ARM: mvebu: update mvebu_v7_defconfig with cpufreq support
[cascardo/linux.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44 #include <linux/idr.h>
45
46 #include "rbd_types.h"
47
48 #define RBD_DEBUG       /* Activate rbd_assert() calls */
49
50 /*
51  * The basic unit of block I/O is a sector.  It is interpreted in a
52  * number of contexts in Linux (blk, bio, genhd), but the default is
53  * universally 512 bytes.  These symbols are just slightly more
54  * meaningful than the bare numbers they represent.
55  */
56 #define SECTOR_SHIFT    9
57 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
58
59 /*
60  * Increment the given counter and return its updated value.
61  * If the counter is already 0 it will not be incremented.
62  * If the counter is already at its maximum value returns
63  * -EINVAL without updating it.
64  */
65 static int atomic_inc_return_safe(atomic_t *v)
66 {
67         unsigned int counter;
68
69         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
70         if (counter <= (unsigned int)INT_MAX)
71                 return (int)counter;
72
73         atomic_dec(v);
74
75         return -EINVAL;
76 }
77
78 /* Decrement the counter.  Return the resulting value, or -EINVAL */
79 static int atomic_dec_return_safe(atomic_t *v)
80 {
81         int counter;
82
83         counter = atomic_dec_return(v);
84         if (counter >= 0)
85                 return counter;
86
87         atomic_inc(v);
88
89         return -EINVAL;
90 }
91
92 #define RBD_DRV_NAME "rbd"
93
94 #define RBD_MINORS_PER_MAJOR            256
95 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
96
97 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
98 #define RBD_MAX_SNAP_NAME_LEN   \
99                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
100
101 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
102
103 #define RBD_SNAP_HEAD_NAME      "-"
104
105 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
106
107 /* This allows a single page to hold an image name sent by OSD */
108 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
109 #define RBD_IMAGE_ID_LEN_MAX    64
110
111 #define RBD_OBJ_PREFIX_LEN_MAX  64
112
113 /* Feature bits */
114
115 #define RBD_FEATURE_LAYERING    (1<<0)
116 #define RBD_FEATURE_STRIPINGV2  (1<<1)
117 #define RBD_FEATURES_ALL \
118             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
119
120 /* Features supported by this (client software) implementation. */
121
122 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
123
124 /*
125  * An RBD device name will be "rbd#", where the "rbd" comes from
126  * RBD_DRV_NAME above, and # is a unique integer identifier.
127  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
128  * enough to hold all possible device names.
129  */
130 #define DEV_NAME_LEN            32
131 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
132
133 /*
134  * block device image metadata (in-memory version)
135  */
136 struct rbd_image_header {
137         /* These six fields never change for a given rbd image */
138         char *object_prefix;
139         __u8 obj_order;
140         __u8 crypt_type;
141         __u8 comp_type;
142         u64 stripe_unit;
143         u64 stripe_count;
144         u64 features;           /* Might be changeable someday? */
145
146         /* The remaining fields need to be updated occasionally */
147         u64 image_size;
148         struct ceph_snap_context *snapc;
149         char *snap_names;       /* format 1 only */
150         u64 *snap_sizes;        /* format 1 only */
151 };
152
153 /*
154  * An rbd image specification.
155  *
156  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
157  * identify an image.  Each rbd_dev structure includes a pointer to
158  * an rbd_spec structure that encapsulates this identity.
159  *
160  * Each of the id's in an rbd_spec has an associated name.  For a
161  * user-mapped image, the names are supplied and the id's associated
162  * with them are looked up.  For a layered image, a parent image is
163  * defined by the tuple, and the names are looked up.
164  *
165  * An rbd_dev structure contains a parent_spec pointer which is
166  * non-null if the image it represents is a child in a layered
167  * image.  This pointer will refer to the rbd_spec structure used
168  * by the parent rbd_dev for its own identity (i.e., the structure
169  * is shared between the parent and child).
170  *
171  * Since these structures are populated once, during the discovery
172  * phase of image construction, they are effectively immutable so
173  * we make no effort to synchronize access to them.
174  *
175  * Note that code herein does not assume the image name is known (it
176  * could be a null pointer).
177  */
178 struct rbd_spec {
179         u64             pool_id;
180         const char      *pool_name;
181
182         const char      *image_id;
183         const char      *image_name;
184
185         u64             snap_id;
186         const char      *snap_name;
187
188         struct kref     kref;
189 };
190
191 /*
192  * an instance of the client.  multiple devices may share an rbd client.
193  */
194 struct rbd_client {
195         struct ceph_client      *client;
196         struct kref             kref;
197         struct list_head        node;
198 };
199
200 struct rbd_img_request;
201 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
202
203 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
204
205 struct rbd_obj_request;
206 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
207
208 enum obj_request_type {
209         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
210 };
211
212 enum obj_req_flags {
213         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
214         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
215         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
216         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
217 };
218
219 struct rbd_obj_request {
220         const char              *object_name;
221         u64                     offset;         /* object start byte */
222         u64                     length;         /* bytes from offset */
223         unsigned long           flags;
224
225         /*
226          * An object request associated with an image will have its
227          * img_data flag set; a standalone object request will not.
228          *
229          * A standalone object request will have which == BAD_WHICH
230          * and a null obj_request pointer.
231          *
232          * An object request initiated in support of a layered image
233          * object (to check for its existence before a write) will
234          * have which == BAD_WHICH and a non-null obj_request pointer.
235          *
236          * Finally, an object request for rbd image data will have
237          * which != BAD_WHICH, and will have a non-null img_request
238          * pointer.  The value of which will be in the range
239          * 0..(img_request->obj_request_count-1).
240          */
241         union {
242                 struct rbd_obj_request  *obj_request;   /* STAT op */
243                 struct {
244                         struct rbd_img_request  *img_request;
245                         u64                     img_offset;
246                         /* links for img_request->obj_requests list */
247                         struct list_head        links;
248                 };
249         };
250         u32                     which;          /* posn image request list */
251
252         enum obj_request_type   type;
253         union {
254                 struct bio      *bio_list;
255                 struct {
256                         struct page     **pages;
257                         u32             page_count;
258                 };
259         };
260         struct page             **copyup_pages;
261         u32                     copyup_page_count;
262
263         struct ceph_osd_request *osd_req;
264
265         u64                     xferred;        /* bytes transferred */
266         int                     result;
267
268         rbd_obj_callback_t      callback;
269         struct completion       completion;
270
271         struct kref             kref;
272 };
273
274 enum img_req_flags {
275         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
276         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
277         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
278 };
279
280 struct rbd_img_request {
281         struct rbd_device       *rbd_dev;
282         u64                     offset; /* starting image byte offset */
283         u64                     length; /* byte count from offset */
284         unsigned long           flags;
285         union {
286                 u64                     snap_id;        /* for reads */
287                 struct ceph_snap_context *snapc;        /* for writes */
288         };
289         union {
290                 struct request          *rq;            /* block request */
291                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
292         };
293         struct page             **copyup_pages;
294         u32                     copyup_page_count;
295         spinlock_t              completion_lock;/* protects next_completion */
296         u32                     next_completion;
297         rbd_img_callback_t      callback;
298         u64                     xferred;/* aggregate bytes transferred */
299         int                     result; /* first nonzero obj_request result */
300
301         u32                     obj_request_count;
302         struct list_head        obj_requests;   /* rbd_obj_request structs */
303
304         struct kref             kref;
305 };
306
307 #define for_each_obj_request(ireq, oreq) \
308         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
309 #define for_each_obj_request_from(ireq, oreq) \
310         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
311 #define for_each_obj_request_safe(ireq, oreq, n) \
312         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
313
314 struct rbd_mapping {
315         u64                     size;
316         u64                     features;
317         bool                    read_only;
318 };
319
320 /*
321  * a single device
322  */
323 struct rbd_device {
324         int                     dev_id;         /* blkdev unique id */
325
326         int                     major;          /* blkdev assigned major */
327         int                     minor;
328         struct gendisk          *disk;          /* blkdev's gendisk and rq */
329
330         u32                     image_format;   /* Either 1 or 2 */
331         struct rbd_client       *rbd_client;
332
333         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
334
335         spinlock_t              lock;           /* queue, flags, open_count */
336
337         struct rbd_image_header header;
338         unsigned long           flags;          /* possibly lock protected */
339         struct rbd_spec         *spec;
340
341         char                    *header_name;
342
343         struct ceph_file_layout layout;
344
345         struct ceph_osd_event   *watch_event;
346         struct rbd_obj_request  *watch_request;
347
348         struct rbd_spec         *parent_spec;
349         u64                     parent_overlap;
350         atomic_t                parent_ref;
351         struct rbd_device       *parent;
352
353         /* protects updating the header */
354         struct rw_semaphore     header_rwsem;
355
356         struct rbd_mapping      mapping;
357
358         struct list_head        node;
359
360         /* sysfs related */
361         struct device           dev;
362         unsigned long           open_count;     /* protected by lock */
363 };
364
365 /*
366  * Flag bits for rbd_dev->flags.  If atomicity is required,
367  * rbd_dev->lock is used to protect access.
368  *
369  * Currently, only the "removing" flag (which is coupled with the
370  * "open_count" field) requires atomic access.
371  */
372 enum rbd_dev_flags {
373         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
374         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
375 };
376
377 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
378
379 static LIST_HEAD(rbd_dev_list);    /* devices */
380 static DEFINE_SPINLOCK(rbd_dev_list_lock);
381
382 static LIST_HEAD(rbd_client_list);              /* clients */
383 static DEFINE_SPINLOCK(rbd_client_list_lock);
384
385 /* Slab caches for frequently-allocated structures */
386
387 static struct kmem_cache        *rbd_img_request_cache;
388 static struct kmem_cache        *rbd_obj_request_cache;
389 static struct kmem_cache        *rbd_segment_name_cache;
390
391 static int rbd_major;
392 static DEFINE_IDA(rbd_dev_id_ida);
393
394 /*
395  * Default to false for now, as single-major requires >= 0.75 version of
396  * userspace rbd utility.
397  */
398 static bool single_major = false;
399 module_param(single_major, bool, S_IRUGO);
400 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
401
402 static int rbd_img_request_submit(struct rbd_img_request *img_request);
403
404 static void rbd_dev_device_release(struct device *dev);
405
406 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
407                        size_t count);
408 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
409                           size_t count);
410 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
411                                     size_t count);
412 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
413                                        size_t count);
414 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
415 static void rbd_spec_put(struct rbd_spec *spec);
416
417 static int rbd_dev_id_to_minor(int dev_id)
418 {
419         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
420 }
421
422 static int minor_to_rbd_dev_id(int minor)
423 {
424         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
425 }
426
427 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
428 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
429 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
430 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
431
432 static struct attribute *rbd_bus_attrs[] = {
433         &bus_attr_add.attr,
434         &bus_attr_remove.attr,
435         &bus_attr_add_single_major.attr,
436         &bus_attr_remove_single_major.attr,
437         NULL,
438 };
439
440 static umode_t rbd_bus_is_visible(struct kobject *kobj,
441                                   struct attribute *attr, int index)
442 {
443         if (!single_major &&
444             (attr == &bus_attr_add_single_major.attr ||
445              attr == &bus_attr_remove_single_major.attr))
446                 return 0;
447
448         return attr->mode;
449 }
450
451 static const struct attribute_group rbd_bus_group = {
452         .attrs = rbd_bus_attrs,
453         .is_visible = rbd_bus_is_visible,
454 };
455 __ATTRIBUTE_GROUPS(rbd_bus);
456
457 static struct bus_type rbd_bus_type = {
458         .name           = "rbd",
459         .bus_groups     = rbd_bus_groups,
460 };
461
462 static void rbd_root_dev_release(struct device *dev)
463 {
464 }
465
466 static struct device rbd_root_dev = {
467         .init_name =    "rbd",
468         .release =      rbd_root_dev_release,
469 };
470
471 static __printf(2, 3)
472 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
473 {
474         struct va_format vaf;
475         va_list args;
476
477         va_start(args, fmt);
478         vaf.fmt = fmt;
479         vaf.va = &args;
480
481         if (!rbd_dev)
482                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
483         else if (rbd_dev->disk)
484                 printk(KERN_WARNING "%s: %s: %pV\n",
485                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
486         else if (rbd_dev->spec && rbd_dev->spec->image_name)
487                 printk(KERN_WARNING "%s: image %s: %pV\n",
488                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
489         else if (rbd_dev->spec && rbd_dev->spec->image_id)
490                 printk(KERN_WARNING "%s: id %s: %pV\n",
491                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
492         else    /* punt */
493                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
494                         RBD_DRV_NAME, rbd_dev, &vaf);
495         va_end(args);
496 }
497
498 #ifdef RBD_DEBUG
499 #define rbd_assert(expr)                                                \
500                 if (unlikely(!(expr))) {                                \
501                         printk(KERN_ERR "\nAssertion failure in %s() "  \
502                                                 "at line %d:\n\n"       \
503                                         "\trbd_assert(%s);\n\n",        \
504                                         __func__, __LINE__, #expr);     \
505                         BUG();                                          \
506                 }
507 #else /* !RBD_DEBUG */
508 #  define rbd_assert(expr)      ((void) 0)
509 #endif /* !RBD_DEBUG */
510
511 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
512 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
513 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
514
515 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
516 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
517 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
518 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
519                                         u64 snap_id);
520 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
521                                 u8 *order, u64 *snap_size);
522 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
523                 u64 *snap_features);
524 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
525
526 static int rbd_open(struct block_device *bdev, fmode_t mode)
527 {
528         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
529         bool removing = false;
530
531         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
532                 return -EROFS;
533
534         spin_lock_irq(&rbd_dev->lock);
535         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
536                 removing = true;
537         else
538                 rbd_dev->open_count++;
539         spin_unlock_irq(&rbd_dev->lock);
540         if (removing)
541                 return -ENOENT;
542
543         (void) get_device(&rbd_dev->dev);
544
545         return 0;
546 }
547
548 static void rbd_release(struct gendisk *disk, fmode_t mode)
549 {
550         struct rbd_device *rbd_dev = disk->private_data;
551         unsigned long open_count_before;
552
553         spin_lock_irq(&rbd_dev->lock);
554         open_count_before = rbd_dev->open_count--;
555         spin_unlock_irq(&rbd_dev->lock);
556         rbd_assert(open_count_before > 0);
557
558         put_device(&rbd_dev->dev);
559 }
560
561 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
562 {
563         int ret = 0;
564         int val;
565         bool ro;
566         bool ro_changed = false;
567
568         /* get_user() may sleep, so call it before taking rbd_dev->lock */
569         if (get_user(val, (int __user *)(arg)))
570                 return -EFAULT;
571
572         ro = val ? true : false;
573         /* Snapshot doesn't allow to write*/
574         if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
575                 return -EROFS;
576
577         spin_lock_irq(&rbd_dev->lock);
578         /* prevent others open this device */
579         if (rbd_dev->open_count > 1) {
580                 ret = -EBUSY;
581                 goto out;
582         }
583
584         if (rbd_dev->mapping.read_only != ro) {
585                 rbd_dev->mapping.read_only = ro;
586                 ro_changed = true;
587         }
588
589 out:
590         spin_unlock_irq(&rbd_dev->lock);
591         /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
592         if (ret == 0 && ro_changed)
593                 set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
594
595         return ret;
596 }
597
598 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
599                         unsigned int cmd, unsigned long arg)
600 {
601         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
602         int ret = 0;
603
604         switch (cmd) {
605         case BLKROSET:
606                 ret = rbd_ioctl_set_ro(rbd_dev, arg);
607                 break;
608         default:
609                 ret = -ENOTTY;
610         }
611
612         return ret;
613 }
614
615 #ifdef CONFIG_COMPAT
616 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
617                                 unsigned int cmd, unsigned long arg)
618 {
619         return rbd_ioctl(bdev, mode, cmd, arg);
620 }
621 #endif /* CONFIG_COMPAT */
622
623 static const struct block_device_operations rbd_bd_ops = {
624         .owner                  = THIS_MODULE,
625         .open                   = rbd_open,
626         .release                = rbd_release,
627         .ioctl                  = rbd_ioctl,
628 #ifdef CONFIG_COMPAT
629         .compat_ioctl           = rbd_compat_ioctl,
630 #endif
631 };
632
633 /*
634  * Initialize an rbd client instance.  Success or not, this function
635  * consumes ceph_opts.  Caller holds client_mutex.
636  */
637 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
638 {
639         struct rbd_client *rbdc;
640         int ret = -ENOMEM;
641
642         dout("%s:\n", __func__);
643         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
644         if (!rbdc)
645                 goto out_opt;
646
647         kref_init(&rbdc->kref);
648         INIT_LIST_HEAD(&rbdc->node);
649
650         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
651         if (IS_ERR(rbdc->client))
652                 goto out_rbdc;
653         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
654
655         ret = ceph_open_session(rbdc->client);
656         if (ret < 0)
657                 goto out_client;
658
659         spin_lock(&rbd_client_list_lock);
660         list_add_tail(&rbdc->node, &rbd_client_list);
661         spin_unlock(&rbd_client_list_lock);
662
663         dout("%s: rbdc %p\n", __func__, rbdc);
664
665         return rbdc;
666 out_client:
667         ceph_destroy_client(rbdc->client);
668 out_rbdc:
669         kfree(rbdc);
670 out_opt:
671         if (ceph_opts)
672                 ceph_destroy_options(ceph_opts);
673         dout("%s: error %d\n", __func__, ret);
674
675         return ERR_PTR(ret);
676 }
677
678 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
679 {
680         kref_get(&rbdc->kref);
681
682         return rbdc;
683 }
684
685 /*
686  * Find a ceph client with specific addr and configuration.  If
687  * found, bump its reference count.
688  */
689 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
690 {
691         struct rbd_client *client_node;
692         bool found = false;
693
694         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
695                 return NULL;
696
697         spin_lock(&rbd_client_list_lock);
698         list_for_each_entry(client_node, &rbd_client_list, node) {
699                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
700                         __rbd_get_client(client_node);
701
702                         found = true;
703                         break;
704                 }
705         }
706         spin_unlock(&rbd_client_list_lock);
707
708         return found ? client_node : NULL;
709 }
710
711 /*
712  * mount options
713  */
714 enum {
715         Opt_last_int,
716         /* int args above */
717         Opt_last_string,
718         /* string args above */
719         Opt_read_only,
720         Opt_read_write,
721         /* Boolean args above */
722         Opt_last_bool,
723 };
724
725 static match_table_t rbd_opts_tokens = {
726         /* int args above */
727         /* string args above */
728         {Opt_read_only, "read_only"},
729         {Opt_read_only, "ro"},          /* Alternate spelling */
730         {Opt_read_write, "read_write"},
731         {Opt_read_write, "rw"},         /* Alternate spelling */
732         /* Boolean args above */
733         {-1, NULL}
734 };
735
736 struct rbd_options {
737         bool    read_only;
738 };
739
740 #define RBD_READ_ONLY_DEFAULT   false
741
742 static int parse_rbd_opts_token(char *c, void *private)
743 {
744         struct rbd_options *rbd_opts = private;
745         substring_t argstr[MAX_OPT_ARGS];
746         int token, intval, ret;
747
748         token = match_token(c, rbd_opts_tokens, argstr);
749         if (token < 0)
750                 return -EINVAL;
751
752         if (token < Opt_last_int) {
753                 ret = match_int(&argstr[0], &intval);
754                 if (ret < 0) {
755                         pr_err("bad mount option arg (not int) "
756                                "at '%s'\n", c);
757                         return ret;
758                 }
759                 dout("got int token %d val %d\n", token, intval);
760         } else if (token > Opt_last_int && token < Opt_last_string) {
761                 dout("got string token %d val %s\n", token,
762                      argstr[0].from);
763         } else if (token > Opt_last_string && token < Opt_last_bool) {
764                 dout("got Boolean token %d\n", token);
765         } else {
766                 dout("got token %d\n", token);
767         }
768
769         switch (token) {
770         case Opt_read_only:
771                 rbd_opts->read_only = true;
772                 break;
773         case Opt_read_write:
774                 rbd_opts->read_only = false;
775                 break;
776         default:
777                 rbd_assert(false);
778                 break;
779         }
780         return 0;
781 }
782
783 /*
784  * Get a ceph client with specific addr and configuration, if one does
785  * not exist create it.  Either way, ceph_opts is consumed by this
786  * function.
