regulator: rt5033-regulator: Use regulator_nodes/of_match in the descriptor
[cascardo/linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47
48 static const u32 hpd_ibx[] = {
49         [HPD_CRT] = SDE_CRT_HOTPLUG,
50         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
51         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
52         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
53         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
54 };
55
56 static const u32 hpd_cpt[] = {
57         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
58         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
59         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
60         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
61         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
62 };
63
64 static const u32 hpd_mask_i915[] = {
65         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
66         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
67         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
68         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
69         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
70         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
71 };
72
73 static const u32 hpd_status_g4x[] = {
74         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
75         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
76         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
77         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
78         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
79         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
80 };
81
82 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
83         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
84         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
85         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
86         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
87         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
88         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
89 };
90
91 /* IIR can theoretically queue up two events. Be paranoid. */
92 #define GEN8_IRQ_RESET_NDX(type, which) do { \
93         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
94         POSTING_READ(GEN8_##type##_IMR(which)); \
95         I915_WRITE(GEN8_##type##_IER(which), 0); \
96         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
97         POSTING_READ(GEN8_##type##_IIR(which)); \
98         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
99         POSTING_READ(GEN8_##type##_IIR(which)); \
100 } while (0)
101
102 #define GEN5_IRQ_RESET(type) do { \
103         I915_WRITE(type##IMR, 0xffffffff); \
104         POSTING_READ(type##IMR); \
105         I915_WRITE(type##IER, 0); \
106         I915_WRITE(type##IIR, 0xffffffff); \
107         POSTING_READ(type##IIR); \
108         I915_WRITE(type##IIR, 0xffffffff); \
109         POSTING_READ(type##IIR); \
110 } while (0)
111
112 /*
113  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
114  */
115 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
116         u32 val = I915_READ(reg); \
117         if (val) { \
118                 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
119                      (reg), val); \
120                 I915_WRITE((reg), 0xffffffff); \
121                 POSTING_READ(reg); \
122                 I915_WRITE((reg), 0xffffffff); \
123                 POSTING_READ(reg); \
124         } \
125 } while (0)
126
127 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
128         GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
129         I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
130         I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
131         POSTING_READ(GEN8_##type##_IMR(which)); \
132 } while (0)
133
134 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
135         GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
136         I915_WRITE(type##IER, (ier_val)); \
137         I915_WRITE(type##IMR, (imr_val)); \
138         POSTING_READ(type##IMR); \
139 } while (0)
140
141 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
142
143 /* For display hotplug interrupt */
144 void
145 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
146 {
147         assert_spin_locked(&dev_priv->irq_lock);
148
149         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
150                 return;
151
152         if ((dev_priv->irq_mask & mask) != 0) {
153                 dev_priv->irq_mask &= ~mask;
154                 I915_WRITE(DEIMR, dev_priv->irq_mask);
155                 POSTING_READ(DEIMR);
156         }
157 }
158
159 void
160 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
161 {
162         assert_spin_locked(&dev_priv->irq_lock);
163
164         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
165                 return;
166
167         if ((dev_priv->irq_mask & mask) != mask) {
168                 dev_priv->irq_mask |= mask;
169                 I915_WRITE(DEIMR, dev_priv->irq_mask);
170                 POSTING_READ(DEIMR);
171         }
172 }
173
174 /**
175  * ilk_update_gt_irq - update GTIMR
176  * @dev_priv: driver private
177  * @interrupt_mask: mask of interrupt bits to update
178  * @enabled_irq_mask: mask of interrupt bits to enable
179  */
180 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
181                               uint32_t interrupt_mask,
182                               uint32_t enabled_irq_mask)
183 {
184         assert_spin_locked(&dev_priv->irq_lock);
185
186         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
187                 return;
188
189         dev_priv->gt_irq_mask &= ~interrupt_mask;
190         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
191         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
192         POSTING_READ(GTIMR);
193 }
194
195 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
196 {
197         ilk_update_gt_irq(dev_priv, mask, mask);
198 }
199
200 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
201 {
202         ilk_update_gt_irq(dev_priv, mask, 0);
203 }
204
205 static u32 gen6_pm_iir(struct drm_i915_private *dev_priv)
206 {
207         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
208 }
209
210 static u32 gen6_pm_imr(struct drm_i915_private *dev_priv)
211 {
212         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
213 }
214
215 static u32 gen6_pm_ier(struct drm_i915_private *dev_priv)
216 {
217         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
218 }
219
220 /**
221   * snb_update_pm_irq - update GEN6_PMIMR
222   * @dev_priv: driver private
223   * @interrupt_mask: mask of interrupt bits to update
224   * @enabled_irq_mask: mask of interrupt bits to enable
225   */
226 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
227                               uint32_t interrupt_mask,
228                               uint32_t enabled_irq_mask)
229 {
230         uint32_t new_val;
231
232         assert_spin_locked(&dev_priv->irq_lock);
233
234         new_val = dev_priv->pm_irq_mask;
235         new_val &= ~interrupt_mask;
236         new_val |= (~enabled_irq_mask & interrupt_mask);
237
238         if (new_val != dev_priv->pm_irq_mask) {
239                 dev_priv->pm_irq_mask = new_val;
240                 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
241                 POSTING_READ(gen6_pm_imr(dev_priv));
242         }
243 }
244
245 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
246 {
247         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
248                 return;
249
250         snb_update_pm_irq(dev_priv, mask, mask);
251 }
252
253 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
254                                   uint32_t mask)
255 {
256         snb_update_pm_irq(dev_priv, mask, 0);
257 }
258
259 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
260 {
261         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
262                 return;
263
264         __gen6_disable_pm_irq(dev_priv, mask);
265 }
266
267 void gen6_reset_rps_interrupts(struct drm_device *dev)
268 {
269         struct drm_i915_private *dev_priv = dev->dev_private;
270         uint32_t reg = gen6_pm_iir(dev_priv);
271
272         spin_lock_irq(&dev_priv->irq_lock);
273         I915_WRITE(reg, dev_priv->pm_rps_events);
274         I915_WRITE(reg, dev_priv->pm_rps_events);
275         POSTING_READ(reg);
276         spin_unlock_irq(&dev_priv->irq_lock);
277 }
278
279 void gen6_enable_rps_interrupts(struct drm_device *dev)
280 {
281         struct drm_i915_private *dev_priv = dev->dev_private;
282
283         spin_lock_irq(&dev_priv->irq_lock);
284         WARN_ON(dev_priv->rps.pm_iir);
285         WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
286         dev_priv->rps.interrupts_enabled = true;
287         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
288         spin_unlock_irq(&dev_priv->irq_lock);
289 }
290
291 void gen6_disable_rps_interrupts(struct drm_device *dev)
292 {
293         struct drm_i915_private *dev_priv = dev->dev_private;
294
295         spin_lock_irq(&dev_priv->irq_lock);
296         dev_priv->rps.interrupts_enabled = false;
297         spin_unlock_irq(&dev_priv->irq_lock);
298
299         cancel_work_sync(&dev_priv->rps.work);
300
301         spin_lock_irq(&dev_priv->irq_lock);
