync_events(struct kvm *kvm)
4833 {
4834         kvm_free_all_assigned_devices(kvm);
4835 }
4836
4837 void kvm_arch_destroy_vm(struct kvm *kvm)
4838 {
4839         kvm_iommu_unmap_guest(kvm);
4840         kvm_free_pit(kvm);
4841         kfree(kvm->arch.vpic);
4842         kfree(kvm->arch.vioapic);
4843         kvm_free_vcpus(kvm);
4844         kvm_free_physmem(kvm);
4845         if (kvm->arch.apic_access_page)
4846                 put_page(kvm->arch.apic_access_page);
4847         if (kvm->arch.ept_identity_pagetable)
4848                 put_page(kvm->arch.ept_identity_pagetable);
4849         kfree(kvm);
4850 }
4851
4852 int kvm_arch_set_memory_region(struct kvm *kvm,
4853                                 struct kvm_userspace_memory_region *mem,
4854                                 struct kvm_memory_slot old,
4855                                 int user_alloc)
4856 {
4857         int npages = mem->memory_size >> PAGE_SHIFT;
4858         struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
4859
4860         /*To keep backward compatibility with older userspace,
4861          *x86 needs to hanlde !user_alloc case.
4862          */
4863         if (!user_alloc) {
4864                 if (npages && !old.rmap) {
4865                         unsigned long userspace_addr;
4866
4867                         down_write(&current->mm->mmap_sem);
4868                         userspace_addr = do_mmap(NULL, 0,
4869                                                  npages * PAGE_SIZE,
4870                                                  PROT_READ | PROT_WRITE,
4871                                                  MAP_PRIVATE | MAP_ANONYMOUS,
4872                                                  0);
4873                         up_write(&current->mm->mmap_sem);
4874
4875                         if (IS_ERR((void *)userspace_addr))
4876                                 return PTR_ERR((void *)userspace_addr);
4877
4878                         /* set userspace_addr atomically for kvm_hva_to_rmapp */
4879                         spin_lock(&kvm->mmu_lock);
4880                         memslot->userspace_addr = userspace_addr;
4881                         spin_unlock(&kvm->mmu_lock);
4882                 } else {
4883                         if (!old.user_alloc && old.rmap) {
4884                                 int ret;
4885
4886                                 down_write(&current->mm->mmap_sem);
4887                                 ret = do_munmap(current->mm, old.userspace_addr,
4888                                                 old.npages * PAGE_SIZE);
4889                                 up_write(&current->mm->mmap_sem);
4890                                 if (ret < 0)
4891                                         printk(KERN_WARNING
4892                                        "kvm_vm_ioctl_set_memory_region: "
4893                                        "failed to munmap memory\n");
4894                         }
4895                 }
4896         }
4897
4898         spin_lock(&kvm->mmu_lock);
4899         if (!kvm->arch.n_requested_mmu_pages) {
4900                 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
4901                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
4902         }
4903
4904         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
4905         spin_unlock(&kvm->mmu_lock);
4906
4907         return 0;
4908 }
4909
4910 void kvm_arch_flush_shadow(struct kvm *kvm)
4911 {
4912         kvm_mmu_zap_all(kvm);
4913         kvm_reload_remote_mmus(kvm);
4914 }
4915
4916 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
4917 {
4918         return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
4919                 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
4920                 || vcpu->arch.nmi_pending ||
4921                 (kvm_arch_interrupt_allowed(vcpu) &&
4922                  kvm_cpu_has_interrupt(vcpu));
4923 }
4924
4925 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
4926 {
4927         int me;
4928         int cpu = vcpu->cpu;
4929
4930         if (waitqueue_active(&vcpu->wq)) {
4931                 wake_up_interruptible(&vcpu->wq);
4932                 ++vcpu->stat.halt_wakeup;
4933         }
4934
4935         me = get_cpu();
4936         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
4937                 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
4938                         smp_send_reschedule(cpu);
4939         put_cpu();
4940 }
4941
4942 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
4943 {
4944         return kvm_x86_ops->interrupt_allowed(vcpu);
4945 }
4946
4947 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
4948 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
4949 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
4950 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
4951 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);