787  */
788 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
789 {
790         struct rbd_client *rbdc;
791
792         mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
793         rbdc = rbd_client_find(ceph_opts);
794         if (rbdc)       /* using an existing client */
795                 ceph_destroy_options(ceph_opts);
796         else
797                 rbdc = rbd_client_create(ceph_opts);
798         mutex_unlock(&client_mutex);
799
800         return rbdc;
801 }
802
803 /*
804  * Destroy ceph client
805  *
806  * Caller must hold rbd_client_list_lock.
807  */
808 static void rbd_client_release(struct kref *kref)
809 {
810         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
811
812         dout("%s: rbdc %p\n", __func__, rbdc);
813         spin_lock(&rbd_client_list_lock);
814         list_del(&rbdc->node);
815         spin_unlock(&rbd_client_list_lock);
816
817         ceph_destroy_client(rbdc->client);
818         kfree(rbdc);
819 }
820
821 /*
822  * Drop reference to ceph client node. If it's not referenced anymore, release
823  * it.
824  */
825 static void rbd_put_client(struct rbd_client *rbdc)
826 {
827         if (rbdc)
828                 kref_put(&rbdc->kref, rbd_client_release);
829 }
830
831 static bool rbd_image_format_valid(u32 image_format)
832 {
833         return image_format == 1 || image_format == 2;
834 }
835
836 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
837 {
838         size_t size;
839         u32 snap_count;
840
841         /* The header has to start with the magic rbd header text */
842         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
843                 return false;
844
845         /* The bio layer requires at least sector-sized I/O */
846
847         if (ondisk->options.order < SECTOR_SHIFT)
848                 return false;
849
850         /* If we use u64 in a few spots we may be able to loosen this */
851
852         if (ondisk->options.order > 8 * sizeof (int) - 1)
853                 return false;
854
855         /*
856          * The size of a snapshot header has to fit in a size_t, and
857          * that limits the number of snapshots.
858          */
859         snap_count = le32_to_cpu(ondisk->snap_count);
860         size = SIZE_MAX - sizeof (struct ceph_snap_context);
861         if (snap_count > size / sizeof (__le64))
862                 return false;
863
864         /*
865          * Not only that, but the size of the entire the snapshot
866          * header must also be representable in a size_t.
867          */
868         size -= snap_count * sizeof (__le64);
869         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
870                 return false;
871
872         return true;
873 }
874
875 /*
876  * Fill an rbd image header with information from the given format 1
877  * on-disk header.
878  */
879 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
880                                  struct rbd_image_header_ondisk *ondisk)
881 {
882         struct rbd_image_header *header = &rbd_dev->header;
883         bool first_time = header->object_prefix == NULL;
884         struct ceph_snap_context *snapc;
885         char *object_prefix = NULL;
886         char *snap_names = NULL;
887         u64 *snap_sizes = NULL;
888         u32 snap_count;
889         size_t size;
890         int ret = -ENOMEM;
891         u32 i;
892
893         /* Allocate this now to avoid having to handle failure below */
894
895         if (first_time) {
896                 size_t len;
897
898                 len = strnlen(ondisk->object_prefix,
899                                 sizeof (ondisk->object_prefix));
900                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
901                 if (!object_prefix)
902                         return -ENOMEM;
903                 memcpy(object_prefix, ondisk->object_prefix, len);
904                 object_prefix[len] = '\0';
905         }
906
907         /* Allocate the snapshot context and fill it in */
908
909         snap_count = le32_to_cpu(ondisk->snap_count);
910         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
911         if (!snapc)
912                 goto out_err;
913         snapc->seq = le64_to_cpu(ondisk->snap_seq);
914         if (snap_count) {
915                 struct rbd_image_snap_ondisk *snaps;
916                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
917
918                 /* We'll keep a copy of the snapshot names... */
919
920                 if (snap_names_len > (u64)SIZE_MAX)
921                         goto out_2big;
922                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
923                 if (!snap_names)
924                         goto out_err;
925
926                 /* ...as well as the array of their sizes. */
927
928                 size = snap_count * sizeof (*header->snap_sizes);
929                 snap_sizes = kmalloc(size, GFP_KERNEL);
930                 if (!snap_sizes)
931                         goto out_err;
932
933                 /*
934                  * Copy the names, and fill in each snapshot's id
935                  * and size.
936                  *
937                  * Note that rbd_dev_v1_header_info() guarantees the
938                  * ondisk buffer we're working with has
939                  * snap_names_len bytes beyond the end of the
940                  * snapshot id array, this memcpy() is safe.
941                  */
942                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
943                 snaps = ondisk->snaps;
944                 for (i = 0; i < snap_count; i++) {
945                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
946                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
947                 }
948         }
949
950         /* We won't fail any more, fill in the header */
951
952         if (first_time) {
953                 header->object_prefix = object_prefix;
954                 header->obj_order = ondisk->options.order;
955                 header->crypt_type = ondisk->options.crypt_type;
956                 header->comp_type = ondisk->options.comp_type;
957                 /* The rest aren't used for format 1 images */
958                 header->stripe_unit = 0;
959                 header->stripe_count = 0;
960                 header->features = 0;
961         } else {
962                 ceph_put_snap_context(header->snapc);
963                 kfree(header->snap_names);
964                 kfree(header->snap_sizes);
965         }
966
967         /* The remaining fields always get updated (when we refresh) */
968
969         header->image_size = le64_to_cpu(ondisk->image_size);
970         header->snapc = snapc;
971         header->snap_names = snap_names;
972         header->snap_sizes = snap_sizes;
973
974         /* Make sure mapping size is consistent with header info */
975
976         if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
977                 if (rbd_dev->mapping.size != header->image_size)
978                         rbd_dev->mapping.size = header->image_size;
979
980         return 0;
981 out_2big:
982         ret = -EIO;
983 out_err:
984         kfree(snap_sizes);
985         kfree(snap_names);
986         ceph_put_snap_context(snapc);
987         kfree(object_prefix);
988
989         return ret;
990 }
991
992 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
993 {
994         const char *snap_name;
995
996         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
997
998         /* Skip over names until we find the one we are looking for */
999
1000         snap_name = rbd_dev->header.snap_names;
1001         while (which--)
1002                 snap_name += strlen(snap_name) + 1;
1003
1004         return kstrdup(snap_name, GFP_KERNEL);
1005 }
1006
1007 /*
1008  * Snapshot id comparison function for use with qsort()/bsearch().
1009  * Note that result is for snapshots in *descending* order.
1010  */
1011 static int snapid_compare_reverse(const void *s1, const void *s2)
1012 {
1013         u64 snap_id1 = *(u64 *)s1;
1014         u64 snap_id2 = *(u64 *)s2;
1015
1016         if (snap_id1 < snap_id2)
1017                 return 1;
1018         return snap_id1 == snap_id2 ? 0 : -1;
1019 }
1020
1021 /*
1022  * Search a snapshot context to see if the given snapshot id is
1023  * present.
1024  *
1025  * Returns the position of the snapshot id in the array if it's found,
1026  * or BAD_SNAP_INDEX otherwise.
1027  *
1028  * Note: The snapshot array is in kept sorted (by the osd) in
1029  * reverse order, highest snapshot id first.
1030  */
1031 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1032 {
1033         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1034         u64 *found;
1035
1036         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1037                                 sizeof (snap_id), snapid_compare_reverse);
1038
1039         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1040 }
1041
1042 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1043                                         u64 snap_id)
1044 {
1045         u32 which;
1046         const char *snap_name;
1047
1048         which = rbd_dev_snap_index(rbd_dev, snap_id);
1049         if (which == BAD_SNAP_INDEX)
1050                 return ERR_PTR(-ENOENT);
1051
1052         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1053         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1054 }
1055
1056 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1057 {
1058         if (snap_id == CEPH_NOSNAP)
1059                 return RBD_SNAP_HEAD_NAME;
1060
1061         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1062         if (rbd_dev->image_format == 1)
1063                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1064
1065         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1066 }
1067
1068 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1069                                 u64 *snap_size)
1070 {
1071         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1072         if (snap_id == CEPH_NOSNAP) {
1073                 *snap_size = rbd_dev->header.image_size;
1074         } else if (rbd_dev->image_format == 1) {
1075                 u32 which;
1076
1077                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1078                 if (which == BAD_SNAP_INDEX)
1079                         return -ENOENT;
1080
1081                 *snap_size = rbd_dev->header.snap_sizes[which];
1082         } else {
1083                 u64 size = 0;
1084                 int ret;
1085
1086                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1087                 if (ret)
1088                         return ret;
1089
1090                 *snap_size = size;
1091         }
1092         return 0;
1093 }
1094
1095 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1096                         u64 *snap_features)
1097 {
1098         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1099         if (snap_id == CEPH_NOSNAP) {
1100                 *snap_features = rbd_dev->header.features;
1101         } else if (rbd_dev->image_format == 1) {
1102                 *snap_features = 0;     /* No features for format 1 */
1103         } else {
1104                 u64 features = 0;
1105                 int ret;
1106
1107                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1108                 if (ret)
1109                         return ret;
1110
1111                 *snap_features = features;
1112         }
1113         return 0;
1114 }
1115
1116 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1117 {
1118         u64 snap_id = rbd_dev->spec->snap_id;
1119         u64 size = 0;
1120         u64 features = 0;
1121         int ret;
1122
1123         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1124         if (ret)
1125                 return ret;
1126         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1127         if (ret)
1128                 return ret;
1129
1130         rbd_dev->mapping.size = size;
1131         rbd_dev->mapping.features = features;
1132
1133         return 0;
1134 }
1135
1136 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1137 {
1138         rbd_dev->mapping.size = 0;
1139         rbd_dev->mapping.features = 0;
1140 }
1141
1142 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1143 {
1144         char *name;
1145         u64 segment;
1146         int ret;
1147         char *name_format;
1148
1149         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1150         if (!name)
1151                 return NULL;
1152         segment = offset >> rbd_dev->header.obj_order;
1153         name_format = "%s.%012llx";
1154         if (rbd_dev->image_format == 2)
1155                 name_format = "%s.%016llx";
1156         ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1157                         rbd_dev->header.object_prefix, segment);
1158         if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1159                 pr_err("error formatting segment name for #%llu (%d)\n",
1160                         segment, ret);
1161                 kfree(name);
1162                 name = NULL;
1163         }
1164
1165         return name;
1166 }
1167
1168 static void rbd_segment_name_free(const char *name)
1169 {
1170         /* The explicit cast here is needed to drop the const qualifier */
1171
1172         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1173 }
1174
1175 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1176 {
1177         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1178
1179         return offset & (segment_size - 1);
1180 }
1181
1182 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1183                                 u64 offset, u64 length)
1184 {
1185         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1186
1187         offset &= segment_size - 1;
1188
1189         rbd_assert(length <= U64_MAX - offset);
1190         if (offset + length > segment_size)
1191                 length = segment_size - offset;
1192
1193         return length;
1194 }
1195
1196 /*
1197  * returns the size of an object in the image
1198  */
1199 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1200 {
1201         return 1 << header->obj_order;
1202 }
1203
1204 /*
1205  * bio helpers
1206  */
1207
1208 static void bio_chain_put(struct bio *chain)
1209 {
1210         struct bio *tmp;
1211
1212         while (chain) {
1213                 tmp = chain;
1214                 chain = chain->bi_next;
1215                 bio_put(tmp);
1216         }
1217 }
1218
1219 /*
1220  * zeros a bio chain, starting at specific offset
1221  */
1222 static void zero_bio_chain(struct bio *chain, int start_ofs)
1223 {
1224         struct bio_vec bv;
1225         struct bvec_iter iter;
1226         unsigned long flags;
1227         void *buf;
1228         int pos = 0;
1229
1230         while (chain) {
1231                 bio_for_each_segment(bv, chain, iter) {
1232                         if (pos + bv.bv_len > start_ofs) {
1233                                 int remainder = max(start_ofs - pos, 0);
1234                                 buf = bvec_kmap_irq(&bv, &flags);
1235                                 memset(buf + remainder, 0,
1236                                        bv.bv_len - remainder);
1237                                 flush_dcache_page(bv.bv_page);
1238                                 bvec_kunmap_irq(buf, &flags);
1239                         }
1240                         pos += bv.bv_len;
1241                 }
1242
1243                 chain = chain->bi_next;
1244         }
1245 }
1246
1247 /*
1248  * similar to zero_bio_chain(), zeros data defined by a page array,
1249  * starting at the given byte offset from the start of the array and
1250  * continuing up to the given end offset.  The pages array is
1251  * assumed to be big enough to hold all bytes up to the end.
1252  */
1253 static void zero_pages(struct page **pages, u64 offset, u64 end)
1254 {
1255         struct page **page = &pages[offset >> PAGE_SHIFT];
1256
1257         rbd_assert(end > offset);
1258         rbd_assert(end - offset <= (u64)SIZE_MAX);
1259         while (offset < end) {
1260                 size_t page_offset;
1261                 size_t length;
1262                 unsigned long flags;
1263                 void *kaddr;
1264
1265                 page_offset = offset & ~PAGE_MASK;
1266                 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1267                 local_irq_save(flags);
1268                 kaddr = kmap_atomic(*page);
1269                 memset(kaddr + page_offset, 0, length);
1270                 flush_dcache_page(*page);
1271                 kunmap_atomic(kaddr);
1272                 local_irq_restore(flags);
1273
1274                 offset += length;
1275                 page++;
1276         }
1277 }
1278
1279 /*
1280  * Clone a portion of a bio, starting at the given byte offset
1281  * and continuing for the number of bytes indicated.
1282  */
1283 static struct bio *bio_clone_range(struct bio *bio_src,
1284                                         unsigned int offset,
1285                                         unsigned int len,
1286                                         gfp_t gfpmask)
1287 {
1288         struct bio *bio;
1289
1290         bio = bio_clone(bio_src, gfpmask);
1291         if (!bio)
1292                 return NULL;    /* ENOMEM */
1293
1294         bio_advance(bio, offset);
1295         bio->bi_iter.bi_size = len;
1296
1297         return bio;
1298 }
1299
1300 /*
1301  * Clone a portion of a bio chain, starting at the given byte offset
1302  * into the first bio in the source chain and continuing for the
1303  * number of bytes indicated.  The result is another bio chain of
1304  * exactly the given length, or a null pointer on error.
1305  *
1306  * The bio_src and offset parameters are both in-out.  On entry they
1307  * refer to the first source bio and the offset into that bio where
1308  * the start of data to be cloned is located.
1309  *
1310  * On return, bio_src is updated to refer to the bio in the source
1311  * chain that contains first un-cloned byte, and *offset will
1312  * contain the offset of that byte within that bio.
1313  */
1314 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1315                                         unsigned int *offset,
1316                                         unsigned int len,
1317                                         gfp_t gfpmask)
1318 {
1319         struct bio *bi = *bio_src;
1320         unsigned int off = *offset;
1321         struct bio *chain = NULL;
1322         struct bio **end;
1323
1324         /* Build up a chain of clone bios up to the limit */
1325
1326         if (!bi || off >= bi->bi_iter.bi_size || !len)
1327                 return NULL;            /* Nothing to clone */
1328
1329         end = &chain;
1330         while (len) {
1331                 unsigned int bi_size;
1332                 struct bio *bio;
1333
1334                 if (!bi) {
1335                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1336                         goto out_err;   /* EINVAL; ran out of bio's */
1337                 }
1338                 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1339                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1340                 if (!bio)
1341                         goto out_err;   /* ENOMEM */
1342
1343                 *end = bio;
1344                 end = &bio->bi_next;
1345
1346                 off += bi_size;
1347                 if (off == bi->bi_iter.bi_size) {
1348                         bi = bi->bi_next;
1349                         off = 0;
1350                 }
1351                 len -= bi_size;
1352         }
1353         *bio_src = bi;
1354         *offset = off;
1355
1356         return chain;
1357 out_err:
1358         bio_chain_put(chain);
1359
1360         return NULL;
1361 }
1362
1363 /*
1364  * The default/initial value for all object request flags is 0.  For
1365  * each flag, once its value is set to 1 it is never reset to 0
1366  * again.
1367  */
1368 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1369 {
1370         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1371                 struct rbd_device *rbd_dev;
1372
1373                 rbd_dev = obj_request->img_request->rbd_dev;
1374                 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1375                         obj_request);
1376         }
1377 }
1378
1379 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1380 {
1381         smp_mb();
1382         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1383 }
1384
1385 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1386 {
1387         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1388                 struct rbd_device *rbd_dev = NULL;
1389
1390                 if (obj_request_img_data_test(obj_request))
1391                         rbd_dev = obj_request->img_request->rbd_dev;
1392                 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1393                         obj_request);
1394         }
1395 }
1396
1397 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1398 {
1399         smp_mb();
1400         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1401 }
1402
1403 /*
1404  * This sets the KNOWN flag after (possibly) setting the EXISTS
1405  * flag.  The latter is set based on the "exists" value provided.
1406  *
1407  * Note that for our purposes once an object exists it never goes
1408  * away again.  It's possible that the response from two existence
1409  * checks are separated by the creation of the target object, and
1410  * the first ("doesn't exist") response arrives *after* the second
1411  * ("does exist").  In that case we ignore the second one.
1412  */
1413 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1414                                 bool exists)
1415 {
1416         if (exists)
1417                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1418         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1419         smp_mb();
1420 }
1421
1422 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1423 {
1424         smp_mb();
1425         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1426 }
1427
1428 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1429 {
1430         smp_mb();
1431         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1432 }
1433
1434 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1435 {
1436         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1437                 atomic_read(&obj_request->kref.refcount));
1438         kref_get(&obj_request->kref);
1439 }
1440
1441 static void rbd_obj_request_destroy(struct kref *kref);
1442 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1443 {
1444         rbd_assert(obj_request != NULL);
1445         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1446                 atomic_read(&obj_request->kref.refcount));
1447         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1448 }
1449
1450 static void rbd_img_request_get(struct rbd_img_request *img_request)
1451 {
1452         dout("%s: img %p (was %d)\n", __func__, img_request,
1453              atomic_read(&img_request->kref.refcount));
1454         kref_get(&img_request->kref);
1455 }
1456
1457 static bool img_request_child_test(struct rbd_img_request *img_request);
1458 static void rbd_parent_request_destroy(struct kref *kref);
1459 static void rbd_img_request_destroy(struct kref *kref);
1460 static void rbd_img_request_put(struct rbd_img_request *img_request)
1461 {
1462         rbd_assert(img_request != NULL);
1463         dout("%s: img %p (was %d)\n", __func__, img_request,
1464                 atomic_read(&img_request->kref.refcount));
1465         if (img_request_child_test(img_request))
1466                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1467         else
1468                 kref_put(&img_request->kref, rbd_img_request_destroy);
1469 }
1470
1471 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1472                                         struct rbd_obj_request *obj_request)
1473 {
1474         rbd_assert(obj_request->img_request == NULL);
1475
1476         /* Image request now owns object's original reference */
1477         obj_request->img_request = img_request;
1478         obj_request->which = img_request->obj_request_count;
1479         rbd_assert(!obj_request_img_data_test(obj_request));
1480         obj_request_img_data_set(obj_request);
1481         rbd_assert(obj_request->which != BAD_WHICH);
1482         img_request->obj_request_count++;
1483         list_add_tail(&obj_request->links, &img_request->obj_requests);
1484         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1485                 obj_request->which);
1486 }
1487
1488 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1489                                         struct rbd_obj_request *obj_request)
1490 {
1491         rbd_assert(obj_request->which != BAD_WHICH);
1492
1493         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1494                 obj_request->which);
1495         list_del(&obj_request->links);
1496         rbd_assert(img_request->obj_request_count > 0);
1497         img_request->obj_request_count--;
1498         rbd_assert(obj_request->which == img_request->obj_request_count);
1499         obj_request->which = BAD_WHICH;
1500         rbd_assert(obj_request_img_data_test(obj_request));
1501         rbd_assert(obj_request->img_request == img_request);
1502         obj_request->img_request = NULL;
1503         obj_request->callback = NULL;
1504         rbd_obj_request_put(obj_request);
1505 }
1506
1507 static bool obj_request_type_valid(enum obj_request_type type)
1508 {
1509         switch (type) {
1510         case OBJ_REQUEST_NODATA:
1511         case OBJ_REQUEST_BIO:
1512         case OBJ_REQUEST_PAGES:
1513                 return true;
1514         default:
1515                 return false;
1516         }
1517 }
1518
1519 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1520                                 struct rbd_obj_request *obj_request)
1521 {
1522         dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1523
1524         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1525 }
1526
1527 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1528 {
1529
1530         dout("%s: img %p\n", __func__, img_request);
1531
1532         /*
1533          * If no error occurred, compute the aggregate transfer
1534          * count for the image request.  We could instead use
1535          * atomic64_cmpxchg() to update it as each object request
1536          * completes; not clear which way is better off hand.