302
303         I915_WRITE(GEN6_PMINTRMSK, INTEL_INFO(dev_priv)->gen >= 8 ?
304                    ~GEN8_PMINTR_REDIRECT_TO_NON_DISP : ~0);
305
306         __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
307         I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
308                                 ~dev_priv->pm_rps_events);
309         I915_WRITE(gen6_pm_iir(dev_priv), dev_priv->pm_rps_events);
310         I915_WRITE(gen6_pm_iir(dev_priv), dev_priv->pm_rps_events);
311
312         dev_priv->rps.pm_iir = 0;
313
314         spin_unlock_irq(&dev_priv->irq_lock);
315 }
316
317 /**
318  * ibx_display_interrupt_update - update SDEIMR
319  * @dev_priv: driver private
320  * @interrupt_mask: mask of interrupt bits to update
321  * @enabled_irq_mask: mask of interrupt bits to enable
322  */
323 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
324                                   uint32_t interrupt_mask,
325                                   uint32_t enabled_irq_mask)
326 {
327         uint32_t sdeimr = I915_READ(SDEIMR);
328         sdeimr &= ~interrupt_mask;
329         sdeimr |= (~enabled_irq_mask & interrupt_mask);
330
331         assert_spin_locked(&dev_priv->irq_lock);
332
333         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334                 return;
335
336         I915_WRITE(SDEIMR, sdeimr);
337         POSTING_READ(SDEIMR);
338 }
339
340 static void
341 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
342                        u32 enable_mask, u32 status_mask)
343 {
344         u32 reg = PIPESTAT(pipe);
345         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
346
347         assert_spin_locked(&dev_priv->irq_lock);
348         WARN_ON(!intel_irqs_enabled(dev_priv));
349
350         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
351                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
352                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
353                       pipe_name(pipe), enable_mask, status_mask))
354                 return;
355
356         if ((pipestat & enable_mask) == enable_mask)
357                 return;
358
359         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
360
361         /* Enable the interrupt, clear any pending status */
362         pipestat |= enable_mask | status_mask;
363         I915_WRITE(reg, pipestat);
364         POSTING_READ(reg);
365 }
366
367 static void
368 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
369                         u32 enable_mask, u32 status_mask)
370 {
371         u32 reg = PIPESTAT(pipe);
372         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
373
374         assert_spin_locked(&dev_priv->irq_lock);
375         WARN_ON(!intel_irqs_enabled(dev_priv));
376
377         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
378                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
379                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
380                       pipe_name(pipe), enable_mask, status_mask))
381                 return;
382
383         if ((pipestat & enable_mask) == 0)
384                 return;
385
386         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
387
388         pipestat &= ~enable_mask;
389         I915_WRITE(reg, pipestat);
390         POSTING_READ(reg);
391 }
392
393 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
394 {
395         u32 enable_mask = status_mask << 16;
396
397         /*
398          * On pipe A we don't support the PSR interrupt yet,
399          * on pipe B and C the same bit MBZ.
400          */
401         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
402                 return 0;
403         /*
404          * On pipe B and C we don't support the PSR interrupt yet, on pipe
405          * A the same bit is for perf counters which we don't use either.
406          */
407         if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
408                 return 0;
409
410         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
411                          SPRITE0_FLIP_DONE_INT_EN_VLV |
412                          SPRITE1_FLIP_DONE_INT_EN_VLV);
413         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
414                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
415         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
416                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
417
418         return enable_mask;
419 }
420
421 void
422 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
423                      u32 status_mask)
424 {
425         u32 enable_mask;
426
427         if (IS_VALLEYVIEW(dev_priv->dev))
428                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
429                                                            status_mask);
430         else
431                 enable_mask = status_mask << 16;
432         __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
433 }
434
435 void
436 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
437                       u32 status_mask)
438 {
439         u32 enable_mask;
440
441         if (IS_VALLEYVIEW(dev_priv->dev))
442                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
443                                                            status_mask);
444         else
445                 enable_mask = status_mask << 16;
446         __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
447 }
448
449 /**
450  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
451  */
452 static void i915_enable_asle_pipestat(struct drm_device *dev)
453 {
454         struct drm_i915_private *dev_priv = dev->dev_private;
455
456         if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
457                 return;
458
459         spin_lock_irq(&dev_priv->irq_lock);
460
461         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
462         if (INTEL_INFO(dev)->gen >= 4)
463                 i915_enable_pipestat(dev_priv, PIPE_A,
464                                      PIPE_LEGACY_BLC_EVENT_STATUS);
465
466         spin_unlock_irq(&dev_priv->irq_lock);
467 }
468
469 /**
470  * i915_pipe_enabled - check if a pipe is enabled
471  * @dev: DRM device
472  * @pipe: pipe to check
473  *
474  * Reading certain registers when the pipe is disabled can hang the chip.
475  * Use this routine to make sure the PLL is running and the pipe is active
476  * before reading such registers if unsure.
477  */
478 static int
479 i915_pipe_enabled(struct drm_device *dev, int pipe)
480 {
481         struct drm_i915_private *dev_priv = dev->dev_private;
482
483         if (drm_core_check_feature(dev, DRIVER_MODESET)) {
484                 /* Locking is horribly broken here, but whatever. */
485                 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
486                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
487
488                 return intel_crtc->active;
489         } else {
490                 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
491         }
492 }
493
494 /*
495  * This timing diagram depicts the video signal in and
496  * around the vertical blanking period.
497  *
498  * Assumptions about the fictitious mode used in this example:
499  *  vblank_start >= 3
500  *  vsync_start = vblank_start + 1
501  *  vsync_end = vblank_start + 2
502  *  vtotal = vblank_start + 3
503  *
504  *           start of vblank:
505  *           latch double buffered registers
506  *           increment frame counter (ctg+)
507  *           generate start of vblank interrupt (gen4+)
508  *           |
509  *           |          frame start:
510  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
511  *           |          may be shifted forward 1-3 extra lines via PIPECONF
512  *           |          |
513  *           |          |  start of vsync:
514  *           |          |  generate vsync interrupt
515  *           |          |  |
516  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
517  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
518  * ----va---> <-----------------vb--------------------> <--------va-------------
519  *       |          |       <----vs----->                     |
520  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
521  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
522  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
523  *       |          |                                         |
524  *       last visible pixel                                   first visible pixel
525  *                  |                                         increment frame counter (gen3/4)
526  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
527  *
528  * x  = horizontal active
529  * _  = horizontal blanking
530  * hs = horizontal sync
531  * va = vertical active
532  * vb = vertical blanking
533  * vs = vertical sync
534  * vbs = vblank_start (number)
535  *
536  * Summary:
537  * - most events happen at the start of horizontal sync
538  * - frame start happens at the start of horizontal blank, 1-4 lines
539  *   (depending on PIPECONF settings) after the start of vblank
540  * - gen3/4 pixel and frame counter are synchronized with the start
541  *   of horizontal active on the first line of vertical active
542  */
543
544 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
545 {
546         /* Gen2 doesn't have a hardware frame counter */
547         return 0;
548 }
549
550 /* Called from drm generic code, passed a 'crtc', which
551  * we use as a pipe index
552  */
553 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
554 {
555         struct drm_i915_private *dev_priv = dev->dev_private;
556         unsigned long high_frame;
557         unsigned long low_frame;
558         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
559
560         if (!i915_pipe_enabled(dev, pipe)) {
561                 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
562                                 "pipe %c\n", pipe_name(pipe));
563                 return 0;
564         }
565
566         if (drm_core_check_feature(dev, DRIVER_MODESET)) {
567                 struct intel_crtc *intel_crtc =
568                         to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
569                 const struct drm_display_mode *mode =
570                         &intel_crtc->config.adjusted_mode;
571
572                 htotal = mode->crtc_htotal;
573                 hsync_start = mode->crtc_hsync_start;
574                 vbl_start = mode->crtc_vblank_start;
575                 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
576                         vbl_start = DIV_ROUND_UP(vbl_start, 2);
577         } else {
578                 enum transcoder cpu_transcoder = (enum transcoder) pipe;
579
580                 htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
581                 hsync_start = (I915_READ(HSYNC(cpu_transcoder))  & 0x1fff) + 1;
582                 vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
583                 if ((I915_READ(PIPECONF(cpu_transcoder)) &
584                      PIPECONF_INTERLACE_MASK) != PIPECONF_PROGRESSIVE)
585                         vbl_start = DIV_ROUND_UP(vbl_start, 2);
586         }
587
588         /* Convert to pixel count */
589         vbl_start *= htotal;
590
591         /* Start of vblank event occurs at start of hsync */
592         vbl_start -= htotal - hsync_start;
593
594         high_frame = PIPEFRAME(pipe);
595         low_frame = PIPEFRAMEPIXEL(pipe);
596
597         /*
598          * High & low register fields aren't synchronized, so make sure
599          * we get a low value that's stable across two reads of the high
600          * register.
601          */
602         do {
603                 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
604                 low   = I915_READ(low_frame);
605                 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
606         } while (high1 != high2);
607
608         high1 >>= PIPE_FRAME_HIGH_SHIFT;
609         pixel = low & PIPE_PIXEL_MASK;
610         low >>= PIPE_FRAME_LOW_SHIFT;
611
612         /*
613          * The frame counter increments at beginning of active.
614          * Cook up a vblank counter by also checking the pixel
615          * counter against vblank start.
616          */
617         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
618 }
619
620 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
621 {
622         struct drm_i915_private *dev_priv = dev->dev_private;
623         int reg = PIPE_FRMCOUNT_GM45(pipe);
624
625         if (!i915_pipe_enabled(dev, pipe)) {
626                 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
627                                  "pipe %c\n", pipe_name(pipe));
628                 return 0;
629         }
630
631         return I915_READ(reg);
632 }
633
634 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
635 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
636
637 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
638 {
639         struct drm_device *dev = crtc->base.dev;
640         struct drm_i915_private *dev_priv = dev->dev_private;
641         const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
642         enum pipe pipe = crtc->pipe;
643         int position, vtotal;
644
645         vtotal = mode->crtc_vtotal;
646         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
647                 vtotal /= 2;
648
649         if (IS_GEN2(dev))
650                 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
651         else
652                 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
653
654         /*
655          * See update_scanline_offset() for the details on the
656          * scanline_offset adjustment.
657          */
658         return (position + crtc->scanline_offset) % vtotal;
659 }
660
661 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
662                                     unsigned int flags, int *vpos, int *hpos,
663                                     ktime_t *stime, ktime_t *etime)
664 {
665         struct drm_i915_private *dev_priv = dev->dev_private;
666         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
667         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
668         const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
669         int position;
670         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
671         bool in_vbl = true;
672         int ret = 0;
673         unsigned long irqflags;
674
675         if (!intel_crtc->active) {
676                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
677                                  "pipe %c\n", pipe_name(pipe));
678                 return 0;
679         }
680
681         htotal = mode->crtc_htotal;
682         hsync_start = mode->crtc_hsync_start;
683         vtotal = mode->crtc_vtotal;
684         vbl_start = mode->crtc_vblank_start;
685         vbl_end = mode->crtc_vblank_end;
686
687         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
688                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
689                 vbl_end /= 2;
690                 vtotal /= 2;
691         }
692
693         ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
694
695         /*
696          * Lock uncore.lock, as we will do multiple timing critical raw
697          * register reads, potentially with preemption disabled, so the
698          * following code must not block on uncore.lock.
699          */
700         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
701
702         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
703
704         /* Get optional system timestamp before query. */
705         if (stime)
706                 *stime = ktime_get();
707
708         if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
709                 /* No obvious pixelcount register. Only query vertical
710                  * scanout position from Display scan line register.
711                  */
712                 position = __intel_get_crtc_scanline(intel_crtc);
713         } else {
714                 /* Have access to pixelcount since start of frame.
715                  * We can split this into vertical and horizontal
716                  * scanout position.
717                  */
718                 position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
719
720                 /* convert to pixel counts */
721                 vbl_start *= htotal;
722                 vbl_end *= htotal;
723                 vtotal *= htotal;
724
725                 /*
726                  * In interlaced modes, the pixel counter counts all pixels,
727                  * so one field will have htotal more pixels. In order to avoid
728                  * the reported position from jumping backwards when the pixel
729                  * counter is beyond the length of the shorter field, just
730                  * clamp the position the length of the shorter field. This
731                  * matches how the scanline counter based position works since
732                  * the scanline counter doesn't count the two half lines.
733                  */
734                 if (position >= vtotal)
735                         position = vtotal - 1;
736
737                 /*
738                  * Start of vblank interrupt is triggered at start of hsync,
739                  * just prior to the first active line of vblank. However we
740                  * consider lines to start at the leading edge of horizontal
741                  * active. So, should we get here before we've crossed into
742                  * the horizontal active of the first line in vblank, we would
743                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
744                  * always add htotal-hsync_start to the current pixel position.
745                  */
746                 position = (position + htotal - hsync_start) % vtotal;
747         }
748
749         /* Get optional system timestamp after query. */
750         if (etime)
751                 *etime = ktime_get();
752
753         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
754
755         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
756
757         in_vbl = position >= vbl_start && position < vbl_end;
758
759         /*
760          * While in vblank, position will be negative
761          * counting up towards 0 at vbl_end. And outside
762          * vblank, position will be positive counting
763          * up since vbl_end.