1537          */
1538         if (!img_request->result) {
1539                 struct rbd_obj_request *obj_request;
1540                 u64 xferred = 0;
1541
1542                 for_each_obj_request(img_request, obj_request)
1543                         xferred += obj_request->xferred;
1544                 img_request->xferred = xferred;
1545         }
1546
1547         if (img_request->callback)
1548                 img_request->callback(img_request);
1549         else
1550                 rbd_img_request_put(img_request);
1551 }
1552
1553 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1554
1555 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1556 {
1557         dout("%s: obj %p\n", __func__, obj_request);
1558
1559         return wait_for_completion_interruptible(&obj_request->completion);
1560 }
1561
1562 /*
1563  * The default/initial value for all image request flags is 0.  Each
1564  * is conditionally set to 1 at image request initialization time
1565  * and currently never change thereafter.
1566  */
1567 static void img_request_write_set(struct rbd_img_request *img_request)
1568 {
1569         set_bit(IMG_REQ_WRITE, &img_request->flags);
1570         smp_mb();
1571 }
1572
1573 static bool img_request_write_test(struct rbd_img_request *img_request)
1574 {
1575         smp_mb();
1576         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1577 }
1578
1579 static void img_request_child_set(struct rbd_img_request *img_request)
1580 {
1581         set_bit(IMG_REQ_CHILD, &img_request->flags);
1582         smp_mb();
1583 }
1584
1585 static void img_request_child_clear(struct rbd_img_request *img_request)
1586 {
1587         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1588         smp_mb();
1589 }
1590
1591 static bool img_request_child_test(struct rbd_img_request *img_request)
1592 {
1593         smp_mb();
1594         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1595 }
1596
1597 static void img_request_layered_set(struct rbd_img_request *img_request)
1598 {
1599         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1600         smp_mb();
1601 }
1602
1603 static void img_request_layered_clear(struct rbd_img_request *img_request)
1604 {
1605         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1606         smp_mb();
1607 }
1608
1609 static bool img_request_layered_test(struct rbd_img_request *img_request)
1610 {
1611         smp_mb();
1612         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1613 }
1614
1615 static void
1616 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1617 {
1618         u64 xferred = obj_request->xferred;
1619         u64 length = obj_request->length;
1620
1621         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1622                 obj_request, obj_request->img_request, obj_request->result,
1623                 xferred, length);
1624         /*
1625          * ENOENT means a hole in the image.  We zero-fill the entire
1626          * length of the request.  A short read also implies zero-fill
1627          * to the end of the request.  An error requires the whole
1628          * length of the request to be reported finished with an error
1629          * to the block layer.  In each case we update the xferred
1630          * count to indicate the whole request was satisfied.
1631          */
1632         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1633         if (obj_request->result == -ENOENT) {
1634                 if (obj_request->type == OBJ_REQUEST_BIO)
1635                         zero_bio_chain(obj_request->bio_list, 0);
1636                 else
1637                         zero_pages(obj_request->pages, 0, length);
1638                 obj_request->result = 0;
1639         } else if (xferred < length && !obj_request->result) {
1640                 if (obj_request->type == OBJ_REQUEST_BIO)
1641                         zero_bio_chain(obj_request->bio_list, xferred);
1642                 else
1643                         zero_pages(obj_request->pages, xferred, length);
1644         }
1645         obj_request->xferred = length;
1646         obj_request_done_set(obj_request);
1647 }
1648
1649 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1650 {
1651         dout("%s: obj %p cb %p\n", __func__, obj_request,
1652                 obj_request->callback);
1653         if (obj_request->callback)
1654                 obj_request->callback(obj_request);
1655         else
1656                 complete_all(&obj_request->completion);
1657 }
1658
1659 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1660 {
1661         dout("%s: obj %p\n", __func__, obj_request);
1662         obj_request_done_set(obj_request);
1663 }
1664
1665 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1666 {
1667         struct rbd_img_request *img_request = NULL;
1668         struct rbd_device *rbd_dev = NULL;
1669         bool layered = false;
1670
1671         if (obj_request_img_data_test(obj_request)) {
1672                 img_request = obj_request->img_request;
1673                 layered = img_request && img_request_layered_test(img_request);
1674                 rbd_dev = img_request->rbd_dev;
1675         }
1676
1677         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1678                 obj_request, img_request, obj_request->result,
1679                 obj_request->xferred, obj_request->length);
1680         if (layered && obj_request->result == -ENOENT &&
1681                         obj_request->img_offset < rbd_dev->parent_overlap)
1682                 rbd_img_parent_read(obj_request);
1683         else if (img_request)
1684                 rbd_img_obj_request_read_callback(obj_request);
1685         else
1686                 obj_request_done_set(obj_request);
1687 }
1688
1689 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1690 {
1691         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1692                 obj_request->result, obj_request->length);
1693         /*
1694          * There is no such thing as a successful short write.  Set
1695          * it to our originally-requested length.
1696          */
1697         obj_request->xferred = obj_request->length;
1698         obj_request_done_set(obj_request);
1699 }
1700
1701 /*
1702  * For a simple stat call there's nothing to do.  We'll do more if
1703  * this is part of a write sequence for a layered image.
1704  */
1705 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1706 {
1707         dout("%s: obj %p\n", __func__, obj_request);
1708         obj_request_done_set(obj_request);
1709 }
1710
1711 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1712                                 struct ceph_msg *msg)
1713 {
1714         struct rbd_obj_request *obj_request = osd_req->r_priv;
1715         u16 opcode;
1716
1717         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1718         rbd_assert(osd_req == obj_request->osd_req);
1719         if (obj_request_img_data_test(obj_request)) {
1720                 rbd_assert(obj_request->img_request);
1721                 rbd_assert(obj_request->which != BAD_WHICH);
1722         } else {
1723                 rbd_assert(obj_request->which == BAD_WHICH);
1724         }
1725
1726         if (osd_req->r_result < 0)
1727                 obj_request->result = osd_req->r_result;
1728
1729         rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1730
1731         /*
1732          * We support a 64-bit length, but ultimately it has to be
1733          * passed to blk_end_request(), which takes an unsigned int.
1734          */
1735         obj_request->xferred = osd_req->r_reply_op_len[0];
1736         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1737
1738         opcode = osd_req->r_ops[0].op;
1739         switch (opcode) {
1740         case CEPH_OSD_OP_READ:
1741                 rbd_osd_read_callback(obj_request);
1742                 break;
1743         case CEPH_OSD_OP_SETALLOCHINT:
1744                 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE);
1745                 /* fall through */
1746         case CEPH_OSD_OP_WRITE:
1747                 rbd_osd_write_callback(obj_request);
1748                 break;
1749         case CEPH_OSD_OP_STAT:
1750                 rbd_osd_stat_callback(obj_request);
1751                 break;
1752         case CEPH_OSD_OP_CALL:
1753         case CEPH_OSD_OP_NOTIFY_ACK:
1754         case CEPH_OSD_OP_WATCH:
1755                 rbd_osd_trivial_callback(obj_request);
1756                 break;
1757         default:
1758                 rbd_warn(NULL, "%s: unsupported op %hu\n",
1759                         obj_request->object_name, (unsigned short) opcode);
1760                 break;
1761         }
1762
1763         if (obj_request_done_test(obj_request))
1764                 rbd_obj_request_complete(obj_request);
1765 }
1766
1767 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1768 {
1769         struct rbd_img_request *img_request = obj_request->img_request;
1770         struct ceph_osd_request *osd_req = obj_request->osd_req;
1771         u64 snap_id;
1772
1773         rbd_assert(osd_req != NULL);
1774
1775         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1776         ceph_osdc_build_request(osd_req, obj_request->offset,
1777                         NULL, snap_id, NULL);
1778 }
1779
1780 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1781 {
1782         struct rbd_img_request *img_request = obj_request->img_request;
1783         struct ceph_osd_request *osd_req = obj_request->osd_req;
1784         struct ceph_snap_context *snapc;
1785         struct timespec mtime = CURRENT_TIME;
1786
1787         rbd_assert(osd_req != NULL);
1788
1789         snapc = img_request ? img_request->snapc : NULL;
1790         ceph_osdc_build_request(osd_req, obj_request->offset,
1791                         snapc, CEPH_NOSNAP, &mtime);
1792 }
1793
1794 /*
1795  * Create an osd request.  A read request has one osd op (read).
1796  * A write request has either one (watch) or two (hint+write) osd ops.
1797  * (All rbd data writes are prefixed with an allocation hint op, but
1798  * technically osd watch is a write request, hence this distinction.)
1799  */
1800 static struct ceph_osd_request *rbd_osd_req_create(
1801                                         struct rbd_device *rbd_dev,
1802                                         bool write_request,
1803                                         unsigned int num_ops,
1804                                         struct rbd_obj_request *obj_request)
1805 {
1806         struct ceph_snap_context *snapc = NULL;
1807         struct ceph_osd_client *osdc;
1808         struct ceph_osd_request *osd_req;
1809
1810         if (obj_request_img_data_test(obj_request)) {
1811                 struct rbd_img_request *img_request = obj_request->img_request;
1812
1813                 rbd_assert(write_request ==
1814                                 img_request_write_test(img_request));
1815                 if (write_request)
1816                         snapc = img_request->snapc;
1817         }
1818
1819         rbd_assert(num_ops == 1 || (write_request && num_ops == 2));
1820
1821         /* Allocate and initialize the request, for the num_ops ops */
1822
1823         osdc = &rbd_dev->rbd_client->client->osdc;
1824         osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1825                                           GFP_ATOMIC);
1826         if (!osd_req)
1827                 return NULL;    /* ENOMEM */
1828
1829         if (write_request)
1830                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1831         else
1832                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1833
1834         osd_req->r_callback = rbd_osd_req_callback;
1835         osd_req->r_priv = obj_request;
1836
1837         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1838         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1839
1840         return osd_req;
1841 }
1842
1843 /*
1844  * Create a copyup osd request based on the information in the
1845  * object request supplied.  A copyup request has three osd ops,
1846  * a copyup method call, a hint op, and a write op.
1847  */
1848 static struct ceph_osd_request *
1849 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1850 {
1851         struct rbd_img_request *img_request;
1852         struct ceph_snap_context *snapc;
1853         struct rbd_device *rbd_dev;
1854         struct ceph_osd_client *osdc;
1855         struct ceph_osd_request *osd_req;
1856
1857         rbd_assert(obj_request_img_data_test(obj_request));
1858         img_request = obj_request->img_request;
1859         rbd_assert(img_request);
1860         rbd_assert(img_request_write_test(img_request));
1861
1862         /* Allocate and initialize the request, for the three ops */
1863
1864         snapc = img_request->snapc;
1865         rbd_dev = img_request->rbd_dev;
1866         osdc = &rbd_dev->rbd_client->client->osdc;
1867         osd_req = ceph_osdc_alloc_request(osdc, snapc, 3, false, GFP_ATOMIC);
1868         if (!osd_req)
1869                 return NULL;    /* ENOMEM */
1870
1871         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1872         osd_req->r_callback = rbd_osd_req_callback;
1873         osd_req->r_priv = obj_request;
1874
1875         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1876         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1877
1878         return osd_req;
1879 }
1880
1881
1882 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1883 {
1884         ceph_osdc_put_request(osd_req);
1885 }
1886
1887 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1888
1889 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1890                                                 u64 offset, u64 length,
1891                                                 enum obj_request_type type)
1892 {
1893         struct rbd_obj_request *obj_request;
1894         size_t size;
1895         char *name;
1896
1897         rbd_assert(obj_request_type_valid(type));
1898
1899         size = strlen(object_name) + 1;
1900         name = kmalloc(size, GFP_KERNEL);
1901         if (!name)
1902                 return NULL;
1903
1904         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1905         if (!obj_request) {
1906                 kfree(name);
1907                 return NULL;
1908         }
1909
1910         obj_request->object_name = memcpy(name, object_name, size);
1911         obj_request->offset = offset;
1912         obj_request->length = length;
1913         obj_request->flags = 0;
1914         obj_request->which = BAD_WHICH;
1915         obj_request->type = type;
1916         INIT_LIST_HEAD(&obj_request->links);
1917         init_completion(&obj_request->completion);
1918         kref_init(&obj_request->kref);
1919
1920         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1921                 offset, length, (int)type, obj_request);
1922
1923         return obj_request;
1924 }
1925
1926 static void rbd_obj_request_destroy(struct kref *kref)
1927 {
1928         struct rbd_obj_request *obj_request;
1929
1930         obj_request = container_of(kref, struct rbd_obj_request, kref);
1931
1932         dout("%s: obj %p\n", __func__, obj_request);
1933
1934         rbd_assert(obj_request->img_request == NULL);
1935         rbd_assert(obj_request->which == BAD_WHICH);
1936
1937         if (obj_request->osd_req)
1938                 rbd_osd_req_destroy(obj_request->osd_req);
1939
1940         rbd_assert(obj_request_type_valid(obj_request->type));
1941         switch (obj_request->type) {
1942         case OBJ_REQUEST_NODATA:
1943                 break;          /* Nothing to do */
1944         case OBJ_REQUEST_BIO:
1945                 if (obj_request->bio_list)
1946                         bio_chain_put(obj_request->bio_list);
1947                 break;
1948         case OBJ_REQUEST_PAGES:
1949                 if (obj_request->pages)
1950                         ceph_release_page_vector(obj_request->pages,
1951                                                 obj_request->page_count);
1952                 break;
1953         }
1954
1955         kfree(obj_request->object_name);
1956         obj_request->object_name = NULL;
1957         kmem_cache_free(rbd_obj_request_cache, obj_request);
1958 }
1959
1960 /* It's OK to call this for a device with no parent */
1961
1962 static void rbd_spec_put(struct rbd_spec *spec);
1963 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1964 {
1965         rbd_dev_remove_parent(rbd_dev);
1966         rbd_spec_put(rbd_dev->parent_spec);
1967         rbd_dev->parent_spec = NULL;
1968         rbd_dev->parent_overlap = 0;
1969 }
1970
1971 /*
1972  * Parent image reference counting is used to determine when an
1973  * image's parent fields can be safely torn down--after there are no
1974  * more in-flight requests to the parent image.  When the last
1975  * reference is dropped, cleaning them up is safe.
1976  */
1977 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1978 {
1979         int counter;
1980
1981         if (!rbd_dev->parent_spec)
1982                 return;
1983
1984         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1985         if (counter > 0)
1986                 return;
1987
1988         /* Last reference; clean up parent data structures */
1989
1990         if (!counter)
1991                 rbd_dev_unparent(rbd_dev);
1992         else
1993                 rbd_warn(rbd_dev, "parent reference underflow\n");
1994 }
1995
1996 /*
1997  * If an image has a non-zero parent overlap, get a reference to its
1998  * parent.
1999  *
2000  * We must get the reference before checking for the overlap to
2001  * coordinate properly with zeroing the parent overlap in
2002  * rbd_dev_v2_parent_info() when an image gets flattened.  We
2003  * drop it again if there is no overlap.
2004  *
2005  * Returns true if the rbd device has a parent with a non-zero
2006  * overlap and a reference for it was successfully taken, or
2007  * false otherwise.
2008  */
2009 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2010 {
2011         int counter;
2012
2013         if (!rbd_dev->parent_spec)
2014                 return false;
2015
2016         counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2017         if (counter > 0 && rbd_dev->parent_overlap)
2018                 return true;
2019
2020         /* Image was flattened, but parent is not yet torn down */
2021
2022         if (counter < 0)
2023                 rbd_warn(rbd_dev, "parent reference overflow\n");
2024
2025         return false;
2026 }
2027
2028 /*
2029  * Caller is responsible for filling in the list of object requests
2030  * that comprises the image request, and the Linux request pointer
2031  * (if there is one).
2032  */
2033 static struct rbd_img_request *rbd_img_request_create(
2034                                         struct rbd_device *rbd_dev,
2035                                         u64 offset, u64 length,
2036                                         bool write_request)
2037 {
2038         struct rbd_img_request *img_request;
2039
2040         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
2041         if (!img_request)
2042                 return NULL;
2043
2044         if (write_request) {
2045                 down_read(&rbd_dev->header_rwsem);
2046                 ceph_get_snap_context(rbd_dev->header.snapc);
2047                 up_read(&rbd_dev->header_rwsem);
2048         }
2049
2050         img_request->rq = NULL;
2051         img_request->rbd_dev = rbd_dev;
2052         img_request->offset = offset;
2053         img_request->length = length;
2054         img_request->flags = 0;
2055         if (write_request) {
2056                 img_request_write_set(img_request);
2057                 img_request->snapc = rbd_dev->header.snapc;
2058         } else {
2059                 img_request->snap_id = rbd_dev->spec->snap_id;
2060         }
2061         if (rbd_dev_parent_get(rbd_dev))
2062                 img_request_layered_set(img_request);
2063         spin_lock_init(&img_request->completion_lock);
2064         img_request->next_completion = 0;
2065         img_request->callback = NULL;
2066         img_request->result = 0;
2067         img_request->obj_request_count = 0;
2068         INIT_LIST_HEAD(&img_request->obj_requests);
2069         kref_init(&img_request->kref);
2070
2071         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2072                 write_request ? "write" : "read", offset, length,
2073                 img_request);
2074
2075         return img_request;
2076 }
2077
2078 static void rbd_img_request_destroy(struct kref *kref)
2079 {
2080         struct rbd_img_request *img_request;
2081         struct rbd_obj_request *obj_request;
2082         struct rbd_obj_request *next_obj_request;
2083
2084         img_request = container_of(kref, struct rbd_img_request, kref);
2085
2086         dout("%s: img %p\n", __func__, img_request);
2087
2088         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2089                 rbd_img_obj_request_del(img_request, obj_request);
2090         rbd_assert(img_request->obj_request_count == 0);
2091
2092         if (img_request_layered_test(img_request)) {
2093                 img_request_layered_clear(img_request);
2094                 rbd_dev_parent_put(img_request->rbd_dev);
2095         }
2096
2097         if (img_request_write_test(img_request))
2098                 ceph_put_snap_context(img_request->snapc);
2099
2100         kmem_cache_free(rbd_img_request_cache, img_request);
2101 }
2102
2103 static struct rbd_img_request *rbd_parent_request_create(
2104                                         struct rbd_obj_request *obj_request,
2105                                         u64 img_offset, u64 length)
2106 {
2107         struct rbd_img_request *parent_request;
2108         struct rbd_device *rbd_dev;
2109
2110         rbd_assert(obj_request->img_request);
2111         rbd_dev = obj_request->img_request->rbd_dev;
2112
2113         parent_request = rbd_img_request_create(rbd_dev->parent,
2114                                                 img_offset, length, false);
2115         if (!parent_request)
2116                 return NULL;
2117
2118         img_request_child_set(parent_request);
2119         rbd_obj_request_get(obj_request);
2120         parent_request->obj_request = obj_request;
2121
2122         return parent_request;
2123 }
2124
2125 static void rbd_parent_request_destroy(struct kref *kref)
2126 {
2127         struct rbd_img_request *parent_request;
2128         struct rbd_obj_request *orig_request;
2129
2130         parent_request = container_of(kref, struct rbd_img_request, kref);
2131         orig_request = parent_request->obj_request;
2132
2133         parent_request->obj_request = NULL;
2134         rbd_obj_request_put(orig_request);
2135         img_request_child_clear(parent_request);
2136
2137         rbd_img_request_destroy(kref);
2138 }
2139
2140 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2141 {
2142         struct rbd_img_request *img_request;
2143         unsigned int xferred;
2144         int result;
2145         bool more;
2146
2147         rbd_assert(obj_request_img_data_test(obj_request));
2148         img_request = obj_request->img_request;
2149
2150         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2151         xferred = (unsigned int)obj_request->xferred;
2152         result = obj_request->result;
2153         if (result) {
2154                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2155
2156                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2157                         img_request_write_test(img_request) ? "write" : "read",
2158                         obj_request->length, obj_request->img_offset,
2159                         obj_request->offset);
2160                 rbd_warn(rbd_dev, "  result %d xferred %x\n",
2161                         result, xferred);
2162                 if (!img_request->result)
2163                         img_request->result = result;
2164         }
2165
2166         /* Image object requests don't own their page array */
2167
2168         if (obj_request->type == OBJ_REQUEST_PAGES) {
2169                 obj_request->pages = NULL;
2170                 obj_request->page_count = 0;
2171         }
2172
2173         if (img_request_child_test(img_request)) {
2174                 rbd_assert(img_request->obj_request != NULL);
2175                 more = obj_request->which < img_request->obj_request_count - 1;
2176         } else {
2177                 rbd_assert(img_request->rq != NULL);
2178                 more = blk_end_request(img_request->rq, result, xferred);
2179         }
2180
2181         return more;
2182 }
2183
2184 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2185 {
2186         struct rbd_img_request *img_request;
2187         u32 which = obj_request->which;
2188         bool more = true;
2189
2190         rbd_assert(obj_request_img_data_test(obj_request));
2191         img_request = obj_request->img_request;
2192
2193         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2194         rbd_assert(img_request != NULL);
2195         rbd_assert(img_request->obj_request_count > 0);
2196         rbd_assert(which != BAD_WHICH);
2197         rbd_assert(which < img_request->obj_request_count);
2198
2199         spin_lock_irq(&img_request->completion_lock);
2200         if (which != img_request->next_completion)
2201                 goto out;
2202
2203         for_each_obj_request_from(img_request, obj_request) {
2204                 rbd_assert(more);
2205                 rbd_assert(which < img_request->obj_request_count);
2206
2207                 if (!obj_request_done_test(obj_request))
2208                         break;
2209                 more = rbd_img_obj_end_request(obj_request);
2210                 which++;
2211         }
2212
2213         rbd_assert(more ^ (which == img_request->obj_request_count));
2214         img_request->next_completion = which;
2215 out:
2216         spin_unlock_irq(&img_request->completion_lock);
2217         rbd_img_request_put(img_request);
2218
2219         if (!more)
2220                 rbd_img_request_complete(img_request);
2221 }
2222
2223 /*
2224  * Split up an image request into one or more object requests, each
2225  * to a different object.  The "type" parameter indicates whether
2226  * "data_desc" is the pointer to the head of a list of bio
2227  * structures, or the base of a page array.  In either case this
2228  * function assumes data_desc describes memory sufficient to hold
2229  * all data described by the image request.
2230  */
2231 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2232                                         enum obj_request_type type,
2233                                         void *data_desc)
2234 {
2235         struct rbd_device *rbd_dev = img_request->rbd_dev;
2236         struct rbd_obj_request *obj_request = NULL;
2237         struct rbd_obj_request *next_obj_request;
2238         bool write_request = img_request_write_test(img_request);
2239         struct bio *bio_list = NULL;
2240         unsigned int bio_offset = 0;
2241         struct page **pages = NULL;
2242         u64 img_offset;
2243         u64 resid;
2244         u16 opcode;
2245
2246         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2247                 (int)type, data_desc);
2248
2249         opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2250         img_offset = img_request->offset;
2251         resid = img_request->length;
2252         rbd_assert(resid > 0);
2253
2254         if (type == OBJ_REQUEST_BIO) {
2255                 bio_list = data_desc;
2256                 rbd_assert(img_offset ==
2257                            bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2258         } else {
2259                 rbd_assert(type == OBJ_REQUEST_PAGES);
2260                 pages = data_desc;
2261         }
2262
2263         while (resid) {
2264                 struct ceph_osd_request *osd_req;
2265                 const char *object_name;
2266                 u64 offset;
2267                 u64 length;
2268                 unsigned int which = 0;
2269
2270                 object_name = rbd_segment_name(rbd_dev, img_offset);
2271                 if (!object_name)
2272                         goto out_unwind;
2273                 offset = rbd_segment_offset(rbd_dev, img_offset);
2274                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2275                 obj_request = rbd_obj_request_create(object_name,
2276                                                 offset, length, type);
2277                 /* object request has its own copy of the object name */
2278                 rbd_segment_name_free(object_name);
2279                 if (!obj_request)
2280                         goto out_unwind;
2281
2282                 /*
2283                  * set obj_request->img_request before creating the
2284                  * osd_request so that it gets the right snapc
2285                  */
2286                 rbd_img_obj_request_add(img_request, obj_request);
2287
2288                 if (type == OBJ_REQUEST_BIO) {
2289                         unsigned int clone_size;
2290
2291                         rbd_assert(length <= (u64)UINT_MAX);
2292                         clone_size = (unsigned int)length;
2293                         obj_request->bio_list =
2294                                         bio_chain_clone_range(&bio_list,
2295                                                                 &bio_offset,
2296                                                                 clone_size,
2297                                                                 GFP_ATOMIC);
2298                         if (!obj_request->bio_list)
2299                                 goto out_unwind;
2300                 } else {
2301                         unsigned int page_count;
2302
2303                         obj_request->pages = pages;
2304                         page_count = (u32)calc_pages_for(offset, length);
2305                         obj_request->page_count = page_count;
2306                         if ((offset + length) & ~PAGE_MASK)
2307                                 page_count--;   /* more on last page */
2308                         pages += page_count;
2309                 }
2310
2311                 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2312                                              (write_request ? 2 : 1),
2313                                              obj_request);
2314                 if (!osd_req)
2315                         goto out_unwind;
2316                 obj_request->osd_req = osd_req;
2317                 obj_request->callback = rbd_img_obj_callback;
2318                 rbd_img_request_get(img_request);
2319
2320                 if (write_request) {
2321                         osd_req_op_alloc_hint_init(osd_req, which,
2322                                              rbd_obj_bytes(&rbd_dev->header),
2323                                              rbd_obj_bytes(&rbd_dev->header));
2324                         which++;
2325                 }
2326
2327                 osd_req_op_extent_init(osd_req, which, opcode, offset, length,
2328                                        0, 0);
2329                 if (type == OBJ_REQUEST_BIO)
2330                         osd_req_op_extent_osd_data_bio(osd_req, which,
2331                                         obj_request->bio_list, length);
2332                 else
2333                         osd_req_op_extent_osd_data_pages(osd_req, which,
2334                                         obj_request->pages, length,
2335                                         offset & ~PAGE_MASK, false, false);
2336
2337                 if (write_request)
2338                         rbd_osd_req_format_write(obj_request);
2339                 else
2340                         rbd_osd_req_format_read(obj_request);
2341
2342                 obj_request->img_offset = img_offset;
2343
2344                 img_offset += length;
2345                 resid -= length;
2346         }
2347
2348         return 0;
2349
2350 out_unwind:
2351         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2352                 rbd_img_obj_request_del(img_request, obj_request);
2353
2354         return -ENOMEM;
2355 }
2356
2357 static void
2358 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2359 {
2360         struct rbd_img_request *img_request;
2361         struct rbd_device *rbd_dev;
2362         struct page **pages;
2363         u32 page_count;
2364
2365         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2366         rbd_assert(obj_request_img_data_test(obj_request));
2367         img_request = obj_request->img_request;
2368         rbd_assert(img_request);
2369
2370         rbd_dev = img_request->rbd_dev;
2371         rbd_assert(rbd_dev);
2372
2373         pages = obj_request->copyup_pages;
2374         rbd_assert(pages != NULL);
2375         obj_request->copyup_pages = NULL;
2376         page_count = obj_request->copyup_page_count;
2377         rbd_assert(page_count);
2378         obj_request->copyup_page_count = 0;
2379         ceph_release_page_vector(pages, page_count);
2380
2381         /*
2382          * We want the transfer count to reflect the size of the
2383          * original write request.  There is no such thing as a
2384          * successful short write, so if the request was successful
2385          * we can just set it to the originally-requested length.
2386          */
2387         if (!obj_request->result)
2388                 obj_request->xferred = obj_request->length;
2389
2390         /* Finish up with the normal image object callback */
2391
2392         rbd_img_obj_callback(obj_request);
2393 }
2394
2395 static void
2396 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2397 {
2398         struct rbd_obj_request *orig_request;
2399         struct ceph_osd_request *osd_req;
2400         struct ceph_osd_client *osdc;
2401         struct rbd_device *rbd_dev;
2402         struct page **pages;
2403         u32 page_count;
2404         int img_result;
2405         u64 parent_length;
2406         u64 offset;
2407         u64 length;
2408
2409         rbd_assert(img_request_child_test(img_request));
2410
2411         /* First get what we need from the image request */
2412
2413         pages = img_request->copyup_pages;
2414         rbd_assert(pages != NULL);
2415         img_request->copyup_pages = NULL;
2416         page_count = img_request->copyup_page_count;
2417         rbd_assert(page_count);
2418         img_request->copyup_page_count = 0;
2419
2420         orig_request = img_request->obj_request;
2421         rbd_assert(orig_request != NULL);
2422         rbd_assert(obj_request_type_valid(orig_request->type));
2423         img_result = img_request->result;
2424         parent_length = img_request->length;
2425         rbd_assert(parent_length == img_request->xferred);
2426         rbd_img_request_put(img_request);
2427
2428         rbd_assert(orig_request->img_request);
2429         rbd_dev = orig_request->img_request->rbd_dev;
2430         rbd_assert(rbd_dev);
2431
2432         /*
2433          * If the overlap has become 0 (most likely because the
2434          * image has been flattened) we need to free the pages
2435          * and re-submit the original write request.
2436          */
2437         if (!rbd_dev->parent_overlap) {
2438                 struct ceph_osd_client *osdc;
2439
2440                 ceph_release_page_vector(pages, page_count);
2441                 osdc = &rbd_dev->rbd_client->client->osdc;
2442                 img_result = rbd_obj_request_submit(osdc, orig_request);
2443                 if (!img_result)
2444                         return;
2445         }
2446
2447         if (img_result)
2448                 goto out_err;
2449
2450         /*
2451          * The original osd request is of no use to use any more.
2452          * We need a new one that can hold the three ops in a copyup
2453          * request.  Allocate the new copyup osd request for the
2454          * original request, and release the old one.
2455          */
2456         img_result = -ENOMEM;
2457         osd_req = rbd_osd_req_create_copyup(orig_request);
2458         if (!osd_req)
2459                 goto out_err;
2460         rbd_osd_req_destroy(orig_request->osd_req);
2461         orig_request->osd_req = osd_req;
2462         orig_request->copyup_pages = pages;
2463         orig_request->copyup_page_count = page_count;
2464
2465         /* Initialize the copyup op */
2466
2467         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2468         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2469                                                 false, false);
2470
2471         /* Then the hint op */
2472
2473         osd_req_op_alloc_hint_init(osd_req, 1, rbd_obj_bytes(&rbd_dev->header),
2474                                    rbd_obj_bytes(&rbd_dev->header));
2475
2476         /* And the original write request op */
2477
2478         offset = orig_request->offset;
2479         length = orig_request->length;
2480         osd_req_op_extent_init(osd_req, 2, CEPH_OSD_OP_WRITE,
2481                                         offset, length, 0, 0);
2482         if (orig_request->type == OBJ_REQUEST_BIO)
2483                 osd_req_op_extent_osd_data_bio(osd_req, 2,
2484                                         orig_request->bio_list, length);
2485         else
2486                 osd_req_op_extent_osd_data_pages(osd_req, 2,
2487                                         orig_request->pages, length,
2488                                         offset & ~PAGE_MASK, false, false);
2489
2490         rbd_osd_req_format_write(orig_request);
2491
2492         /* All set, send it off. */
2493
2494         orig_request->callback = rbd_img_obj_copyup_callback;
2495         osdc = &rbd_dev->rbd_client->client->osdc;
2496         img_result = rbd_obj_request_submit(osdc, orig_request);
2497         if (!img_result)
2498                 return;
2499 out_err:
2500         /* Record the error code and complete the request */
2501
2502         orig_request->result = img_result;
2503         orig_request->xferred = 0;
2504         obj_request_done_set(orig_request);
2505         rbd_obj_request_complete(orig_request);
2506 }
2507
2508 /*
2509  * Read from the parent image the range of data that covers the
2510  * entire target of the given object request.  This is used for
2511  * satisfying a layered image write request when the target of an
2512  * object request from the image request does not exist.
2513  *
2514  * A page array big enough to hold the returned data is allocated
2515  * and supplied to rbd_img_request_fill() as the "data descriptor."
2516  * When the read completes, this page array will be transferred to
2517  * the original object request for the copyup operation.
2518  *
2519  * If an error occurs, record it as the result of the original
2520  * object request and mark it done so it gets completed.
2521  */
2522 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2523 {
2524         struct rbd_img_request *img_request = NULL;
2525         struct rbd_img_request *parent_request = NULL;
2526         struct rbd_device *rbd_dev;
2527         u64 img_offset;
2528         u64 length;
2529         struct page **pages = NULL;
2530         u32 page_count;
2531         int result;
2532
2533         rbd_assert(obj_request_img_data_test(obj_request));
2534         rbd_assert(obj_request_type_valid(obj_request->type));
2535
2536         img_request = obj_request->img_request;
2537         rbd_assert(img_request != NULL);
2538         rbd_dev = img_request->rbd_dev;
2539         rbd_assert(rbd_dev->parent != NULL);
2540
2541         /*
2542          * Determine the byte range covered by the object in the
2543          * child image to which the original request was to be sent.
2544          */
2545         img_offset = obj_request->img_offset - obj_request->offset;
2546         length = (u64)1 << rbd_dev->header.obj_order;
2547
2548         /*
2549          * There is no defined parent data beyond the parent
2550          * overlap, so limit what we read at that boundary if
2551          * necessary.
2552          */
2553         if (img_offset + length > rbd_dev->parent_overlap) {
2554                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2555                 length = rbd_dev->parent_overlap - img_offset;
2556         }
2557
2558         /*
2559          * Allocate a page array big enough to receive the data read
2560          * from the parent.
2561          */
2562         page_count = (u32)calc_pages_for(0, length);
2563         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2564         if (IS_ERR(pages)) {
2565                 result = PTR_ERR(pages);
2566                 pages = NULL;
2567                 goto out_err;
2568         }
2569
2570         result = -ENOMEM;
2571         parent_request = rbd_parent_request_create(obj_request,
2572                                                 img_offset, length);
2573         if (!parent_request)
2574                 goto out_err;
2575
2576         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2577         if (result)
2578                 goto out_err;
2579         parent_request->copyup_pages = pages;
2580         parent_request->copyup_page_count = page_count;
2581
2582         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2583         result = rbd_img_request_submit(parent_request);
2584         if (!result)
2585                 return 0;
2586
2587         parent_request->copyup_pages = NULL;
2588         parent_request->copyup_page_count = 0;
2589         parent_request->obj_request = NULL;
2590         rbd_obj_request_put(obj_request);
2591 out_err:
2592         if (pages)
2593                 ceph_release_page_vector(pages, page_count);
2594         if (parent_request)
2595                 rbd_img_request_put(parent_request);
2596         obj_request->result = result;
2597         obj_request->xferred = 0;
2598         obj_request_done_set(obj_request);
2599
2600         return result;
2601 }
2602
2603 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2604 {
2605         struct rbd_obj_request *orig_request;
2606         struct rbd_device *rbd_dev;
2607         int result;
2608
2609         rbd_assert(!obj_request_img_data_test(obj_request));
2610
2611         /*
2612          * All we need from the object request is the original
2613          * request and the result of the STAT op.  Grab those, then
2614          * we're done with the request.
2615          */
2616         orig_request = obj_request->obj_request;
2617         obj_request->obj_request = NULL;
2618         rbd_obj_request_put(orig_request);
2619         rbd_assert(orig_request);
2620         rbd_assert(orig_request->img_request);
2621
2622         result = obj_request->result;
2623         obj_request->result = 0;
2624
2625         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2626                 obj_request, orig_request, result,
2627                 obj_request->xferred, obj_request->length);
2628         rbd_obj_request_put(obj_request);
2629
2630         /*
2631          * If the overlap has become 0 (most likely because the
2632          * image has been flattened) we need to free the pages
2633          * and re-submit the original write request.
2634          */
2635         rbd_dev = orig_request->img_request->rbd_dev;
2636         if (!rbd_dev->parent_overlap) {
2637                 struct ceph_osd_client *osdc;
2638
2639                 osdc = &rbd_dev->rbd_client->client->osdc;
2640                 result = rbd_obj_request_submit(osdc, orig_request);
2641                 if (!result)
2642                         return;
2643         }
2644
2645         /*
2646          * Our only purpose here is to determine whether the object
2647          * exists, and we don't want to treat the non-existence as
2648          * an error.  If something else comes back, transfer the
2649          * error to the original request and complete it now.
2650          */
2651         if (!result) {
2652                 obj_request_existence_set(orig_request, true);
2653         } else if (result == -ENOENT) {
2654                 obj_request_existence_set(orig_request, false);
2655         } else if (result) {
2656                 orig_request->result = result;
2657                 goto out;
2658         }
2659
2660         /*
2661          * Resubmit the original request now that we have recorded
2662          * whether the target object exists.
2663          */
2664         orig_request->result = rbd_img_obj_request_submit(orig_request);
2665 out:
2666         if (orig_request->result)
2667                 rbd_obj_request_complete(orig_request);
2668 }
2669
2670 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2671 {
2672         struct rbd_obj_request *stat_request;
2673         struct rbd_device *rbd_dev;
2674         struct ceph_osd_client *osdc;
2675         struct page **pages = NULL;
2676         u32 page_count;
2677         size_t size;
2678         int ret;
2679
2680         /*
2681          * The response data for a STAT call consists of:
2682          *     le64 length;
2683          *     struct {
2684          *         le32 tv_sec;
2685          *         le32 tv_nsec;
2686          *     } mtime;
2687          */
2688         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2689         page_count = (u32)calc_pages_for(0, size);
2690         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2691         if (IS_ERR(pages))
2692                 return PTR_ERR(pages);
2693
2694         ret = -ENOMEM;
2695         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2696                                                         OBJ_REQUEST_PAGES);
2697         if (!stat_request)
2698                 goto out;
2699
2700         rbd_obj_request_get(obj_request);
2701         stat_request->obj_request = obj_request;
2702         stat_request->pages = pages;
2703         stat_request->page_count = page_count;
2704
2705         rbd_assert(obj_request->img_request);
2706         rbd_dev = obj_request->img_request->rbd_dev;
2707         stat_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
2708                                                    stat_request);
2709         if (!stat_request->osd_req)
2710                 goto out;
2711         stat_request->callback = rbd_img_obj_exists_callback;
2712
2713         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2714         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2715                                         false, false);
2716         rbd_osd_req_format_read(stat_request);
2717
2718         osdc = &rbd_dev->rbd_client->client->osdc;
2719         ret = rbd_obj_request_submit(osdc, stat_request);
2720 out:
2721         if (ret)
2722                 rbd_obj_request_put(obj_request);
2723
2724         return ret;
2725 }
2726
2727 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2728 {
2729         struct rbd_img_request *img_request;
2730         struct rbd_device *rbd_dev;
2731         bool known;
2732
2733         rbd_assert(obj_request_img_data_test(obj_request));
2734
2735         img_request = obj_request->img_request;
2736         rbd_assert(img_request);
2737         rbd_dev = img_request->rbd_dev;
2738
2739         /*
2740          * Only writes to layered images need special handling.
2741          * Reads and non-layered writes are simple object requests.
2742          * Layered writes that start beyond the end of the overlap
2743          * with the parent have no parent data, so they too are
2744          * simple object requests.  Finally, if the target object is
2745          * known to already exist, its parent data has already been
2746          * copied, so a write to the object can also be handled as a
2747          * simple object request.
2748          */
2749         if (!img_request_write_test(img_request) ||
2750                 !img_request_layered_test(img_request) ||
2751                 rbd_dev->parent_overlap <= obj_request->img_offset ||
2752                 ((known = obj_request_known_test(obj_request)) &&
2753                         obj_request_exists_test(obj_request))) {
2754
2755                 struct rbd_device *rbd_dev;
2756                 struct ceph_osd_client *osdc;
2757
2758                 rbd_dev = obj_request->img_request->rbd_dev;
2759                 osdc = &rbd_dev->rbd_client->client->osdc;
2760
2761                 return rbd_obj_request_submit(osdc, obj_request);
2762         }
2763
2764         /*
2765          * It's a layered write.  The target object might exist but
2766          * we may not know that yet.  If we know it doesn't exist,
2767          * start by reading the data for the full target object from
2768          * the parent so we can use it for a copyup to the target.