764          */
765         if (position >= vbl_start)
766                 position -= vbl_end;
767         else
768                 position += vtotal - vbl_end;
769
770         if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
771                 *vpos = position;
772                 *hpos = 0;
773         } else {
774                 *vpos = position / htotal;
775                 *hpos = position - (*vpos * htotal);
776         }
777
778         /* In vblank? */
779         if (in_vbl)
780                 ret |= DRM_SCANOUTPOS_IN_VBLANK;
781
782         return ret;
783 }
784
785 int intel_get_crtc_scanline(struct intel_crtc *crtc)
786 {
787         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
788         unsigned long irqflags;
789         int position;
790
791         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
792         position = __intel_get_crtc_scanline(crtc);
793         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
794
795         return position;
796 }
797
798 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
799                               int *max_error,
800                               struct timeval *vblank_time,
801                               unsigned flags)
802 {
803         struct drm_crtc *crtc;
804
805         if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
806                 DRM_ERROR("Invalid crtc %d\n", pipe);
807                 return -EINVAL;
808         }
809
810         /* Get drm_crtc to timestamp: */
811         crtc = intel_get_crtc_for_pipe(dev, pipe);
812         if (crtc == NULL) {
813                 DRM_ERROR("Invalid crtc %d\n", pipe);
814                 return -EINVAL;
815         }
816
817         if (!crtc->enabled) {
818                 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
819                 return -EBUSY;
820         }
821
822         /* Helper routine in DRM core does all the work: */
823         return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
824                                                      vblank_time, flags,
825                                                      crtc,
826                                                      &to_intel_crtc(crtc)->config.adjusted_mode);
827 }
828
829 static bool intel_hpd_irq_event(struct drm_device *dev,
830                                 struct drm_connector *connector)
831 {
832         enum drm_connector_status old_status;
833
834         WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
835         old_status = connector->status;
836
837         connector->status = connector->funcs->detect(connector, false);
838         if (old_status == connector->status)
839                 return false;
840
841         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
842                       connector->base.id,
843                       connector->name,
844                       drm_get_connector_status_name(old_status),
845                       drm_get_connector_status_name(connector->status));
846
847         return true;
848 }
849
850 static void i915_digport_work_func(struct work_struct *work)
851 {
852         struct drm_i915_private *dev_priv =
853                 container_of(work, struct drm_i915_private, dig_port_work);
854         u32 long_port_mask, short_port_mask;
855         struct intel_digital_port *intel_dig_port;
856         int i, ret;
857         u32 old_bits = 0;
858
859         spin_lock_irq(&dev_priv->irq_lock);
860         long_port_mask = dev_priv->long_hpd_port_mask;
861         dev_priv->long_hpd_port_mask = 0;
862         short_port_mask = dev_priv->short_hpd_port_mask;
863         dev_priv->short_hpd_port_mask = 0;
864         spin_unlock_irq(&dev_priv->irq_lock);
865
866         for (i = 0; i < I915_MAX_PORTS; i++) {
867                 bool valid = false;
868                 bool long_hpd = false;
869                 intel_dig_port = dev_priv->hpd_irq_port[i];
870                 if (!intel_dig_port || !intel_dig_port->hpd_pulse)
871                         continue;
872
873                 if (long_port_mask & (1 << i))  {
874                         valid = true;
875                         long_hpd = true;
876                 } else if (short_port_mask & (1 << i))
877                         valid = true;
878
879                 if (valid) {
880                         ret = intel_dig_port->hpd_pulse(intel_dig_port, long_hpd);
881                         if (ret == true) {
882                                 /* if we get true fallback to old school hpd */
883                                 old_bits |= (1 << intel_dig_port->base.hpd_pin);
884                         }
885                 }
886         }
887
888         if (old_bits) {
889                 spin_lock_irq(&dev_priv->irq_lock);
890                 dev_priv->hpd_event_bits |= old_bits;
891                 spin_unlock_irq(&dev_priv->irq_lock);
892                 schedule_work(&dev_priv->hotplug_work);
893         }
894 }
895
896 /*
897  * Handle hotplug events outside the interrupt handler proper.
898  */
899 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
900
901 static void i915_hotplug_work_func(struct work_struct *work)
902 {
903         struct drm_i915_private *dev_priv =
904                 container_of(work, struct drm_i915_private, hotplug_work);
905         struct drm_device *dev = dev_priv->dev;
906         struct drm_mode_config *mode_config = &dev->mode_config;
907         struct intel_connector *intel_connector;
908         struct intel_encoder *intel_encoder;
909         struct drm_connector *connector;
910         bool hpd_disabled = false;
911         bool changed = false;
912         u32 hpd_event_bits;
913
914         mutex_lock(&mode_config->mutex);
915         DRM_DEBUG_KMS("running encoder hotplug functions\n");
916
917         spin_lock_irq(&dev_priv->irq_lock);
918
919         hpd_event_bits = dev_priv->hpd_event_bits;
920         dev_priv->hpd_event_bits = 0;
921         list_for_each_entry(connector, &mode_config->connector_list, head) {
922                 intel_connector = to_intel_connector(connector);
923                 if (!intel_connector->encoder)
924                         continue;
925                 intel_encoder = intel_connector->encoder;
926                 if (intel_encoder->hpd_pin > HPD_NONE &&
927                     dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
928                     connector->polled == DRM_CONNECTOR_POLL_HPD) {
929                         DRM_INFO("HPD interrupt storm detected on connector %s: "
930                                  "switching from hotplug detection to polling\n",
931                                 connector->name);
932                         dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
933                         connector->polled = DRM_CONNECTOR_POLL_CONNECT
934                                 | DRM_CONNECTOR_POLL_DISCONNECT;
935                         hpd_disabled = true;
936                 }
937                 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
938                         DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
939                                       connector->name, intel_encoder->hpd_pin);
940                 }
941         }
942          /* if there were no outputs to poll, poll was disabled,
943           * therefore make sure it's enabled when disabling HPD on
944           * some connectors */
945         if (hpd_disabled) {
946                 drm_kms_helper_poll_enable(dev);
947                 mod_delayed_work(system_wq, &dev_priv->hotplug_reenable_work,
948                                  msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
949         }
950
951         spin_unlock_irq(&dev_priv->irq_lock);
952
953         list_for_each_entry(connector, &mode_config->connector_list, head) {
954                 intel_connector = to_intel_connector(connector);
955                 if (!intel_connector->encoder)
956                         continue;
957                 intel_encoder = intel_connector->encoder;
958                 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
959                         if (intel_encoder->hot_plug)
960                                 intel_encoder->hot_plug(intel_encoder);
961                         if (intel_hpd_irq_event(dev, connector))
962                                 changed = true;
963                 }
964         }
965         mutex_unlock(&mode_config->mutex);
966
967         if (changed)
968                 drm_kms_helper_hotplug_event(dev);
969 }
970
971 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
972 {
973         struct drm_i915_private *dev_priv = dev->dev_private;
974         u32 busy_up, busy_down, max_avg, min_avg;
975         u8 new_delay;
976
977         spin_lock(&mchdev_lock);
978
979         I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
980
981         new_delay = dev_priv->ips.cur_delay;
982
983         I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
984         busy_up = I915_READ(RCPREVBSYTUPAVG);
985         busy_down = I915_READ(RCPREVBSYTDNAVG);
986         max_avg = I915_READ(RCBMAXAVG);
987         min_avg = I915_READ(RCBMINAVG);
988
989         /* Handle RCS change request from hw */
990         if (busy_up > max_avg) {
991                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
992                         new_delay = dev_priv->ips.cur_delay - 1;
993                 if (new_delay < dev_priv->ips.max_delay)
994                         new_delay = dev_priv->ips.max_delay;
995         } else if (busy_down < min_avg) {
996                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
997                         new_delay = dev_priv->ips.cur_delay + 1;
998                 if (new_delay > dev_priv->ips.min_delay)
999                         new_delay = dev_priv->ips.min_delay;
1000         }
1001
1002         if (ironlake_set_drps(dev, new_delay))
1003                 dev_priv->ips.cur_delay = new_delay;
1004
1005         spin_unlock(&mchdev_lock);
1006
1007         return;
1008 }
1009
1010 static void notify_ring(struct drm_device *dev,
1011                         struct intel_engine_cs *ring)
1012 {
1013         if (!intel_ring_initialized(ring))
1014                 return;
1015
1016         trace_i915_gem_request_complete(ring);
1017
1018         wake_up_all(&ring->irq_queue);
1019 }
1020
1021 static u32 vlv_c0_residency(struct drm_i915_private *dev_priv,
1022                             struct intel_rps_ei *rps_ei)
1023 {
1024         u32 cz_ts, cz_freq_khz;
1025         u32 render_count, media_count;
1026         u32 elapsed_render, elapsed_media, elapsed_time;
1027         u32 residency = 0;
1028
1029         cz_ts = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1030         cz_freq_khz = DIV_ROUND_CLOSEST(dev_priv->mem_freq * 1000, 4);
1031
1032         render_count = I915_READ(VLV_RENDER_C0_COUNT_REG);
1033         media_count = I915_READ(VLV_MEDIA_C0_COUNT_REG);
1034
1035         if (rps_ei->cz_clock == 0) {
1036                 rps_ei->cz_clock = cz_ts;
1037                 rps_ei->render_c0 = render_count;
1038                 rps_ei->media_c0 = media_count;
1039
1040                 return dev_priv->rps.cur_freq;
1041         }
1042
1043         elapsed_time = cz_ts - rps_ei->cz_clock;
1044         rps_ei->cz_clock = cz_ts;
1045
1046         elapsed_render = render_count - rps_ei->render_c0;
1047         rps_ei->render_c0 = render_count;
1048
1049         elapsed_media = media_count - rps_ei->media_c0;
1050         rps_ei->media_c0 = media_count;
1051
1052         /* Convert all the counters into common unit of milli sec */
1053         elapsed_time /= VLV_CZ_CLOCK_TO_MILLI_SEC;
1054         elapsed_render /=  cz_freq_khz;
1055         elapsed_media /= cz_freq_khz;
1056
1057         /*
1058          * Calculate overall C0 residency percentage
1059          * only if elapsed time is non zero
1060          */
1061         if (elapsed_time) {
1062                 residency =
1063                         ((max(elapsed_render, elapsed_media) * 100)
1064                                 / elapsed_time);
1065         }
1066
1067         return residency;
1068 }
1069
1070 /**
1071  * vlv_calc_delay_from_C0_counters - Increase/Decrease freq based on GPU
1072  * busy-ness calculated from C0 counters of render & media power wells
1073  * @dev_priv: DRM device private
1074  *
1075  */
1076 static int vlv_calc_delay_from_C0_counters(struct drm_i915_private *dev_priv)
1077 {
1078         u32 residency_C0_up = 0, residency_C0_down = 0;
1079         int new_delay, adj;
1080
1081         dev_priv->rps.ei_interrupt_count++;
1082
1083         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
1084
1085
1086         if (dev_priv->rps.up_ei.cz_clock == 0) {
1087                 vlv_c0_residency(dev_priv, &dev_priv->rps.up_ei);
1088                 vlv_c0_residency(dev_priv, &dev_priv->rps.down_ei);
1089                 return dev_priv->rps.cur_freq;
1090         }
1091
1092
1093         /*
1094          * To down throttle, C0 residency should be less than down threshold
1095          * for continous EI intervals. So calculate down EI counters
1096          * once in VLV_INT_COUNT_FOR_DOWN_EI
1097          */
1098         if (dev_priv->rps.ei_interrupt_count == VLV_INT_COUNT_FOR_DOWN_EI) {
1099
1100                 dev_priv->rps.ei_interrupt_count = 0;
1101
1102                 residency_C0_down = vlv_c0_residency(dev_priv,
1103                                                      &dev_priv->rps.down_ei);
1104         } else {
1105                 residency_C0_up = vlv_c0_residency(dev_priv,
1106                                                    &dev_priv->rps.up_ei);
1107         }
1108
1109         new_delay = dev_priv->rps.cur_freq;
1110
1111         adj = dev_priv->rps.last_adj;
1112         /* C0 residency is greater than UP threshold. Increase Frequency */
1113         if (residency_C0_up >= VLV_RP_UP_EI_THRESHOLD) {
1114                 if (adj > 0)
1115                         adj *= 2;
1116                 else
1117                         adj = 1;
1118
1119                 if (dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit)
1120                         new_delay = dev_priv->rps.cur_freq + adj;
1121
1122                 /*
1123                  * For better performance, jump directly
1124                  * to RPe if we're below it.
1125                  */
1126                 if (new_delay < dev_priv->rps.efficient_freq)
1127                         new_delay = dev_priv->rps.efficient_freq;
1128
1129         } else if (!dev_priv->rps.ei_interrupt_count &&
1130                         (residency_C0_down < VLV_RP_DOWN_EI_THRESHOLD)) {
1131                 if (adj < 0)
1132                         adj *= 2;
1133                 else
1134                         adj = -1;
1135                 /*
1136                  * This means, C0 residency is less than down threshold over
1137                  * a period of VLV_INT_COUNT_FOR_DOWN_EI. So, reduce the freq
1138                  */
1139                 if (dev_priv->rps.cur_freq > dev_priv->rps.min_freq_softlimit)
1140                         new_delay = dev_priv->rps.cur_freq + adj;
1141         }
1142
1143         return new_delay;
1144 }
1145
1146 static void gen6_pm_rps_work(struct work_struct *work)
1147 {
1148         struct drm_i915_private *dev_priv =
1149                 container_of(work, struct drm_i915_private, rps.work);
1150         u32 pm_iir;
1151         int new_delay, adj;
1152
1153         spin_lock_irq(&dev_priv->irq_lock);
1154         /* Speed up work cancelation during disabling rps interrupts. */
1155         if (!dev_priv->rps.interrupts_enabled) {
1156                 spin_unlock_irq(&dev_priv->irq_lock);
1157                 return;
1158         }
1159         pm_iir = dev_priv->rps.pm_iir;
1160         dev_priv->rps.pm_iir = 0;
1161         /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1162         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1163         spin_unlock_irq(&dev_priv->irq_lock);
1164
1165         /* Make sure we didn't queue anything we're not going to process. */
1166         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1167
1168         if ((pm_iir & dev_priv->pm_rps_events) == 0)
1169                 return;
1170
1171         mutex_lock(&dev_priv->rps.hw_lock);
1172
1173         adj = dev_priv->rps.last_adj;
1174         if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1175                 if (adj > 0)
1176                         adj *= 2;
1177                 else {
1178                         /* CHV needs even encode values */
1179                         adj = IS_CHERRYVIEW(dev_priv->dev) ? 2 : 1;
1180                 }
1181                 new_delay = dev_priv->rps.cur_freq + adj;
1182
1183                 /*
1184                  * For better performance, jump directly
1185                  * to RPe if we're below it.