2769          */
2770         if (known)
2771                 return rbd_img_obj_parent_read_full(obj_request);
2772
2773         /* We don't know whether the target exists.  Go find out. */
2774
2775         return rbd_img_obj_exists_submit(obj_request);
2776 }
2777
2778 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2779 {
2780         struct rbd_obj_request *obj_request;
2781         struct rbd_obj_request *next_obj_request;
2782
2783         dout("%s: img %p\n", __func__, img_request);
2784         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2785                 int ret;
2786
2787                 ret = rbd_img_obj_request_submit(obj_request);
2788                 if (ret)
2789                         return ret;
2790         }
2791
2792         return 0;
2793 }
2794
2795 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2796 {
2797         struct rbd_obj_request *obj_request;
2798         struct rbd_device *rbd_dev;
2799         u64 obj_end;
2800         u64 img_xferred;
2801         int img_result;
2802
2803         rbd_assert(img_request_child_test(img_request));
2804
2805         /* First get what we need from the image request and release it */
2806
2807         obj_request = img_request->obj_request;
2808         img_xferred = img_request->xferred;
2809         img_result = img_request->result;
2810         rbd_img_request_put(img_request);
2811
2812         /*
2813          * If the overlap has become 0 (most likely because the
2814          * image has been flattened) we need to re-submit the
2815          * original request.
2816          */
2817         rbd_assert(obj_request);
2818         rbd_assert(obj_request->img_request);
2819         rbd_dev = obj_request->img_request->rbd_dev;
2820         if (!rbd_dev->parent_overlap) {
2821                 struct ceph_osd_client *osdc;
2822
2823                 osdc = &rbd_dev->rbd_client->client->osdc;
2824                 img_result = rbd_obj_request_submit(osdc, obj_request);
2825                 if (!img_result)
2826                         return;
2827         }
2828
2829         obj_request->result = img_result;
2830         if (obj_request->result)
2831                 goto out;
2832
2833         /*
2834          * We need to zero anything beyond the parent overlap
2835          * boundary.  Since rbd_img_obj_request_read_callback()
2836          * will zero anything beyond the end of a short read, an
2837          * easy way to do this is to pretend the data from the
2838          * parent came up short--ending at the overlap boundary.
2839          */
2840         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2841         obj_end = obj_request->img_offset + obj_request->length;
2842         if (obj_end > rbd_dev->parent_overlap) {
2843                 u64 xferred = 0;
2844
2845                 if (obj_request->img_offset < rbd_dev->parent_overlap)
2846                         xferred = rbd_dev->parent_overlap -
2847                                         obj_request->img_offset;
2848
2849                 obj_request->xferred = min(img_xferred, xferred);
2850         } else {
2851                 obj_request->xferred = img_xferred;
2852         }
2853 out:
2854         rbd_img_obj_request_read_callback(obj_request);
2855         rbd_obj_request_complete(obj_request);
2856 }
2857
2858 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2859 {
2860         struct rbd_img_request *img_request;
2861         int result;
2862
2863         rbd_assert(obj_request_img_data_test(obj_request));
2864         rbd_assert(obj_request->img_request != NULL);
2865         rbd_assert(obj_request->result == (s32) -ENOENT);
2866         rbd_assert(obj_request_type_valid(obj_request->type));
2867
2868         /* rbd_read_finish(obj_request, obj_request->length); */
2869         img_request = rbd_parent_request_create(obj_request,
2870                                                 obj_request->img_offset,
2871                                                 obj_request->length);
2872         result = -ENOMEM;
2873         if (!img_request)
2874                 goto out_err;
2875
2876         if (obj_request->type == OBJ_REQUEST_BIO)
2877                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2878                                                 obj_request->bio_list);
2879         else
2880                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2881                                                 obj_request->pages);
2882         if (result)
2883                 goto out_err;
2884
2885         img_request->callback = rbd_img_parent_read_callback;
2886         result = rbd_img_request_submit(img_request);
2887         if (result)
2888                 goto out_err;
2889
2890         return;
2891 out_err:
2892         if (img_request)
2893                 rbd_img_request_put(img_request);
2894         obj_request->result = result;
2895         obj_request->xferred = 0;
2896         obj_request_done_set(obj_request);
2897 }
2898
2899 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
2900 {
2901         struct rbd_obj_request *obj_request;
2902         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2903         int ret;
2904
2905         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2906                                                         OBJ_REQUEST_NODATA);
2907         if (!obj_request)
2908                 return -ENOMEM;
2909
2910         ret = -ENOMEM;
2911         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
2912                                                   obj_request);
2913         if (!obj_request->osd_req)
2914                 goto out;
2915
2916         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2917                                         notify_id, 0, 0);
2918         rbd_osd_req_format_read(obj_request);
2919
2920         ret = rbd_obj_request_submit(osdc, obj_request);
2921         if (ret)
2922                 goto out;
2923         ret = rbd_obj_request_wait(obj_request);
2924 out:
2925         rbd_obj_request_put(obj_request);
2926
2927         return ret;
2928 }
2929
2930 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2931 {
2932         struct rbd_device *rbd_dev = (struct rbd_device *)data;
2933         int ret;
2934
2935         if (!rbd_dev)
2936                 return;
2937
2938         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2939                 rbd_dev->header_name, (unsigned long long)notify_id,
2940                 (unsigned int)opcode);
2941         ret = rbd_dev_refresh(rbd_dev);
2942         if (ret)
2943                 rbd_warn(rbd_dev, "header refresh error (%d)\n", ret);
2944
2945         rbd_obj_notify_ack_sync(rbd_dev, notify_id);
2946 }
2947
2948 /*
2949  * Initiate a watch request, synchronously.
2950  */
2951 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
2952 {
2953         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2954         struct rbd_obj_request *obj_request;
2955         int ret;
2956
2957         rbd_assert(!rbd_dev->watch_event);
2958         rbd_assert(!rbd_dev->watch_request);
2959
2960         ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2961                                      &rbd_dev->watch_event);
2962         if (ret < 0)
2963                 return ret;
2964
2965         rbd_assert(rbd_dev->watch_event);
2966
2967         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2968                                              OBJ_REQUEST_NODATA);
2969         if (!obj_request) {
2970                 ret = -ENOMEM;
2971                 goto out_cancel;
2972         }
2973
2974         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, 1,
2975                                                   obj_request);
2976         if (!obj_request->osd_req) {
2977                 ret = -ENOMEM;
2978                 goto out_put;
2979         }
2980
2981         ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2982
2983         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2984                               rbd_dev->watch_event->cookie, 0, 1);
2985         rbd_osd_req_format_write(obj_request);
2986
2987         ret = rbd_obj_request_submit(osdc, obj_request);
2988         if (ret)
2989                 goto out_linger;
2990
2991         ret = rbd_obj_request_wait(obj_request);
2992         if (ret)
2993                 goto out_linger;
2994
2995         ret = obj_request->result;
2996         if (ret)
2997                 goto out_linger;
2998
2999         /*
3000          * A watch request is set to linger, so the underlying osd
3001          * request won't go away until we unregister it.  We retain
3002          * a pointer to the object request during that time (in
3003          * rbd_dev->watch_request), so we'll keep a reference to
3004          * it.  We'll drop that reference (below) after we've
3005          * unregistered it.
3006          */
3007         rbd_dev->watch_request = obj_request;
3008
3009         return 0;
3010
3011 out_linger:
3012         ceph_osdc_unregister_linger_request(osdc, obj_request->osd_req);
3013 out_put:
3014         rbd_obj_request_put(obj_request);
3015 out_cancel:
3016         ceph_osdc_cancel_event(rbd_dev->watch_event);
3017         rbd_dev->watch_event = NULL;
3018
3019         return ret;
3020 }
3021
3022 /*
3023  * Tear down a watch request, synchronously.
3024  */
3025 static int __rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3026 {
3027         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3028         struct rbd_obj_request *obj_request;
3029         int ret;
3030
3031         rbd_assert(rbd_dev->watch_event);
3032         rbd_assert(rbd_dev->watch_request);
3033
3034         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3035                                              OBJ_REQUEST_NODATA);
3036         if (!obj_request) {
3037                 ret = -ENOMEM;
3038                 goto out_cancel;
3039         }
3040
3041         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, 1,
3042                                                   obj_request);
3043         if (!obj_request->osd_req) {
3044                 ret = -ENOMEM;
3045                 goto out_put;
3046         }
3047
3048         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3049                               rbd_dev->watch_event->cookie, 0, 0);
3050         rbd_osd_req_format_write(obj_request);
3051
3052         ret = rbd_obj_request_submit(osdc, obj_request);
3053         if (ret)
3054                 goto out_put;
3055
3056         ret = rbd_obj_request_wait(obj_request);
3057         if (ret)
3058                 goto out_put;
3059
3060         ret = obj_request->result;
3061         if (ret)
3062                 goto out_put;
3063
3064         /* We have successfully torn down the watch request */
3065
3066         ceph_osdc_unregister_linger_request(osdc,
3067                                             rbd_dev->watch_request->osd_req);
3068         rbd_obj_request_put(rbd_dev->watch_request);
3069         rbd_dev->watch_request = NULL;
3070
3071 out_put:
3072         rbd_obj_request_put(obj_request);
3073 out_cancel:
3074         ceph_osdc_cancel_event(rbd_dev->watch_event);
3075         rbd_dev->watch_event = NULL;
3076
3077         return ret;
3078 }
3079
3080 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3081 {
3082         int ret;
3083
3084         ret = __rbd_dev_header_unwatch_sync(rbd_dev);
3085         if (ret) {
3086                 rbd_warn(rbd_dev, "unable to tear down watch request: %d\n",
3087                          ret);
3088         }
3089 }
3090
3091 /*
3092  * Synchronous osd object method call.  Returns the number of bytes
3093  * returned in the outbound buffer, or a negative error code.
3094  */
3095 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3096                              const char *object_name,
3097                              const char *class_name,
3098                              const char *method_name,
3099                              const void *outbound,
3100                              size_t outbound_size,
3101                              void *inbound,
3102                              size_t inbound_size)
3103 {
3104         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3105         struct rbd_obj_request *obj_request;
3106         struct page **pages;
3107         u32 page_count;
3108         int ret;
3109
3110         /*
3111          * Method calls are ultimately read operations.  The result
3112          * should placed into the inbound buffer provided.  They
3113          * also supply outbound data--parameters for the object
3114          * method.  Currently if this is present it will be a
3115          * snapshot id.
3116          */
3117         page_count = (u32)calc_pages_for(0, inbound_size);
3118         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3119         if (IS_ERR(pages))
3120                 return PTR_ERR(pages);
3121
3122         ret = -ENOMEM;
3123         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3124                                                         OBJ_REQUEST_PAGES);
3125         if (!obj_request)
3126                 goto out;
3127
3128         obj_request->pages = pages;
3129         obj_request->page_count = page_count;
3130
3131         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
3132                                                   obj_request);
3133         if (!obj_request->osd_req)
3134                 goto out;
3135
3136         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3137                                         class_name, method_name);
3138         if (outbound_size) {
3139                 struct ceph_pagelist *pagelist;
3140
3141                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3142                 if (!pagelist)
3143                         goto out;
3144
3145                 ceph_pagelist_init(pagelist);
3146                 ceph_pagelist_append(pagelist, outbound, outbound_size);
3147                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3148                                                 pagelist);
3149         }
3150         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3151                                         obj_request->pages, inbound_size,
3152                                         0, false, false);
3153         rbd_osd_req_format_read(obj_request);
3154
3155         ret = rbd_obj_request_submit(osdc, obj_request);
3156         if (ret)
3157                 goto out;
3158         ret = rbd_obj_request_wait(obj_request);
3159         if (ret)
3160                 goto out;
3161
3162         ret = obj_request->result;
3163         if (ret < 0)
3164                 goto out;
3165
3166         rbd_assert(obj_request->xferred < (u64)INT_MAX);
3167         ret = (int)obj_request->xferred;
3168         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3169 out:
3170         if (obj_request)
3171                 rbd_obj_request_put(obj_request);
3172         else
3173                 ceph_release_page_vector(pages, page_count);
3174
3175         return ret;
3176 }
3177
3178 static void rbd_request_fn(struct request_queue *q)
3179                 __releases(q->queue_lock) __acquires(q->queue_lock)
3180 {
3181         struct rbd_device *rbd_dev = q->queuedata;
3182         struct request *rq;
3183         int result;
3184
3185         while ((rq = blk_fetch_request(q))) {
3186                 bool write_request = rq_data_dir(rq) == WRITE;
3187                 struct rbd_img_request *img_request;
3188                 u64 offset;
3189                 u64 length;
3190
3191                 /* Ignore any non-FS requests that filter through. */
3192
3193                 if (rq->cmd_type != REQ_TYPE_FS) {
3194                         dout("%s: non-fs request type %d\n", __func__,
3195                                 (int) rq->cmd_type);
3196                         __blk_end_request_all(rq, 0);
3197                         continue;
3198                 }
3199
3200                 /* Ignore/skip any zero-length requests */
3201
3202                 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3203                 length = (u64) blk_rq_bytes(rq);
3204
3205                 if (!length) {
3206                         dout("%s: zero-length request\n", __func__);
3207                         __blk_end_request_all(rq, 0);
3208                         continue;
3209                 }
3210
3211                 spin_unlock_irq(q->queue_lock);
3212
3213                 /* Disallow writes to a read-only device */
3214
3215                 if (write_request) {
3216                         result = -EROFS;
3217                         if (rbd_dev->mapping.read_only)
3218                                 goto end_request;
3219                         rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3220                 }
3221
3222                 /*
3223                  * Quit early if the mapped snapshot no longer
3224                  * exists.  It's still possible the snapshot will
3225                  * have disappeared by the time our request arrives
3226                  * at the osd, but there's no sense in sending it if
3227                  * we already know.
3228                  */
3229                 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3230                         dout("request for non-existent snapshot");
3231                         rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3232                         result = -ENXIO;
3233                         goto end_request;
3234                 }
3235
3236                 result = -EINVAL;
3237                 if (offset && length > U64_MAX - offset + 1) {
3238                         rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3239                                 offset, length);
3240                         goto end_request;       /* Shouldn't happen */
3241                 }
3242
3243                 result = -EIO;
3244                 if (offset + length > rbd_dev->mapping.size) {
3245                         rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3246                                 offset, length, rbd_dev->mapping.size);
3247                         goto end_request;
3248                 }
3249
3250                 result = -ENOMEM;
3251                 img_request = rbd_img_request_create(rbd_dev, offset, length,
3252                                                         write_request);
3253                 if (!img_request)
3254                         goto end_request;
3255
3256                 img_request->rq = rq;
3257
3258                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3259                                                 rq->bio);
3260                 if (!result)
3261                         result = rbd_img_request_submit(img_request);
3262                 if (result)
3263                         rbd_img_request_put(img_request);
3264 end_request:
3265                 spin_lock_irq(q->queue_lock);
3266                 if (result < 0) {
3267                         rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3268                                 write_request ? "write" : "read",
3269                                 length, offset, result);
3270
3271                         __blk_end_request_all(rq, result);
3272                 }
3273         }
3274 }
3275
3276 /*
3277  * a queue callback. Makes sure that we don't create a bio that spans across
3278  * multiple osd objects. One exception would be with a single page bios,
3279  * which we handle later at bio_chain_clone_range()
3280  */
3281 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3282                           struct bio_vec *bvec)
3283 {
3284         struct rbd_device *rbd_dev = q->queuedata;
3285         sector_t sector_offset;
3286         sector_t sectors_per_obj;
3287         sector_t obj_sector_offset;
3288         int ret;
3289
3290         /*
3291          * Find how far into its rbd object the partition-relative
3292          * bio start sector is to offset relative to the enclosing
3293          * device.
3294          */
3295         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3296         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3297         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3298
3299         /*
3300          * Compute the number of bytes from that offset to the end
3301          * of the object.  Account for what's already used by the bio.
3302          */
3303         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3304         if (ret > bmd->bi_size)
3305                 ret -= bmd->bi_size;
3306         else
3307                 ret = 0;
3308
3309         /*
3310          * Don't send back more than was asked for.  And if the bio
3311          * was empty, let the whole thing through because:  "Note
3312          * that a block device *must* allow a single page to be
3313          * added to an empty bio."
3314          */
3315         rbd_assert(bvec->bv_len <= PAGE_SIZE);
3316         if (ret > (int) bvec->bv_len || !bmd->bi_size)
3317                 ret = (int) bvec->bv_len;
3318
3319         return ret;
3320 }
3321
3322 static void rbd_free_disk(struct rbd_device *rbd_dev)
3323 {
3324         struct gendisk *disk = rbd_dev->disk;
3325
3326         if (!disk)
3327                 return;
3328
3329         rbd_dev->disk = NULL;
3330         if (disk->flags & GENHD_FL_UP) {
3331                 del_gendisk(disk);
3332                 if (disk->queue)
3333                         blk_cleanup_queue(disk->queue);
3334         }
3335         put_disk(disk);
3336 }
3337
3338 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3339                                 const char *object_name,
3340                                 u64 offset, u64 length, void *buf)
3341
3342 {
3343         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3344         struct rbd_obj_request *obj_request;
3345         struct page **pages = NULL;
3346         u32 page_count;
3347         size_t size;
3348         int ret;
3349
3350         page_count = (u32) calc_pages_for(offset, length);
3351         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3352         if (IS_ERR(pages))
3353                 ret = PTR_ERR(pages);
3354
3355         ret = -ENOMEM;
3356         obj_request = rbd_obj_request_create(object_name, offset, length,
3357                                                         OBJ_REQUEST_PAGES);
3358         if (!obj_request)
3359                 goto out;
3360
3361         obj_request->pages = pages;
3362         obj_request->page_count = page_count;
3363
3364         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
3365                                                   obj_request);
3366         if (!obj_request->osd_req)
3367                 goto out;
3368
3369         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3370                                         offset, length, 0, 0);
3371         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3372                                         obj_request->pages,
3373                                         obj_request->length,
3374                                         obj_request->offset & ~PAGE_MASK,
3375                                         false, false);
3376         rbd_osd_req_format_read(obj_request);
3377
3378         ret = rbd_obj_request_submit(osdc, obj_request);
3379         if (ret)
3380                 goto out;
3381         ret = rbd_obj_request_wait(obj_request);
3382         if (ret)
3383                 goto out;
3384
3385         ret = obj_request->result;
3386         if (ret < 0)
3387                 goto out;
3388
3389         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3390         size = (size_t) obj_request->xferred;
3391         ceph_copy_from_page_vector(pages, buf, 0, size);
3392         rbd_assert(size <= (size_t)INT_MAX);
3393         ret = (int)size;
3394 out:
3395         if (obj_request)
3396                 rbd_obj_request_put(obj_request);
3397         else
3398                 ceph_release_page_vector(pages, page_count);
3399
3400         return ret;
3401 }
3402
3403 /*
3404  * Read the complete header for the given rbd device.  On successful
3405  * return, the rbd_dev->header field will contain up-to-date
3406  * information about the image.
3407  */
3408 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3409 {
3410         struct rbd_image_header_ondisk *ondisk = NULL;
3411         u32 snap_count = 0;
3412         u64 names_size = 0;
3413         u32 want_count;
3414         int ret;
3415
3416         /*
3417          * The complete header will include an array of its 64-bit
3418          * snapshot ids, followed by the names of those snapshots as
3419          * a contiguous block of NUL-terminated strings.  Note that
3420          * the number of snapshots could change by the time we read
3421          * it in, in which case we re-read it.
3422          */
3423         do {
3424                 size_t size;
3425
3426                 kfree(ondisk);
3427
3428                 size = sizeof (*ondisk);
3429                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3430                 size += names_size;
3431                 ondisk = kmalloc(size, GFP_KERNEL);
3432                 if (!ondisk)
3433                         return -ENOMEM;
3434
3435                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3436                                        0, size, ondisk);
3437                 if (ret < 0)
3438                         goto out;
3439                 if ((size_t)ret < size) {
3440                         ret = -ENXIO;
3441                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3442                                 size, ret);
3443                         goto out;
3444                 }
3445                 if (!rbd_dev_ondisk_valid(ondisk)) {
3446                         ret = -ENXIO;
3447                         rbd_warn(rbd_dev, "invalid header");
3448                         goto out;
3449                 }
3450
3451                 names_size = le64_to_cpu(ondisk->snap_names_len);
3452                 want_count = snap_count;
3453                 snap_count = le32_to_cpu(ondisk->snap_count);
3454         } while (snap_count != want_count);
3455
3456         ret = rbd_header_from_disk(rbd_dev, ondisk);
3457 out:
3458         kfree(ondisk);
3459
3460         return ret;
3461 }
3462
3463 /*
3464  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3465  * has disappeared from the (just updated) snapshot context.