1186                  */
1187                 if (new_delay < dev_priv->rps.efficient_freq)
1188                         new_delay = dev_priv->rps.efficient_freq;
1189         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1190                 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1191                         new_delay = dev_priv->rps.efficient_freq;
1192                 else
1193                         new_delay = dev_priv->rps.min_freq_softlimit;
1194                 adj = 0;
1195         } else if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1196                 new_delay = vlv_calc_delay_from_C0_counters(dev_priv);
1197         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1198                 if (adj < 0)
1199                         adj *= 2;
1200                 else {
1201                         /* CHV needs even encode values */
1202                         adj = IS_CHERRYVIEW(dev_priv->dev) ? -2 : -1;
1203                 }
1204                 new_delay = dev_priv->rps.cur_freq + adj;
1205         } else { /* unknown event */
1206                 new_delay = dev_priv->rps.cur_freq;
1207         }
1208
1209         /* sysfs frequency interfaces may have snuck in while servicing the
1210          * interrupt
1211          */
1212         new_delay = clamp_t(int, new_delay,
1213                             dev_priv->rps.min_freq_softlimit,
1214                             dev_priv->rps.max_freq_softlimit);
1215
1216         dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_freq;
1217
1218         if (IS_VALLEYVIEW(dev_priv->dev))
1219                 valleyview_set_rps(dev_priv->dev, new_delay);
1220         else
1221                 gen6_set_rps(dev_priv->dev, new_delay);
1222
1223         mutex_unlock(&dev_priv->rps.hw_lock);
1224 }
1225
1226
1227 /**
1228  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1229  * occurred.
1230  * @work: workqueue struct
1231  *
1232  * Doesn't actually do anything except notify userspace. As a consequence of
1233  * this event, userspace should try to remap the bad rows since statistically
1234  * it is likely the same row is more likely to go bad again.
1235  */
1236 static void ivybridge_parity_work(struct work_struct *work)
1237 {
1238         struct drm_i915_private *dev_priv =
1239                 container_of(work, struct drm_i915_private, l3_parity.error_work);
1240         u32 error_status, row, bank, subbank;
1241         char *parity_event[6];
1242         uint32_t misccpctl;
1243         uint8_t slice = 0;
1244
1245         /* We must turn off DOP level clock gating to access the L3 registers.
1246          * In order to prevent a get/put style interface, acquire struct mutex
1247          * any time we access those registers.
1248          */
1249         mutex_lock(&dev_priv->dev->struct_mutex);
1250
1251         /* If we've screwed up tracking, just let the interrupt fire again */
1252         if (WARN_ON(!dev_priv->l3_parity.which_slice))
1253                 goto out;
1254
1255         misccpctl = I915_READ(GEN7_MISCCPCTL);
1256         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1257         POSTING_READ(GEN7_MISCCPCTL);
1258
1259         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1260                 u32 reg;
1261
1262                 slice--;
1263                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1264                         break;
1265
1266                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1267
1268                 reg = GEN7_L3CDERRST1 + (slice * 0x200);
1269
1270                 error_status = I915_READ(reg);
1271                 row = GEN7_PARITY_ERROR_ROW(error_status);
1272                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1273                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1274
1275                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1276                 POSTING_READ(reg);
1277
1278                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1279                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1280                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1281                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1282                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1283                 parity_event[5] = NULL;
1284
1285                 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1286                                    KOBJ_CHANGE, parity_event);
1287
1288                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1289                           slice, row, bank, subbank);
1290
1291                 kfree(parity_event[4]);
1292                 kfree(parity_event[3]);
1293                 kfree(parity_event[2]);
1294                 kfree(parity_event[1]);
1295         }
1296
1297         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1298
1299 out:
1300         WARN_ON(dev_priv->l3_parity.which_slice);
1301         spin_lock_irq(&dev_priv->irq_lock);
1302         gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1303         spin_unlock_irq(&dev_priv->irq_lock);
1304
1305         mutex_unlock(&dev_priv->dev->struct_mutex);
1306 }
1307
1308 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1309 {
1310         struct drm_i915_private *dev_priv = dev->dev_private;
1311
1312         if (!HAS_L3_DPF(dev))
1313                 return;
1314
1315         spin_lock(&dev_priv->irq_lock);
1316         gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1317         spin_unlock(&dev_priv->irq_lock);
1318
1319         iir &= GT_PARITY_ERROR(dev);
1320         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1321                 dev_priv->l3_parity.which_slice |= 1 << 1;
1322
1323         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1324                 dev_priv->l3_parity.which_slice |= 1 << 0;
1325
1326         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1327 }
1328
1329 static void ilk_gt_irq_handler(struct drm_device *dev,
1330                                struct drm_i915_private *dev_priv,
1331                                u32 gt_iir)
1332 {
1333         if (gt_iir &
1334             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1335                 notify_ring(dev, &dev_priv->ring[RCS]);
1336         if (gt_iir & ILK_BSD_USER_INTERRUPT)
1337                 notify_ring(dev, &dev_priv->ring[VCS]);
1338 }
1339
1340 static void snb_gt_irq_handler(struct drm_device *dev,
1341                                struct drm_i915_private *dev_priv,
1342                                u32 gt_iir)
1343 {
1344
1345         if (gt_iir &
1346             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1347                 notify_ring(dev, &dev_priv->ring[RCS]);
1348         if (gt_iir & GT_BSD_USER_INTERRUPT)
1349                 notify_ring(dev, &dev_priv->ring[VCS]);
1350         if (gt_iir & GT_BLT_USER_INTERRUPT)
1351                 notify_ring(dev, &dev_priv->ring[BCS]);
1352
1353         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1354                       GT_BSD_CS_ERROR_INTERRUPT |
1355                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1356                 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1357
1358         if (gt_iir & GT_PARITY_ERROR(dev))
1359                 ivybridge_parity_error_irq_handler(dev, gt_iir);
1360 }
1361
1362 static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1363                                        struct drm_i915_private *dev_priv,
1364                                        u32 master_ctl)
1365 {
1366         struct intel_engine_cs *ring;
1367         u32 rcs, bcs, vcs;
1368         uint32_t tmp = 0;
1369         irqreturn_t ret = IRQ_NONE;
1370
1371         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1372                 tmp = I915_READ(GEN8_GT_IIR(0));
1373                 if (tmp) {
1374                         I915_WRITE(GEN8_GT_IIR(0), tmp);
1375                         ret = IRQ_HANDLED;
1376
1377                         rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1378                         ring = &dev_priv->ring[RCS];
1379                         if (rcs & GT_RENDER_USER_INTERRUPT)
1380                                 notify_ring(dev, ring);
1381                         if (rcs & GT_CONTEXT_SWITCH_INTERRUPT)
1382                                 intel_execlists_handle_ctx_events(ring);
1383
1384                         bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1385                         ring = &dev_priv->ring[BCS];
1386                         if (bcs & GT_RENDER_USER_INTERRUPT)
1387                                 notify_ring(dev, ring);
1388                         if (bcs & GT_CONTEXT_SWITCH_INTERRUPT)
1389                                 intel_execlists_handle_ctx_events(ring);
1390                 } else
1391                         DRM_ERROR("The master control interrupt lied (GT0)!\n");
1392         }
1393
1394         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1395                 tmp = I915_READ(GEN8_GT_IIR(1));
1396                 if (tmp) {
1397                         I915_WRITE(GEN8_GT_IIR(1), tmp);
1398                         ret = IRQ_HANDLED;
1399
1400                         vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1401                         ring = &dev_priv->ring[VCS];
1402                         if (vcs & GT_RENDER_USER_INTERRUPT)
1403                                 notify_ring(dev, ring);
1404                         if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1405                                 intel_execlists_handle_ctx_events(ring);
1406
1407                         vcs = tmp >> GEN8_VCS2_IRQ_SHIFT;
1408                         ring = &dev_priv->ring[VCS2];
1409                         if (vcs & GT_RENDER_USER_INTERRUPT)
1410                                 notify_ring(dev, ring);
1411                         if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1412                                 intel_execlists_handle_ctx_events(ring);
1413                 } else
1414                         DRM_ERROR("The master control interrupt lied (GT1)!\n");
1415         }
1416
1417         if (master_ctl & GEN8_GT_PM_IRQ) {
1418                 tmp = I915_READ(GEN8_GT_IIR(2));
1419                 if (tmp & dev_priv->pm_rps_events) {
1420                         I915_WRITE(GEN8_GT_IIR(2),
1421                                    tmp & dev_priv->pm_rps_events);
1422                         ret = IRQ_HANDLED;
1423                         gen6_rps_irq_handler(dev_priv, tmp);
1424                 } else
1425                         DRM_ERROR("The master control interrupt lied (PM)!\n");
1426         }
1427
1428         if (master_ctl & GEN8_GT_VECS_IRQ) {
1429                 tmp = I915_READ(GEN8_GT_IIR(3));
1430                 if (tmp) {
1431                         I915_WRITE(GEN8_GT_IIR(3), tmp);
1432                         ret = IRQ_HANDLED;
1433
1434                         vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1435                         ring = &dev_priv->ring[VECS];
1436                         if (vcs & GT_RENDER_USER_INTERRUPT)
1437                                 notify_ring(dev, ring);
1438                         if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1439                                 intel_execlists_handle_ctx_events(ring);
1440                 } else
1441                         DRM_ERROR("The master control interrupt lied (GT3)!\n");
1442         }
1443
1444         return ret;
1445 }
1446
1447 #define HPD_STORM_DETECT_PERIOD 1000
1448 #define HPD_STORM_THRESHOLD 5
1449
1450 static int pch_port_to_hotplug_shift(enum port port)
1451 {
1452         switch (port) {
1453         case PORT_A:
1454         case PORT_E:
1455         default:
1456                 return -1;
1457         case PORT_B:
1458                 return 0;
1459         case PORT_C:
1460                 return 8;
1461         case PORT_D:
1462                 return 16;
1463         }
1464 }
1465
1466 static int i915_port_to_hotplug_shift(enum port port)
1467 {
1468         switch (port) {
1469         case PORT_A:
1470         case PORT_E:
1471         default:
1472                 return -1;
1473         case PORT_B:
1474                 return 17;
1475         case PORT_C:
1476                 return 19;
1477         case PORT_D:
1478                 return 21;
1479         }
1480 }
1481
1482 static inline enum port get_port_from_pin(enum hpd_pin pin)
1483 {
1484         switch (pin) {
1485         case HPD_PORT_B:
1486                 return PORT_B;
1487         case HPD_PORT_C:
1488                 return PORT_C;
1489         case HPD_PORT_D:
1490                 return PORT_D;
1491         default:
1492                 return PORT_A; /* no hpd */
1493         }
1494 }
1495
1496 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1497                                          u32 hotplug_trigger,
1498                                          u32 dig_hotplug_reg,
1499                                          const u32 *hpd)
1500 {
1501         struct drm_i915_private *dev_priv = dev->dev_private;
1502         int i;
1503         enum port port;
1504         bool storm_detected = false;
1505         bool queue_dig = false, queue_hp = false;
1506         u32 dig_shift;
1507         u32 dig_port_mask = 0;
1508
1509         if (!hotplug_trigger)
1510                 return;
1511
1512         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x\n",
1513                          hotplug_trigger, dig_hotplug_reg);
1514
1515         spin_lock(&dev_priv->irq_lock);
1516         for (i = 1; i < HPD_NUM_PINS; i++) {
1517                 if (!(hpd[i] & hotplug_trigger))
1518                         continue;
1519
1520                 port = get_port_from_pin(i);
1521                 if (port && dev_priv->hpd_irq_port[port]) {
1522                         bool long_hpd;
1523
1524                         if (HAS_PCH_SPLIT(dev)) {
1525                                 dig_shift = pch_port_to_hotplug_shift(port);
1526                                 long_hpd = (dig_hotplug_reg >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1527                         } else {
1528                                 dig_shift = i915_port_to_hotplug_shift(port);
1529                                 long_hpd = (hotplug_trigger >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1530                         }
1531
1532                         DRM_DEBUG_DRIVER("digital hpd port %c - %s\n",
1533                                          port_name(port),
1534                                          long_hpd ? "long" : "short");
1535                         /* for long HPD pulses we want to have the digital queue happen,
1536                            but we still want HPD storm detection to function. */
1537                         if (long_hpd) {
1538                                 dev_priv->long_hpd_port_mask |= (1 << port);
1539                                 dig_port_mask |= hpd[i];
1540                         } else {
1541                                 /* for short HPD just trigger the digital queue */
1542                                 dev_priv->short_hpd_port_mask |= (1 << port);
1543                                 hotplug_trigger &= ~hpd[i];
1544                         }
1545                         queue_dig = true;
1546                 }
1547         }
1548
1549         for (i = 1; i < HPD_NUM_PINS; i++) {
1550                 if (hpd[i] & hotplug_trigger &&
1551                     dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED) {
1552                         /*
1553                          * On GMCH platforms the interrupt mask bits only
1554                          * prevent irq generation, not the setting of the
1555                          * hotplug bits itself. So only WARN about unexpected
1556                          * interrupts on saner platforms.
1557                          */
1558                         WARN_ONCE(INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev),
1559                                   "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1560                                   hotplug_trigger, i, hpd[i]);
1561
1562                         continue;
1563                 }
1564
1565                 if (!(hpd[i] & hotplug_trigger) ||
1566                     dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1567                         continue;
1568
1569                 if (!(dig_port_mask & hpd[i])) {
1570                         dev_priv->hpd_event_bits |= (1 << i);
1571                         queue_hp = true;
1572                 }
1573
1574                 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1575                                    dev_priv->hpd_stats[i].hpd_last_jiffies
1576                                    + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1577                         dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1578                         dev_priv->hpd_stats[i].hpd_cnt = 0;
1579                         DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1580                 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1581                         dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1582                         dev_priv->hpd_event_bits &= ~(1 << i);
1583                         DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1584                         storm_detected = true;
1585                 } else {
1586                         dev_priv->hpd_stats[i].hpd_cnt++;
1587                         DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1588                                       dev_priv->hpd_stats[i].hpd_cnt);
1589                 }
1590         }
1591
1592         if (storm_detected)
1593                 dev_priv->display.hpd_irq_setup(dev);
1594         spin_unlock(&dev_priv->irq_lock);
1595
1596         /*
1597          * Our hotplug handler can grab modeset locks (by calling down into the
1598          * fb helpers). Hence it must not be run on our own dev-priv->wq work
1599          * queue for otherwise the flush_work in the pageflip code will
1600          * deadlock.