3466  */
3467 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3468 {
3469         u64 snap_id;
3470
3471         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3472                 return;
3473
3474         snap_id = rbd_dev->spec->snap_id;
3475         if (snap_id == CEPH_NOSNAP)
3476                 return;
3477
3478         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3479                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3480 }
3481
3482 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3483 {
3484         sector_t size;
3485         bool removing;
3486
3487         /*
3488          * Don't hold the lock while doing disk operations,
3489          * or lock ordering will conflict with the bdev mutex via:
3490          * rbd_add() -> blkdev_get() -> rbd_open()
3491          */
3492         spin_lock_irq(&rbd_dev->lock);
3493         removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3494         spin_unlock_irq(&rbd_dev->lock);
3495         /*
3496          * If the device is being removed, rbd_dev->disk has
3497          * been destroyed, so don't try to update its size
3498          */
3499         if (!removing) {
3500                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3501                 dout("setting size to %llu sectors", (unsigned long long)size);
3502                 set_capacity(rbd_dev->disk, size);
3503                 revalidate_disk(rbd_dev->disk);
3504         }
3505 }
3506
3507 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3508 {
3509         u64 mapping_size;
3510         int ret;
3511
3512         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3513         down_write(&rbd_dev->header_rwsem);
3514         mapping_size = rbd_dev->mapping.size;
3515         if (rbd_dev->image_format == 1)
3516                 ret = rbd_dev_v1_header_info(rbd_dev);
3517         else
3518                 ret = rbd_dev_v2_header_info(rbd_dev);
3519
3520         /* If it's a mapped snapshot, validate its EXISTS flag */
3521
3522         rbd_exists_validate(rbd_dev);
3523         up_write(&rbd_dev->header_rwsem);
3524
3525         if (mapping_size != rbd_dev->mapping.size) {
3526                 rbd_dev_update_size(rbd_dev);
3527         }
3528
3529         return ret;
3530 }
3531
3532 static int rbd_init_disk(struct rbd_device *rbd_dev)
3533 {
3534         struct gendisk *disk;
3535         struct request_queue *q;
3536         u64 segment_size;
3537
3538         /* create gendisk info */
3539         disk = alloc_disk(single_major ?
3540                           (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3541                           RBD_MINORS_PER_MAJOR);
3542         if (!disk)
3543                 return -ENOMEM;
3544
3545         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3546                  rbd_dev->dev_id);
3547         disk->major = rbd_dev->major;
3548         disk->first_minor = rbd_dev->minor;
3549         if (single_major)
3550                 disk->flags |= GENHD_FL_EXT_DEVT;
3551         disk->fops = &rbd_bd_ops;
3552         disk->private_data = rbd_dev;
3553
3554         q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3555         if (!q)
3556                 goto out_disk;
3557
3558         /* We use the default size, but let's be explicit about it. */
3559         blk_queue_physical_block_size(q, SECTOR_SIZE);
3560
3561         /* set io sizes to object size */
3562         segment_size = rbd_obj_bytes(&rbd_dev->header);
3563         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3564         blk_queue_max_segment_size(q, segment_size);
3565         blk_queue_io_min(q, segment_size);
3566         blk_queue_io_opt(q, segment_size);
3567
3568         blk_queue_merge_bvec(q, rbd_merge_bvec);
3569         disk->queue = q;
3570
3571         q->queuedata = rbd_dev;
3572
3573         rbd_dev->disk = disk;
3574
3575         return 0;
3576 out_disk:
3577         put_disk(disk);
3578
3579         return -ENOMEM;
3580 }
3581
3582 /*
3583   sysfs
3584 */
3585
3586 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3587 {
3588         return container_of(dev, struct rbd_device, dev);
3589 }
3590
3591 static ssize_t rbd_size_show(struct device *dev,
3592                              struct device_attribute *attr, char *buf)
3593 {
3594         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3595
3596         return sprintf(buf, "%llu\n",
3597                 (unsigned long long)rbd_dev->mapping.size);
3598 }
3599
3600 /*
3601  * Note this shows the features for whatever's mapped, which is not
3602  * necessarily the base image.
3603  */
3604 static ssize_t rbd_features_show(struct device *dev,
3605                              struct device_attribute *attr, char *buf)
3606 {
3607         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3608
3609         return sprintf(buf, "0x%016llx\n",
3610                         (unsigned long long)rbd_dev->mapping.features);
3611 }
3612
3613 static ssize_t rbd_major_show(struct device *dev,
3614                               struct device_attribute *attr, char *buf)
3615 {
3616         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3617
3618         if (rbd_dev->major)
3619                 return sprintf(buf, "%d\n", rbd_dev->major);
3620
3621         return sprintf(buf, "(none)\n");
3622 }
3623
3624 static ssize_t rbd_minor_show(struct device *dev,
3625                               struct device_attribute *attr, char *buf)
3626 {
3627         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3628
3629         return sprintf(buf, "%d\n", rbd_dev->minor);
3630 }
3631
3632 static ssize_t rbd_client_id_show(struct device *dev,
3633                                   struct device_attribute *attr, char *buf)
3634 {
3635         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3636
3637         return sprintf(buf, "client%lld\n",
3638                         ceph_client_id(rbd_dev->rbd_client->client));
3639 }
3640
3641 static ssize_t rbd_pool_show(struct device *dev,
3642                              struct device_attribute *attr, char *buf)
3643 {
3644         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3645
3646         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3647 }
3648
3649 static ssize_t rbd_pool_id_show(struct device *dev,
3650                              struct device_attribute *attr, char *buf)
3651 {
3652         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3653
3654         return sprintf(buf, "%llu\n",
3655                         (unsigned long long) rbd_dev->spec->pool_id);
3656 }
3657
3658 static ssize_t rbd_name_show(struct device *dev,
3659                              struct device_attribute *attr, char *buf)
3660 {
3661         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3662
3663         if (rbd_dev->spec->image_name)
3664                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3665
3666         return sprintf(buf, "(unknown)\n");
3667 }
3668
3669 static ssize_t rbd_image_id_show(struct device *dev,
3670                              struct device_attribute *attr, char *buf)
3671 {
3672         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3673
3674         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3675 }
3676
3677 /*
3678  * Shows the name of the currently-mapped snapshot (or
3679  * RBD_SNAP_HEAD_NAME for the base image).
3680  */
3681 static ssize_t rbd_snap_show(struct device *dev,
3682                              struct device_attribute *attr,
3683                              char *buf)
3684 {
3685         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3686
3687         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3688 }
3689
3690 /*
3691  * For an rbd v2 image, shows the pool id, image id, and snapshot id
3692  * for the parent image.  If there is no parent, simply shows
3693  * "(no parent image)".
3694  */
3695 static ssize_t rbd_parent_show(struct device *dev,
3696                              struct device_attribute *attr,
3697                              char *buf)
3698 {
3699         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3700         struct rbd_spec *spec = rbd_dev->parent_spec;
3701         int count;
3702         char *bufp = buf;
3703
3704         if (!spec)
3705                 return sprintf(buf, "(no parent image)\n");
3706
3707         count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3708                         (unsigned long long) spec->pool_id, spec->pool_name);
3709         if (count < 0)
3710                 return count;
3711         bufp += count;
3712
3713         count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3714                         spec->image_name ? spec->image_name : "(unknown)");
3715         if (count < 0)
3716                 return count;
3717         bufp += count;
3718
3719         count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3720                         (unsigned long long) spec->snap_id, spec->snap_name);
3721         if (count < 0)
3722                 return count;
3723         bufp += count;
3724
3725         count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3726         if (count < 0)
3727                 return count;
3728         bufp += count;
3729
3730         return (ssize_t) (bufp - buf);
3731 }
3732
3733 static ssize_t rbd_image_refresh(struct device *dev,
3734                                  struct device_attribute *attr,
3735                                  const char *buf,
3736                                  size_t size)
3737 {
3738         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3739         int ret;
3740
3741         ret = rbd_dev_refresh(rbd_dev);
3742         if (ret)
3743                 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3744
3745         return ret < 0 ? ret : size;
3746 }
3747
3748 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3749 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3750 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3751 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3752 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3753 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3754 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3755 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3756 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3757 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3758 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3759 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3760
3761 static struct attribute *rbd_attrs[] = {
3762         &dev_attr_size.attr,
3763         &dev_attr_features.attr,
3764         &dev_attr_major.attr,
3765         &dev_attr_minor.attr,
3766         &dev_attr_client_id.attr,
3767         &dev_attr_pool.attr,
3768         &dev_attr_pool_id.attr,
3769         &dev_attr_name.attr,
3770         &dev_attr_image_id.attr,
3771         &dev_attr_current_snap.attr,
3772         &dev_attr_parent.attr,
3773         &dev_attr_refresh.attr,
3774         NULL
3775 };
3776
3777 static struct attribute_group rbd_attr_group = {
3778         .attrs = rbd_attrs,
3779 };
3780
3781 static const struct attribute_group *rbd_attr_groups[] = {
3782         &rbd_attr_group,
3783         NULL
3784 };
3785
3786 static void rbd_sysfs_dev_release(struct device *dev)
3787 {
3788 }
3789
3790 static struct device_type rbd_device_type = {
3791         .name           = "rbd",
3792         .groups         = rbd_attr_groups,
3793         .release        = rbd_sysfs_dev_release,
3794 };
3795
3796 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3797 {
3798         kref_get(&spec->kref);
3799
3800         return spec;
3801 }
3802
3803 static void rbd_spec_free(struct kref *kref);
3804 static void rbd_spec_put(struct rbd_spec *spec)
3805 {
3806         if (spec)
3807                 kref_put(&spec->kref, rbd_spec_free);
3808 }
3809
3810 static struct rbd_spec *rbd_spec_alloc(void)
3811 {
3812         struct rbd_spec *spec;
3813
3814         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3815         if (!spec)
3816                 return NULL;
3817         kref_init(&spec->kref);
3818
3819         return spec;
3820 }
3821
3822 static void rbd_spec_free(struct kref *kref)
3823 {
3824         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3825
3826         kfree(spec->pool_name);
3827         kfree(spec->image_id);
3828         kfree(spec->image_name);
3829         kfree(spec->snap_name);
3830         kfree(spec);
3831 }
3832
3833 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3834                                 struct rbd_spec *spec)
3835 {
3836         struct rbd_device *rbd_dev;
3837
3838         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3839         if (!rbd_dev)
3840                 return NULL;
3841
3842         spin_lock_init(&rbd_dev->lock);
3843         rbd_dev->flags = 0;
3844         atomic_set(&rbd_dev->parent_ref, 0);
3845         INIT_LIST_HEAD(&rbd_dev->node);
3846         init_rwsem(&rbd_dev->header_rwsem);
3847
3848         rbd_dev->spec = spec;
3849         rbd_dev->rbd_client = rbdc;
3850
3851         /* Initialize the layout used for all rbd requests */
3852
3853         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3854         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3855         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3856         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3857
3858         return rbd_dev;
3859 }
3860
3861 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3862 {
3863         rbd_put_client(rbd_dev->rbd_client);
3864         rbd_spec_put(rbd_dev->spec);
3865         kfree(rbd_dev);
3866 }
3867
3868 /*
3869  * Get the size and object order for an image snapshot, or if
3870  * snap_id is CEPH_NOSNAP, gets this information for the base
3871  * image.
3872  */
3873 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3874                                 u8 *order, u64 *snap_size)
3875 {
3876         __le64 snapid = cpu_to_le64(snap_id);
3877         int ret;
3878         struct {
3879                 u8 order;
3880                 __le64 size;
3881         } __attribute__ ((packed)) size_buf = { 0 };
3882
3883         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3884                                 "rbd", "get_size",
3885                                 &snapid, sizeof (snapid),
3886                                 &size_buf, sizeof (size_buf));
3887         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3888         if (ret < 0)
3889                 return ret;
3890         if (ret < sizeof (size_buf))
3891                 return -ERANGE;
3892
3893         if (order) {
3894                 *order = size_buf.order;
3895                 dout("  order %u", (unsigned int)*order);
3896         }
3897         *snap_size = le64_to_cpu(size_buf.size);
3898
3899         dout("  snap_id 0x%016llx snap_size = %llu\n",
3900                 (unsigned long long)snap_id,
3901                 (unsigned long long)*snap_size);
3902
3903         return 0;
3904 }
3905
3906 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3907 {
3908         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3909                                         &rbd_dev->header.obj_order,
3910                                         &rbd_dev->header.image_size);
3911 }
3912
3913 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3914 {
3915         void *reply_buf;
3916         int ret;
3917         void *p;
3918
3919         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3920         if (!reply_buf)
3921                 return -ENOMEM;
3922
3923         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3924                                 "rbd", "get_object_prefix", NULL, 0,
3925                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3926         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3927         if (ret < 0)
3928                 goto out;
3929
3930         p = reply_buf;
3931         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3932                                                 p + ret, NULL, GFP_NOIO);
3933         ret = 0;
3934
3935         if (IS_ERR(rbd_dev->header.object_prefix)) {
3936                 ret = PTR_ERR(rbd_dev->header.object_prefix);
3937                 rbd_dev->header.object_prefix = NULL;
3938         } else {
3939                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
3940         }
3941 out:
3942         kfree(reply_buf);
3943
3944         return ret;
3945 }
3946
3947 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3948                 u64 *snap_features)
3949 {
3950         __le64 snapid = cpu_to_le64(snap_id);
3951         struct {
3952                 __le64 features;
3953                 __le64 incompat;
3954         } __attribute__ ((packed)) features_buf = { 0 };
3955         u64 incompat;
3956         int ret;
3957
3958         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3959                                 "rbd", "get_features",
3960                                 &snapid, sizeof (snapid),
3961                                 &features_buf, sizeof (features_buf));
3962         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3963         if (ret < 0)
3964                 return ret;
3965         if (ret < sizeof (features_buf))
3966                 return -ERANGE;
3967
3968         incompat = le64_to_cpu(features_buf.incompat);
3969         if (incompat & ~RBD_FEATURES_SUPPORTED)
3970                 return -ENXIO;
3971
3972         *snap_features = le64_to_cpu(features_buf.features);
3973
3974         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3975                 (unsigned long long)snap_id,
3976                 (unsigned long long)*snap_features,
3977                 (unsigned long long)le64_to_cpu(features_buf.incompat));
3978
3979         return 0;
3980 }
3981
3982 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3983 {
3984         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3985                                                 &rbd_dev->header.features);
3986 }
3987
3988 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3989 {
3990         struct rbd_spec *parent_spec;
3991         size_t size;
3992         void *reply_buf = NULL;
3993         __le64 snapid;
3994         void *p;
3995         void *end;
3996         u64 pool_id;
3997         char *image_id;
3998         u64 snap_id;
3999         u64 overlap;
4000         int ret;
4001
4002         parent_spec = rbd_spec_alloc();
4003         if (!parent_spec)
4004                 return -ENOMEM;
4005
4006         size = sizeof (__le64) +                                /* pool_id */
4007                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
4008                 sizeof (__le64) +                               /* snap_id */
4009                 sizeof (__le64);                                /* overlap */
4010         reply_buf = kmalloc(size, GFP_KERNEL);
4011         if (!reply_buf) {
4012                 ret = -ENOMEM;
4013                 goto out_err;
4014         }
4015
4016         snapid = cpu_to_le64(CEPH_NOSNAP);
4017         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4018                                 "rbd", "get_parent",
4019                                 &snapid, sizeof (snapid),
4020                                 reply_buf, size);
4021         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4022         if (ret < 0)
4023                 goto out_err;
4024
4025         p = reply_buf;
4026         end = reply_buf + ret;
4027         ret = -ERANGE;
4028         ceph_decode_64_safe(&p, end, pool_id, out_err);
4029         if (pool_id == CEPH_NOPOOL) {
4030                 /*
4031                  * Either the parent never existed, or we have
4032                  * record of it but the image got flattened so it no
4033                  * longer has a parent.  When the parent of a
4034                  * layered image disappears we immediately set the
4035                  * overlap to 0.  The effect of this is that all new
4036                  * requests will be treated as if the image had no
4037                  * parent.
4038                  */
4039                 if (rbd_dev->parent_overlap) {
4040                         rbd_dev->parent_overlap = 0;
4041                         smp_mb();
4042                         rbd_dev_parent_put(rbd_dev);
4043                         pr_info("%s: clone image has been flattened\n",
4044                                 rbd_dev->disk->disk_name);
4045                 }
4046
4047                 goto out;       /* No parent?  No problem. */
4048         }
4049
4050         /* The ceph file layout needs to fit pool id in 32 bits */
4051
4052         ret = -EIO;
4053         if (pool_id > (u64)U32_MAX) {
4054                 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
4055                         (unsigned long long)pool_id, U32_MAX);
4056                 goto out_err;
4057         }
4058
4059         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4060         if (IS_ERR(image_id)) {
4061                 ret = PTR_ERR(image_id);
4062                 goto out_err;
4063         }
4064         ceph_decode_64_safe(&p, end, snap_id, out_err);
4065         ceph_decode_64_safe(&p, end, overlap, out_err);
4066
4067         /*
4068          * The parent won't change (except when the clone is
4069          * flattened, already handled that).  So we only need to
4070          * record the parent spec we have not already done so.
4071          */
4072         if (!rbd_dev->parent_spec) {
4073                 parent_spec->pool_id = pool_id;
4074                 parent_spec->image_id = image_id;
4075                 parent_spec->snap_id = snap_id;
4076                 rbd_dev->parent_spec = parent_spec;
4077                 parent_spec = NULL;     /* rbd_dev now owns this */
4078         }
4079
4080         /*
4081          * We always update the parent overlap.  If it's zero we
4082          * treat it specially.
4083          */
4084         rbd_dev->parent_overlap = overlap;
4085         smp_mb();
4086         if (!overlap) {
4087
4088                 /* A null parent_spec indicates it's the initial probe */
4089
4090                 if (parent_spec) {
4091                         /*
4092                          * The overlap has become zero, so the clone
4093                          * must have been resized down to 0 at some
4094                          * point.  Treat this the same as a flatten.
4095                          */
4096                         rbd_dev_parent_put(rbd_dev);
4097                         pr_info("%s: clone image now standalone\n",
4098                                 rbd_dev->disk->disk_name);
4099                 } else {
4100                         /*
4101                          * For the initial probe, if we find the
4102                          * overlap is zero we just pretend there was
4103                          * no parent image.
4104                          */
4105                         rbd_warn(rbd_dev, "ignoring parent of "
4106                                                 "clone with overlap 0\n");
4107                 }
4108         }
4109 out:
4110         ret = 0;
4111 out_err:
4112         kfree(reply_buf);
4113         rbd_spec_put(parent_spec);
4114
4115         return ret;
4116 }
4117
4118 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4119 {
4120         struct {
4121                 __le64 stripe_unit;
4122                 __le64 stripe_count;
4123         } __attribute__ ((packed)) striping_info_buf = { 0 };
4124         size_t size = sizeof (striping_info_buf);
4125         void *p;
4126         u64 obj_size;
4127         u64 stripe_unit;
4128         u64 stripe_count;
4129         int ret;
4130
4131         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4132                                 "rbd", "get_stripe_unit_count", NULL, 0,
4133                                 (char *)&striping_info_buf, size);
4134         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4135         if (ret < 0)
4136                 return ret;
4137         if (ret < size)
4138                 return -ERANGE;
4139
4140         /*
4141          * We don't actually support the "fancy striping" feature
4142          * (STRIPINGV2) yet, but if the striping sizes are the
4143          * defaults the behavior is the same as before.  So find
4144          * out, and only fail if the image has non-default values.
4145          */
4146         ret = -EINVAL;
4147         obj_size = (u64)1 << rbd_dev->header.obj_order;
4148         p = &striping_info_buf;
4149         stripe_unit = ceph_decode_64(&p);
4150         if (stripe_unit != obj_size) {
4151                 rbd_warn(rbd_dev, "unsupported stripe unit "
4152                                 "(got %llu want %llu)",
4153                                 stripe_unit, obj_size);
4154                 return -EINVAL;
4155         }
4156         stripe_count = ceph_decode_64(&p);
4157         if (stripe_count != 1) {
4158                 rbd_warn(rbd_dev, "unsupported stripe count "
4159                                 "(got %llu want 1)", stripe_count);
4160                 return -EINVAL;
4161         }
4162         rbd_dev->header.stripe_unit = stripe_unit;
4163         rbd_dev->header.stripe_count = stripe_count;
4164
4165         return 0;
4166 }
4167
4168 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4169 {
4170         size_t image_id_size;
4171         char *image_id;
4172         void *p;
4173         void *end;
4174         size_t size;
4175         void *reply_buf = NULL;
4176         size_t len = 0;
4177         char *image_name = NULL;
4178         int ret;
4179
4180         rbd_assert(!rbd_dev->spec->image_name);
4181
4182         len = strlen(rbd_dev->spec->image_id);
4183         image_id_size = sizeof (__le32) + len;
4184         image_id = kmalloc(image_id_size, GFP_KERNEL);
4185         if (!image_id)
4186                 return NULL;
4187
4188         p = image_id;
4189         end = image_id + image_id_size;
4190         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4191
4192         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4193         reply_buf = kmalloc(size, GFP_KERNEL);
4194         if (!reply_buf)
4195                 goto out;
4196
4197         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4198                                 "rbd", "dir_get_name",
4199                                 image_id, image_id_size,
4200                                 reply_buf, size);
4201         if (ret < 0)
4202                 goto out;
4203         p = reply_buf;
4204         end = reply_buf + ret;
4205
4206         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4207         if (IS_ERR(image_name))
4208                 image_name = NULL;
4209         else
4210                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4211 out:
4212         kfree(reply_buf);
4213         kfree(image_id);
4214
4215         return image_name;
4216 }
4217
4218 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4219 {
4220         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4221         const char *snap_name;
4222         u32 which = 0;
4223
4224         /* Skip over names until we find the one we are looking for */
4225
4226         snap_name = rbd_dev->header.snap_names;
4227         while (which < snapc->num_snaps) {
4228                 if (!strcmp(name, snap_name))
4229                         return snapc->snaps[which];
4230                 snap_name += strlen(snap_name) + 1;
4231                 which++;
4232         }
4233         return CEPH_NOSNAP;
4234 }
4235
4236 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4237 {
4238         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4239         u32 which;
4240         bool found = false;
4241         u64 snap_id;
4242
4243         for (which = 0; !found && which < snapc->num_snaps; which++) {
4244                 const char *snap_name;
4245
4246                 snap_id = snapc->snaps[which];
4247                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4248                 if (IS_ERR(snap_name)) {
4249                         /* ignore no-longer existing snapshots */
4250                         if (PTR_ERR(snap_name) == -ENOENT)
4251                                 continue;
4252                         else
4253                                 break;
4254                 }
4255                 found = !strcmp(name, snap_name);
4256                 kfree(snap_name);
4257         }
4258         return found ? snap_id : CEPH_NOSNAP;
4259 }
4260
4261 /*
4262  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4263  * no snapshot by that name is found, or if an error occurs.
4264  */
4265 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4266 {
4267         if (rbd_dev->image_format == 1)
4268                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4269
4270         return rbd_v2_snap_id_by_name(rbd_dev, name);
4271 }
4272
4273 /*
4274  * When an rbd image has a parent image, it is identified by the
4275  * pool, image, and snapshot ids (not names).  This function fills
4276  * in the names for those ids.  (It's OK if we can't figure out the
4277  * name for an image id, but the pool and snapshot ids should always
4278  * exist and have names.)  All names in an rbd spec are dynamically
4279  * allocated.
4280  *
4281  * When an image being mapped (not a parent) is probed, we have the
4282  * pool name and pool id, image name and image id, and the snapshot
4283  * name.  The only thing we're missing is the snapshot id.
4284  */
4285 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4286 {
4287         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4288         struct rbd_spec *spec = rbd_dev->spec;
4289         const char *pool_name;
4290         const char *image_name;
4291         const char *snap_name;
4292         int ret;
4293
4294         /*
4295          * An image being mapped will have the pool name (etc.), but
4296          * we need to look up the snapshot id.
4297          */
4298         if (spec->pool_name) {
4299                 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4300                         u64 snap_id;
4301
4302                         snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4303                         if (snap_id == CEPH_NOSNAP)
4304                                 return -ENOENT;
4305                         spec->snap_id = snap_id;
4306                 } else {
4307                         spec->snap_id = CEPH_NOSNAP;
4308                 }
4309
4310                 return 0;
4311         }
4312
4313         /* Get the pool name; we have to make our own copy of this */
4314
4315         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4316         if (!pool_name) {
4317                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4318                 return -EIO;
4319         }
4320         pool_name = kstrdup(pool_name, GFP_KERNEL);
4321         if (!pool_name)
4322                 return -ENOMEM;
4323
4324         /* Fetch the image name; tolerate failure here */
4325
4326         image_name = rbd_dev_image_name(rbd_dev);
4327         if (!image_name)
4328                 rbd_warn(rbd_dev, "unable to get image name");
4329
4330         /* Look up the snapshot name, and make a copy */
4331
4332         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4333         if (IS_ERR(snap_name)) {
4334                 ret = PTR_ERR(snap_name);
4335                 goto out_err;
4336         }
4337
4338         spec->pool_name = pool_name;
4339         spec->image_name = image_name;
4340         spec->snap_name = snap_name;
4341
4342         return 0;
4343 out_err:
4344         kfree(image_name);
4345         kfree(pool_name);
4346
4347         return ret;
4348 }
4349
4350 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4351 {
4352         size_t size;
4353         int ret;
4354         void *reply_buf;
4355         void *p;
4356         void *end;
4357         u64 seq;
4358         u32 snap_count;
4359         struct ceph_snap_context *snapc;
4360         u32 i;
4361
4362         /*
4363          * We'll need room for the seq value (maximum snapshot id),
4364          * snapshot count, and array of that many snapshot ids.
4365          * For now we have a fixed upper limit on the number we're
4366          * prepared to receive.
4367          */
4368         size = sizeof (__le64) + sizeof (__le32) +
4369                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4370         reply_buf = kzalloc(size, GFP_KERNEL);
4371         if (!reply_buf)
4372                 return -ENOMEM;
4373
4374         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4375                                 "rbd", "get_snapcontext", NULL, 0,
4376                                 reply_buf, size);
4377         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4378         if (ret < 0)
4379                 goto out;
4380
4381         p = reply_buf;
4382         end = reply_buf + ret;
4383         ret = -ERANGE;
4384         ceph_decode_64_safe(&p, end, seq, out);
4385         ceph_decode_32_safe(&p, end, snap_count, out);
4386
4387         /*
4388          * Make sure the reported number of snapshot ids wouldn't go
4389          * beyond the end of our buffer.  But before checking that,
4390          * make sure the computed size of the snapshot context we
4391          * allocate is representable in a size_t.
4392          */
4393         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4394                                  / sizeof (u64)) {
4395                 ret = -EINVAL;
4396                 goto out;
4397         }
4398         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4399                 goto out;
4400         ret = 0;
4401
4402         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4403         if (!snapc) {
4404                 ret = -ENOMEM;
4405                 goto out;
4406         }
4407         snapc->seq = seq;
4408         for (i = 0; i < snap_count; i++)
4409                 snapc->snaps[i] = ceph_decode_64(&p);
4410
4411         ceph_put_snap_context(rbd_dev->header.snapc);
4412         rbd_dev->header.snapc = snapc;
4413
4414         dout("  snap context seq = %llu, snap_count = %u\n",
4415                 (unsigned long long)seq, (unsigned int)snap_count);
4416 out:
4417         kfree(reply_buf);
4418
4419         return ret;
4420 }
4421
4422 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4423                                         u64 snap_id)
4424 {
4425         size_t size;
4426         void *reply_buf;
4427         __le64 snapid;
4428         int ret;
4429         void *p;
4430         void *end;
4431         char *snap_name;
4432
4433         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4434         reply_buf = kmalloc(size, GFP_KERNEL);
4435         if (!reply_buf)
4436                 return ERR_PTR(-ENOMEM);
4437
4438         snapid = cpu_to_le64(snap_id);
4439         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4440                                 "rbd", "get_snapshot_name",
4441                                 &snapid, sizeof (snapid),
4442                                 reply_buf, size);
4443         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4444         if (ret < 0) {
4445                 snap_name = ERR_PTR(ret);
4446                 goto out;
4447         }
4448
4449         p = reply_buf;
4450         end = reply_buf + ret;
4451         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4452         if (IS_ERR(snap_name))
4453                 goto out;
4454
4455         dout("  snap_id 0x%016llx snap_name = %s\n",
4456                 (unsigned long long)snap_id, snap_name);
4457 out:
4458         kfree(reply_buf);
4459
4460         return snap_name;
4461 }
4462
4463 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4464 {
4465         bool first_time = rbd_dev->header.object_prefix == NULL;
4466         int ret;
4467
4468         ret = rbd_dev_v2_image_size(rbd_dev);
4469         if (ret)
4470                 return ret;
4471
4472         if (first_time) {
4473                 ret = rbd_dev_v2_header_onetime(rbd_dev);
4474                 if (ret)
4475                         return ret;
4476         }
4477
4478         /*
4479          * If the image supports layering, get the parent info.  We
4480          * need to probe the first time regardless.  Thereafter we
4481          * only need to if there's a parent, to see if it has
4482          * disappeared due to the mapped image getting flattened.
4483          */
4484         if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4485                         (first_time || rbd_dev->parent_spec)) {
4486                 bool warn;
4487
4488                 ret = rbd_dev_v2_parent_info(rbd_dev);
4489                 if (ret)
4490                         return ret;
4491
4492                 /*
4493                  * Print a warning if this is the initial probe and
4494                  * the image has a parent.  Don't print it if the
4495                  * image now being probed is itself a parent.  We
4496                  * can tell at this point because we won't know its
4497                  * pool name yet (just its pool id).
4498                  */
4499                 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4500                 if (first_time && warn)
4501                         rbd_warn(rbd_dev, "WARNING: kernel layering "
4502                                         "is EXPERIMENTAL!");
4503         }
4504
4505         if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4506                 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4507                         rbd_dev->mapping.size = rbd_dev->header.image_size;
4508
4509         ret = rbd_dev_v2_snap_context(rbd_dev);
4510         dout("rbd_dev_v2_snap_context returned %d\n", ret);
4511
4512         return ret;
4513 }
4514
4515 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4516 {
4517         struct device *dev;
4518         int ret;
4519
4520         dev = &rbd_dev->dev;
4521         dev->bus = &rbd_bus_type;
4522         dev->type = &rbd_device_type;
4523         dev->parent = &rbd_root_dev;
4524         dev->release = rbd_dev_device_release;
4525         dev_set_name(dev, "%d", rbd_dev->dev_id);
4526         ret = device_register(dev);
4527
4528         return ret;
4529 }
4530
4531 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4532 {
4533         device_unregister(&rbd_dev->dev);
4534 }
4535
4536 /*
4537  * Get a unique rbd identifier for the given new rbd_dev, and add
4538  * the rbd_dev to the global list.
4539  */
4540 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4541 {
4542         int new_dev_id;
4543
4544         new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4545                                     0, minor_to_rbd_dev_id(1 << MINORBITS),
4546                                     GFP_KERNEL);
4547         if (new_dev_id < 0)
4548                 return new_dev_id;
4549
4550         rbd_dev->dev_id = new_dev_id;
4551
4552         spin_lock(&rbd_dev_list_lock);
4553         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4554         spin_unlock(&rbd_dev_list_lock);
4555
4556         dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4557
4558         return 0;
4559 }
4560
4561 /*
4562  * Remove an rbd_dev from the global list, and record that its
4563  * identifier is no longer in use.
4564  */
4565 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4566 {
4567         spin_lock(&rbd_dev_list_lock);
4568         list_del_init(&rbd_dev->node);
4569         spin_unlock(&rbd_dev_list_lock);
4570
4571         ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4572
4573         dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4574 }
4575
4576 /*
4577  * Skips over white space at *buf, and updates *buf to point to the
4578  * first found non-space character (if any). Returns the length of
4579  * the token (string of non-white space characters) found.  Note
4580  * that *buf must be terminated with '\0'.
4581  */
4582 static inline size_t next_token(const char **buf)
4583 {
4584         /*
4585         * These are the characters that produce nonzero for
4586         * isspace() in the "C" and "POSIX" locales.
4587         */
4588         const char *spaces = " \f\n\r\t\v";
4589
4590         *buf += strspn(*buf, spaces);   /* Find start of token */
4591
4592         return strcspn(*buf, spaces);   /* Return token length */
4593 }
4594
4595 /*
4596  * Finds the next token in *buf, and if the provided token buffer is
4597  * big enough, copies the found token into it.  The result, if
4598  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4599  * must be terminated with '\0' on entry.
4600  *
4601  * Returns the length of the token found (not including the '\0').
4602  * Return value will be 0 if no token is found, and it will be >=
4603  * token_size if the token would not fit.
4604  *
4605  * The *buf pointer will be updated to point beyond the end of the
4606  * found token.  Note that this occurs even if the token buffer is
4607  * too small to hold it.
4608  */
4609 static inline size_t copy_token(const char **buf,
4610                                 char *token,
4611                                 size_t token_size)
4612 {
4613         size_t len;
4614
4615         len = next_token(buf);
4616         if (len < token_size) {
4617                 memcpy(token, *buf, len);
4618                 *(token + len) = '\0';
4619         }
4620         *buf += len;
4621
4622         return len;
4623 }
4624
4625 /*
4626  * Finds the next token in *buf, dynamically allocates a buffer big
4627  * enough to hold a copy of it, and copies the token into the new
4628  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4629  * that a duplicate buffer is created even for a zero-length token.
4630  *
4631  * Returns a pointer to the newly-allocated duplicate, or a null
4632  * pointer if memory for the duplicate was not available.  If
4633  * the lenp argument is a non-null pointer, the length of the token
4634  * (not including the '\0') is returned in *lenp.
4635  *
4636  * If successful, the *buf pointer will be updated to point beyond
4637  * the end of the found token.
4638  *
4639  * Note: uses GFP_KERNEL for allocation.
4640  */
4641 static inline char *dup_token(const char **buf, size_t *lenp)
4642 {
4643         char *dup;
4644         size_t len;
4645
4646         len = next_token(buf);
4647         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4648         if (!dup)
4649                 return NULL;
4650         *(dup + len) = '\0';
4651         *buf += len;
4652
4653         if (lenp)
4654                 *lenp = len;
4655
4656         return dup;
4657 }
4658
4659 /*
4660  * Parse the options provided for an "rbd add" (i.e., rbd image
4661  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4662  * and the data written is passed here via a NUL-terminated buffer.
4663  * Returns 0 if successful or an error code otherwise.
4664  *
4665  * The information extracted from these options is recorded in
4666  * the other parameters which return dynamically-allocated
4667  * structures:
4668  *  ceph_opts
4669  *      The address of a pointer that will refer to a ceph options
4670  *      structure.  Caller must release the returned pointer using
4671  *      ceph_destroy_options() when it is no longer needed.
4672  *  rbd_opts
4673  *      Address of an rbd options pointer.  Fully initialized by
4674  *      this function; caller must release with kfree().
4675  *  spec
4676  *      Address of an rbd image specification pointer.  Fully
4677  *      initialized by this function based on parsed options.
4678  *      Caller must release with rbd_spec_put().
4679  *
4680  * The options passed take this form:
4681  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4682  * where:
4683  *  <mon_addrs>
4684  *      A comma-separated list of one or more monitor addresses.
4685  *      A monitor address is an ip address, optionally followed
4686  *      by a port number (separated by a colon).
4687  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4688  *  <options>
4689  *      A comma-separated list of ceph and/or rbd options.
4690  *  <pool_name>
4691  *      The name of the rados pool containing the rbd image.
4692  *  <image_name>
4693  *      The name of the image in that pool to map.
4694  *  <snap_id>
4695  *      An optional snapshot id.  If provided, the mapping will
4696  *      present data from the image at the time that snapshot was
4697  *      created.  The image head is used if no snapshot id is
4698  *      provided.  Snapshot mappings are always read-only.
4699  */
4700 static int rbd_add_parse_args(const char *buf,
4701                                 struct ceph_options **ceph_opts,
4702                                 struct rbd_options **opts,
4703                                 struct rbd_spec **rbd_spec)
4704 {
4705         size_t len;
4706         char *options;
4707         const char *mon_addrs;
4708         char *snap_name;
4709         size_t mon_addrs_size;
4710         struct rbd_spec *spec = NULL;
4711         struct rbd_options *rbd_opts = NULL;
4712         struct ceph_options *copts;
4713         int ret;
4714
4715         /* The first four tokens are required */
4716
4717         len = next_token(&buf);
4718         if (!len) {
4719                 rbd_warn(NULL, "no monitor address(es) provided");
4720                 return -EINVAL;
4721         }
4722         mon_addrs = buf;
4723         mon_addrs_size = len + 1;
4724         buf += len;
4725
4726         ret = -EINVAL;
4727         options = dup_token(&buf, NULL);
4728         if (!options)
4729                 return -ENOMEM;
4730         if (!*options) {
4731                 rbd_warn(NULL, "no options provided");
4732                 goto out_err;
4733         }
4734
4735         spec = rbd_spec_alloc();
4736         if (!spec)
4737                 goto out_mem;
4738
4739         spec->pool_name = dup_token(&buf, NULL);
4740         if (!spec->pool_name)
4741                 goto out_mem;
4742         if (!*spec->pool_name) {
4743                 rbd_warn(NULL, "no pool name provided");
4744                 goto out_err;
4745         }
4746
4747         spec->image_name = dup_token(&buf, NULL);
4748         if (!spec->image_name)
4749                 goto out_mem;
4750         if (!*spec->image_name) {
4751                 rbd_warn(NULL, "no image name provided");
4752                 goto out_err;
4753         }
4754
4755         /*
4756          * Snapshot name is optional; default is to use "-"
4757          * (indicating the head/no snapshot).
4758          */
4759         len = next_token(&buf);
4760         if (!len) {
4761                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4762                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4763         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4764                 ret = -ENAMETOOLONG;
4765                 goto out_err;
4766         }
4767         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4768         if (!snap_name)
4769                 goto out_mem;
4770         *(snap_name + len) = '\0';
4771         spec->snap_name = snap_name;
4772
4773         /* Initialize all rbd options to the defaults */
4774
4775         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4776         if (!rbd_opts)
4777                 goto out_mem;
4778
4779         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4780
4781         copts = ceph_parse_options(options, mon_addrs,
4782                                         mon_addrs + mon_addrs_size - 1,
4783                                         parse_rbd_opts_token, rbd_opts);
4784         if (IS_ERR(copts)) {
4785                 ret = PTR_ERR(copts);
4786                 goto out_err;
4787         }
4788         kfree(options);
4789
4790         *ceph_opts = copts;
4791         *opts = rbd_opts;
4792         *rbd_spec = spec;
4793
4794         return 0;
4795 out_mem:
4796         ret = -ENOMEM;
4797 out_err:
4798         kfree(rbd_opts);
4799         rbd_spec_put(spec);
4800         kfree(options);
4801
4802         return ret;
4803 }
4804
4805 /*
4806  * Return pool id (>= 0) or a negative error code.
4807  */
4808 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4809 {
4810         u64 newest_epoch;
4811         unsigned long timeout = rbdc->client->options->mount_timeout * HZ;
4812         int tries = 0;
4813         int ret;
4814
4815 again:
4816         ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4817         if (ret == -ENOENT && tries++ < 1) {
4818                 ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
4819                                                &newest_epoch);
4820                 if (ret < 0)
4821                         return ret;
4822
4823                 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
4824                         ceph_monc_request_next_osdmap(&rbdc->client->monc);
4825                         (void) ceph_monc_wait_osdmap(&rbdc->client->monc,
4826                                                      newest_epoch, timeout);
4827                         goto again;
4828                 } else {
4829                         /* the osdmap we have is new enough */
4830                         return -ENOENT;
4831                 }
4832         }
4833
4834         return ret;
4835 }
4836
4837 /*
4838  * An rbd format 2 image has a unique identifier, distinct from the
4839  * name given to it by the user.  Internally, that identifier is
4840  * what's used to specify the names of objects related to the image.
4841  *
4842  * A special "rbd id" object is used to map an rbd image name to its
4843  * id.  If that object doesn't exist, then there is no v2 rbd image
4844  * with the supplied name.
4845  *
4846  * This function will record the given rbd_dev's image_id field if
4847  * it can be determined, and in that case will return 0.  If any
4848  * errors occur a negative errno will be returned and the rbd_dev's
4849  * image_id field will be unchanged (and should be NULL).
4850  */
4851 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4852 {
4853         int ret;
4854         size_t size;
4855         char *object_name;
4856         void *response;
4857         char *image_id;
4858
4859         /*
4860          * When probing a parent image, the image id is already
4861          * known (and the image name likely is not).  There's no
4862          * need to fetch the image id again in this case.  We
4863          * do still need to set the image format though.
4864          */
4865         if (rbd_dev->spec->image_id) {
4866                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4867
4868                 return 0;
4869         }
4870
4871         /*
4872          * First, see if the format 2 image id file exists, and if
4873          * so, get the image's persistent id from it.
4874          */
4875         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4876         object_name = kmalloc(size, GFP_NOIO);
4877         if (!object_name)
4878                 return -ENOMEM;
4879         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4880         dout("rbd id object name is %s\n", object_name);
4881
4882         /* Response will be an encoded string, which includes a length */
4883
4884         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4885         response = kzalloc(size, GFP_NOIO);
4886         if (!response) {
4887                 ret = -ENOMEM;
4888                 goto out;
4889         }
4890
4891         /* If it doesn't exist we'll assume it's a format 1 image */
4892
4893         ret = rbd_obj_method_sync(rbd_dev, object_name,
4894                                 "rbd", "get_id", NULL, 0,
4895                                 response, RBD_IMAGE_ID_LEN_MAX);
4896         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4897         if (ret == -ENOENT) {
4898                 image_id = kstrdup("", GFP_KERNEL);
4899                 ret = image_id ? 0 : -ENOMEM;
4900                 if (!ret)
4901                         rbd_dev->image_format = 1;
4902         } else if (ret > sizeof (__le32)) {
4903                 void *p = response;
4904
4905                 image_id = ceph_extract_encoded_string(&p, p + ret,
4906                                                 NULL, GFP_NOIO);
4907                 ret = PTR_ERR_OR_ZERO(image_id);
4908                 if (!ret)
4909                         rbd_dev->image_format = 2;
4910         } else {
4911                 ret = -EINVAL;
4912         }
4913
4914         if (!ret) {
4915                 rbd_dev->spec->image_id = image_id;
4916                 dout("image_id is %s\n", image_id);
4917         }
4918 out:
4919         kfree(response);
4920         kfree(object_name);
4921
4922         return ret;
4923 }
4924
4925 /*
4926  * Undo whatever state changes are made by v1 or v2 header info
4927  * call.
4928  */
4929 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4930 {
4931         struct rbd_image_header *header;
4932
4933         /* Drop parent reference unless it's already been done (or none) */
4934
4935         if (rbd_dev->parent_overlap)
4936                 rbd_dev_parent_put(rbd_dev);
4937
4938         /* Free dynamic fields from the header, then zero it out */
4939
4940         header = &rbd_dev->header;
4941         ceph_put_snap_context(header->snapc);
4942         kfree(header->snap_sizes);
4943         kfree(header->snap_names);
4944         kfree(header->object_prefix);
4945         memset(header, 0, sizeof (*header));
4946 }
4947
4948 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4949 {
4950         int ret;
4951
4952         ret = rbd_dev_v2_object_prefix(rbd_dev);
4953         if (ret)
4954                 goto out_err;
4955
4956         /*
4957          * Get the and check features for the image.  Currently the
4958          * features are assumed to never change.
4959          */
4960         ret = rbd_dev_v2_features(rbd_dev);
4961         if (ret)
4962                 goto out_err;
4963
4964         /* If the image supports fancy striping, get its parameters */
4965
4966         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4967                 ret = rbd_dev_v2_striping_info(rbd_dev);
4968                 if (ret < 0)
4969                         goto out_err;
4970         }
4971         /* No support for crypto and compression type format 2 images */
4972
4973         return 0;
4974 out_err:
4975         rbd_dev->header.features = 0;
4976         kfree(rbd_dev->header.object_prefix);
4977         rbd_dev->header.object_prefix = NULL;
4978
4979         return ret;
4980 }
4981
4982 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4983 {
4984         struct rbd_device *parent = NULL;
4985         struct rbd_spec *parent_spec;
4986         struct rbd_client *rbdc;
4987         int ret;
4988
4989         if (!rbd_dev->parent_spec)
4990                 return 0;
4991         /*
4992          * We need to pass a reference to the client and the parent
4993          * spec when creating the parent rbd_dev.  Images related by
4994          * parent/child relationships always share both.
4995          */
4996         parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4997         rbdc = __rbd_get_client(rbd_dev->rbd_client);
4998
4999         ret = -ENOMEM;
5000         parent = rbd_dev_create(rbdc, parent_spec);
5001         if (!parent)
5002                 goto out_err;
5003
5004         ret = rbd_dev_image_probe(parent, false);
5005         if (ret < 0)
5006                 goto out_err;
5007         rbd_dev->parent = parent;
5008         atomic_set(&rbd_dev->parent_ref, 1);
5009
5010         return 0;
5011 out_err:
5012         if (parent) {
5013                 rbd_dev_unparent(rbd_dev);
5014                 kfree(rbd_dev->header_name);
5015                 rbd_dev_destroy(parent);
5016         } else {
5017                 rbd_put_client(rbdc);
5018                 rbd_spec_put(parent_spec);
5019         }
5020
5021         return ret;
5022 }
5023
5024 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5025 {
5026         int ret;
5027
5028         /* Get an id and fill in device name. */
5029
5030         ret = rbd_dev_id_get(rbd_dev);
5031         if (ret)
5032                 return ret;
5033
5034         BUILD_BUG_ON(DEV_NAME_LEN
5035                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5036         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5037
5038         /* Record our major and minor device numbers. */
5039
5040         if (!single_major) {
5041                 ret = register_blkdev(0, rbd_dev->name);
5042                 if (ret < 0)
5043                         goto err_out_id;
5044
5045                 rbd_dev->major = ret;
5046                 rbd_dev->minor = 0;
5047         } else {
5048                 rbd_dev->major = rbd_major;
5049                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5050         }
5051
5052         /* Set up the blkdev mapping. */
5053
5054         ret = rbd_init_disk(rbd_dev);
5055         if (ret)
5056                 goto err_out_blkdev;
5057
5058         ret = rbd_dev_mapping_set(rbd_dev);
5059         if (ret)
5060                 goto err_out_disk;
5061         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5062         set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5063
5064         ret = rbd_bus_add_dev(rbd_dev);
5065         if (ret)
5066                 goto err_out_mapping;
5067
5068         /* Everything's ready.  Announce the disk to the world. */
5069
5070         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5071         add_disk(rbd_dev->disk);
5072
5073         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5074                 (unsigned long long) rbd_dev->mapping.size);
5075
5076         return ret;
5077
5078 err_out_mapping:
5079         rbd_dev_mapping_clear(rbd_dev);
5080 err_out_disk:
5081         rbd_free_disk(rbd_dev);
5082 err_out_blkdev:
5083         if (!single_major)
5084                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5085 err_out_id:
5086         rbd_dev_id_put(rbd_dev);
5087         rbd_dev_mapping_clear(rbd_dev);
5088
5089         return ret;
5090 }
5091
5092 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5093 {
5094         struct rbd_spec *spec = rbd_dev->spec;
5095         size_t size;
5096
5097         /* Record the header object name for this rbd image. */
5098
5099         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5100
5101         if (rbd_dev->image_format == 1)
5102                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5103         else
5104                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5105
5106         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5107         if (!rbd_dev->header_name)
5108                 return -ENOMEM;
5109
5110         if (rbd_dev->image_format == 1)
5111                 sprintf(rbd_dev->header_name, "%s%s",
5112                         spec->image_name, RBD_SUFFIX);
5113         else
5114                 sprintf(rbd_dev->header_name, "%s%s",
5115                         RBD_HEADER_PREFIX, spec->image_id);
5116         return 0;
5117 }
5118
5119 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5120 {
5121         rbd_dev_unprobe(rbd_dev);
5122         kfree(rbd_dev->header_name);
5123         rbd_dev->header_name = NULL;
5124         rbd_dev->image_format = 0;
5125         kfree(rbd_dev->spec->image_id);
5126         rbd_dev->spec->image_id = NULL;
5127
5128         rbd_dev_destroy(rbd_dev);
5129 }
5130
5131 /*
5132  * Probe for the existence of the header object for the given rbd
5133  * device.  If this image is the one being mapped (i.e., not a
5134  * parent), initiate a watch on its header object before using that
5135  * object to get detailed information about the rbd image.
5136  */
5137 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
5138 {
5139         int ret;
5140
5141         /*
5142          * Get the id from the image id object.  Unless there's an
5143          * error, rbd_dev->spec->image_id will be filled in with
5144          * a dynamically-allocated string, and rbd_dev->image_format
5145          * will be set to either 1 or 2.
5146          */
5147         ret = rbd_dev_image_id(rbd_dev);
5148         if (ret)
5149                 return ret;
5150         rbd_assert(rbd_dev->spec->image_id);
5151         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5152
5153         ret = rbd_dev_header_name(rbd_dev);
5154         if (ret)
5155                 goto err_out_format;
5156
5157         if (mapping) {
5158                 ret = rbd_dev_header_watch_sync(rbd_dev);
5159                 if (ret)
5160                         goto out_header_name;
5161         }
5162
5163         if (rbd_dev->image_format == 1)
5164                 ret = rbd_dev_v1_header_info(rbd_dev);
5165         else
5166                 ret = rbd_dev_v2_header_info(rbd_dev);
5167         if (ret)
5168                 goto err_out_watch;
5169
5170         ret = rbd_dev_spec_update(rbd_dev);
5171         if (ret)
5172                 goto err_out_probe;
5173
5174         ret = rbd_dev_probe_parent(rbd_dev);
5175         if (ret)
5176                 goto err_out_probe;
5177
5178         dout("discovered format %u image, header name is %s\n",
5179                 rbd_dev->image_format, rbd_dev->header_name);
5180
5181         return 0;
5182 err_out_probe:
5183         rbd_dev_unprobe(rbd_dev);
5184 err_out_watch:
5185         if (mapping)
5186                 rbd_dev_header_unwatch_sync(rbd_dev);
5187 out_header_name:
5188         kfree(rbd_dev->header_name);
5189         rbd_dev->header_name = NULL;
5190 err_out_format:
5191         rbd_dev->image_format = 0;
5192         kfree(rbd_dev->spec->image_id);
5193         rbd_dev->spec->image_id = NULL;
5194
5195         dout("probe failed, returning %d\n", ret);
5196
5197         return ret;
5198 }
5199
5200 static ssize_t do_rbd_add(struct bus_type *bus,
5201                           const char *buf,
5202                           size_t count)
5203 {
5204         struct rbd_device *rbd_dev = NULL;
5205         struct ceph_options *ceph_opts = NULL;
5206         struct rbd_options *rbd_opts = NULL;
5207         struct rbd_spec *spec = NULL;
5208         struct rbd_client *rbdc;
5209         bool read_only;
5210         int rc = -ENOMEM;
5211
5212         if (!try_module_get(THIS_MODULE))
5213                 return -ENODEV;
5214
5215         /* parse add command */
5216         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5217         if (rc < 0)
5218                 goto err_out_module;
5219         read_only = rbd_opts->read_only;
5220         kfree(rbd_opts);
5221         rbd_opts = NULL;        /* done with this */
5222
5223         rbdc = rbd_get_client(ceph_opts);
5224         if (IS_ERR(rbdc)) {
5225                 rc = PTR_ERR(rbdc);
5226                 goto err_out_args;
5227         }
5228
5229         /* pick the pool */
5230         rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5231         if (rc < 0)
5232                 goto err_out_client;
5233         spec->pool_id = (u64)rc;
5234
5235         /* The ceph file layout needs to fit pool id in 32 bits */
5236
5237         if (spec->pool_id > (u64)U32_MAX) {
5238                 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5239                                 (unsigned long long)spec->pool_id, U32_MAX);
5240                 rc = -EIO;
5241                 goto err_out_client;
5242         }
5243
5244         rbd_dev = rbd_dev_create(rbdc, spec);
5245         if (!rbd_dev)
5246                 goto err_out_client;
5247         rbdc = NULL;            /* rbd_dev now owns this */
5248         spec = NULL;            /* rbd_dev now owns this */
5249
5250         rc = rbd_dev_image_probe(rbd_dev, true);
5251         if (rc < 0)
5252                 goto err_out_rbd_dev;
5253
5254         /* If we are mapping a snapshot it must be marked read-only */
5255
5256         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5257                 read_only = true;
5258         rbd_dev->mapping.read_only = read_only;
5259
5260         rc = rbd_dev_device_setup(rbd_dev);
5261         if (rc) {
5262                 /*
5263                  * rbd_dev_header_unwatch_sync() can't be moved into
5264                  * rbd_dev_image_release() without refactoring, see
5265                  * commit 1f3ef78861ac.
5266                  */
5267                 rbd_dev_header_unwatch_sync(rbd_dev);
5268                 rbd_dev_image_release(rbd_dev);
5269                 goto err_out_module;
5270         }
5271
5272         return count;
5273
5274 err_out_rbd_dev:
5275         rbd_dev_destroy(rbd_dev);
5276 err_out_client:
5277         rbd_put_client(rbdc);
5278 err_out_args:
5279         rbd_spec_put(spec);
5280 err_out_module:
5281         module_put(THIS_MODULE);
5282
5283         dout("Error adding device %s\n", buf);
5284
5285         return (ssize_t)rc;
5286 }
5287
5288 static ssize_t rbd_add(struct bus_type *bus,
5289                        const char *buf,
5290                        size_t count)
5291 {
5292         if (single_major)
5293                 return -EINVAL;
5294
5295         return do_rbd_add(bus, buf, count);
5296 }
5297
5298 static ssize_t rbd_add_single_major(struct bus_type *bus,
5299                                     const char *buf,
5300                                     size_t count)
5301 {
5302         return do_rbd_add(bus, buf, count);
5303 }
5304
5305 static void rbd_dev_device_release(struct device *dev)
5306 {
5307         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5308
5309         rbd_free_disk(rbd_dev);
5310         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5311         rbd_dev_mapping_clear(rbd_dev);
5312         if (!single_major)
5313                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5314         rbd_dev_id_put(rbd_dev);
5315         rbd_dev_mapping_clear(rbd_dev);
5316 }
5317
5318 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5319 {
5320         while (rbd_dev->parent) {
5321                 struct rbd_device *first = rbd_dev;
5322                 struct rbd_device *second = first->parent;
5323                 struct rbd_device *third;
5324
5325                 /*
5326                  * Follow to the parent with no grandparent and
5327                  * remove it.
5328                  */
5329                 while (second && (third = second->parent)) {
5330                         first = second;
5331                         second = third;
5332                 }
5333                 rbd_assert(second);
5334                 rbd_dev_image_release(second);
5335                 first->parent = NULL;
5336                 first->parent_overlap = 0;
5337
5338                 rbd_assert(first->parent_spec);
5339                 rbd_spec_put(first->parent_spec);
5340                 first->parent_spec = NULL;
5341         }
5342 }
5343
5344 static ssize_t do_rbd_remove(struct bus_type *bus,
5345                              const char *buf,
5346                              size_t count)
5347 {
5348         struct rbd_device *rbd_dev = NULL;
5349         struct list_head *tmp;
5350         int dev_id;
5351         unsigned long ul;
5352         bool already = false;
5353         int ret;
5354
5355         ret = kstrtoul(buf, 10, &ul);
5356         if (ret)
5357                 return ret;
5358
5359         /* convert to int; abort if we lost anything in the conversion */
5360         dev_id = (int)ul;
5361         if (dev_id != ul)
5362                 return -EINVAL;
5363
5364         ret = -ENOENT;
5365         spin_lock(&rbd_dev_list_lock);
5366         list_for_each(tmp, &rbd_dev_list) {
5367                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5368                 if (rbd_dev->dev_id == dev_id) {
5369                         ret = 0;
5370                         break;
5371                 }
5372         }
5373         if (!ret) {
5374                 spin_lock_irq(&rbd_dev->lock);
5375                 if (rbd_dev->open_count)
5376                         ret = -EBUSY;
5377                 else
5378                         already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5379                                                         &rbd_dev->flags);
5380                 spin_unlock_irq(&rbd_dev->lock);
5381         }
5382         spin_unlock(&rbd_dev_list_lock);
5383         if (ret < 0 || already)
5384                 return ret;
5385
5386         rbd_dev_header_unwatch_sync(rbd_dev);
5387         /*
5388          * flush remaining watch callbacks - these must be complete
5389          * before the osd_client is shutdown
5390          */
5391         dout("%s: flushing notifies", __func__);
5392         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5393
5394         /*
5395          * Don't free anything from rbd_dev->disk until after all
5396          * notifies are completely processed. Otherwise
5397          * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5398          * in a potential use after free of rbd_dev->disk or rbd_dev.
5399          */
5400         rbd_bus_del_dev(rbd_dev);
5401         rbd_dev_image_release(rbd_dev);
5402         module_put(THIS_MODULE);
5403
5404         return count;
5405 }
5406
5407 static ssize_t rbd_remove(struct bus_type *bus,
5408                           const char *buf,
5409                           size_t count)
5410 {
5411         if (single_major)
5412                 return -EINVAL;
5413
5414         return do_rbd_remove(bus, buf, count);
5415 }
5416
5417 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5418                                        const char *buf,
5419                                        size_t count)
5420 {
5421         return do_rbd_remove(bus, buf, count);
5422 }
5423
5424 /*
5425  * create control files in sysfs
5426  * /sys/bus/rbd/...
5427  */
5428 static int rbd_sysfs_init(void)
5429 {
5430         int ret;
5431
5432         ret = device_register(&rbd_root_dev);
5433         if (ret < 0)
5434                 return ret;
5435
5436         ret = bus_register(&rbd_bus_type);
5437         if (ret < 0)
5438                 device_unregister(&rbd_root_dev);
5439
5440         return ret;
5441 }
5442
5443 static void rbd_sysfs_cleanup(void)
5444 {
5445         bus_unregister(&rbd_bus_type);
5446         device_unregister(&rbd_root_dev);
5447 }
5448
5449 static int rbd_slab_init(void)
5450 {
5451         rbd_assert(!rbd_img_request_cache);
5452         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5453                                         sizeof (struct rbd_img_request),
5454                                         __alignof__(struct rbd_img_request),
5455                                         0, NULL);
5456         if (!rbd_img_request_cache)
5457                 return -ENOMEM;
5458
5459         rbd_assert(!rbd_obj_request_cache);
5460         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5461                                         sizeof (struct rbd_obj_request),
5462                                         __alignof__(struct rbd_obj_request),
5463                                         0, NULL);
5464         if (!rbd_obj_request_cache)
5465                 goto out_err;
5466
5467         rbd_assert(!rbd_segment_name_cache);
5468         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5469                                         CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5470         if (rbd_segment_name_cache)
5471                 return 0;
5472 out_err:
5473         if (rbd_obj_request_cache) {
5474                 kmem_cache_destroy(rbd_obj_request_cache);
5475                 rbd_obj_request_cache = NULL;
5476         }
5477
5478         kmem_cache_destroy(rbd_img_request_cache);
5479         rbd_img_request_cache = NULL;
5480
5481         return -ENOMEM;
5482 }
5483
5484 static void rbd_slab_exit(void)
5485 {
5486         rbd_assert(rbd_segment_name_cache);
5487         kmem_cache_destroy(rbd_segment_name_cache);
5488         rbd_segment_name_cache = NULL;
5489
5490         rbd_assert(rbd_obj_request_cache);
5491         kmem_cache_destroy(rbd_obj_request_cache);
5492         rbd_obj_request_cache = NULL;
5493
5494         rbd_assert(rbd_img_request_cache);
5495         kmem_cache_destroy(rbd_img_request_cache);
5496         rbd_img_request_cache = NULL;
5497 }
5498
5499 static int __init rbd_init(void)
5500 {
5501         int rc;
5502
5503         if (!libceph_compatible(NULL)) {
5504                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5505                 return -EINVAL;
5506         }
5507
5508         rc = rbd_slab_init();
5509         if (rc)
5510                 return rc;
5511
5512         if (single_major) {
5513                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
5514                 if (rbd_major < 0) {
5515                         rc = rbd_major;
5516                         goto err_out_slab;
5517                 }
5518         }
5519
5520         rc = rbd_sysfs_init();
5521         if (rc)
5522                 goto err_out_blkdev;
5523
5524         if (single_major)
5525                 pr_info("loaded (major %d)\n", rbd_major);
5526         else
5527                 pr_info("loaded\n");
5528
5529         return 0;
5530
5531 err_out_blkdev:
5532         if (single_major)
5533                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5534 err_out_slab:
5535         rbd_slab_exit();
5536         return rc;
5537 }
5538
5539 static void __exit rbd_exit(void)
5540 {
5541         ida_destroy(&rbd_dev_id_ida);
5542         rbd_sysfs_cleanup();
5543         if (single_major)
5544                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5545         rbd_slab_exit();
5546 }
5547
5548 module_init(rbd_init);
5549 module_exit(rbd_exit);
5550
5551 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5552 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5553 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5554 /* following authorship retained from original osdblk.c */
5555 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5556
5557 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5558 MODULE_LICENSE("GPL");