1601          */
1602         if (queue_dig)
1603                 queue_work(dev_priv->dp_wq, &dev_priv->dig_port_work);
1604         if (queue_hp)
1605                 schedule_work(&dev_priv->hotplug_work);
1606 }
1607
1608 static void gmbus_irq_handler(struct drm_device *dev)
1609 {
1610         struct drm_i915_private *dev_priv = dev->dev_private;
1611
1612         wake_up_all(&dev_priv->gmbus_wait_queue);
1613 }
1614
1615 static void dp_aux_irq_handler(struct drm_device *dev)
1616 {
1617         struct drm_i915_private *dev_priv = dev->dev_private;
1618
1619         wake_up_all(&dev_priv->gmbus_wait_queue);
1620 }
1621
1622 #if defined(CONFIG_DEBUG_FS)
1623 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1624                                          uint32_t crc0, uint32_t crc1,
1625                                          uint32_t crc2, uint32_t crc3,
1626                                          uint32_t crc4)
1627 {
1628         struct drm_i915_private *dev_priv = dev->dev_private;
1629         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1630         struct intel_pipe_crc_entry *entry;
1631         int head, tail;
1632
1633         spin_lock(&pipe_crc->lock);
1634
1635         if (!pipe_crc->entries) {
1636                 spin_unlock(&pipe_crc->lock);
1637                 DRM_DEBUG_KMS("spurious interrupt\n");
1638                 return;
1639         }
1640
1641         head = pipe_crc->head;
1642         tail = pipe_crc->tail;
1643
1644         if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1645                 spin_unlock(&pipe_crc->lock);
1646                 DRM_ERROR("CRC buffer overflowing\n");
1647                 return;
1648         }
1649
1650         entry = &pipe_crc->entries[head];
1651
1652         entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1653         entry->crc[0] = crc0;
1654         entry->crc[1] = crc1;
1655         entry->crc[2] = crc2;
1656         entry->crc[3] = crc3;
1657         entry->crc[4] = crc4;
1658
1659         head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1660         pipe_crc->head = head;
1661
1662         spin_unlock(&pipe_crc->lock);
1663
1664         wake_up_interruptible(&pipe_crc->wq);
1665 }
1666 #else
1667 static inline void
1668 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1669                              uint32_t crc0, uint32_t crc1,
1670                              uint32_t crc2, uint32_t crc3,
1671                              uint32_t crc4) {}
1672 #endif
1673
1674
1675 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1676 {
1677         struct drm_i915_private *dev_priv = dev->dev_private;
1678
1679         display_pipe_crc_irq_handler(dev, pipe,
1680                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1681                                      0, 0, 0, 0);
1682 }
1683
1684 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1685 {
1686         struct drm_i915_private *dev_priv = dev->dev_private;
1687
1688         display_pipe_crc_irq_handler(dev, pipe,
1689                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1690                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1691                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1692                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1693                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1694 }
1695
1696 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1697 {
1698         struct drm_i915_private *dev_priv = dev->dev_private;
1699         uint32_t res1, res2;
1700
1701         if (INTEL_INFO(dev)->gen >= 3)
1702                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1703         else
1704                 res1 = 0;
1705
1706         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1707                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1708         else
1709                 res2 = 0;
1710
1711         display_pipe_crc_irq_handler(dev, pipe,
1712                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1713                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1714                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1715                                      res1, res2);
1716 }
1717
1718 /* The RPS events need forcewake, so we add them to a work queue and mask their
1719  * IMR bits until the work is done. Other interrupts can be processed without
1720  * the work queue. */
1721 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1722 {
1723         /* TODO: RPS on GEN9+ is not supported yet. */
1724         if (WARN_ONCE(INTEL_INFO(dev_priv)->gen >= 9,
1725                       "GEN9+: unexpected RPS IRQ\n"))
1726                 return;
1727
1728         if (pm_iir & dev_priv->pm_rps_events) {
1729                 spin_lock(&dev_priv->irq_lock);
1730                 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1731                 if (dev_priv->rps.interrupts_enabled) {
1732                         dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1733                         queue_work(dev_priv->wq, &dev_priv->rps.work);
1734                 }
1735                 spin_unlock(&dev_priv->irq_lock);
1736         }
1737
1738         if (INTEL_INFO(dev_priv)->gen >= 8)
1739                 return;
1740
1741         if (HAS_VEBOX(dev_priv->dev)) {
1742                 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1743                         notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1744
1745                 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1746                         DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1747         }
1748 }
1749
1750 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1751 {
1752         if (!drm_handle_vblank(dev, pipe))
1753                 return false;
1754
1755         return true;
1756 }
1757
1758 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1759 {
1760         struct drm_i915_private *dev_priv = dev->dev_private;
1761         u32 pipe_stats[I915_MAX_PIPES] = { };
1762         int pipe;
1763
1764         spin_lock(&dev_priv->irq_lock);
1765         for_each_pipe(dev_priv, pipe) {
1766                 int reg;
1767                 u32 mask, iir_bit = 0;
1768
1769                 /*
1770                  * PIPESTAT bits get signalled even when the interrupt is
1771                  * disabled with the mask bits, and some of the status bits do
1772                  * not generate interrupts at all (like the underrun bit). Hence
1773                  * we need to be careful that we only handle what we want to
1774                  * handle.
1775                  */
1776
1777                 /* fifo underruns are filterered in the underrun handler. */
1778                 mask = PIPE_FIFO_UNDERRUN_STATUS;
1779
1780                 switch (pipe) {
1781                 case PIPE_A:
1782                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1783                         break;
1784                 case PIPE_B:
1785                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1786                         break;
1787                 case PIPE_C:
1788                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1789                         break;
1790                 }
1791                 if (iir & iir_bit)
1792                         mask |= dev_priv->pipestat_irq_mask[pipe];
1793
1794                 if (!mask)
1795                         continue;
1796
1797                 reg = PIPESTAT(pipe);
1798                 mask |= PIPESTAT_INT_ENABLE_MASK;
1799                 pipe_stats[pipe] = I915_READ(reg) & mask;
1800
1801                 /*
1802                  * Clear the PIPE*STAT regs before the IIR
1803                  */
1804                 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1805                                         PIPESTAT_INT_STATUS_MASK))
1806                         I915_WRITE(reg, pipe_stats[pipe]);
1807         }
1808         spin_unlock(&dev_priv->irq_lock);
1809
1810         for_each_pipe(dev_priv, pipe) {
1811                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1812                     intel_pipe_handle_vblank(dev, pipe))
1813                         intel_check_page_flip(dev, pipe);
1814
1815                 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1816                         intel_prepare_page_flip(dev, pipe);
1817                         intel_finish_page_flip(dev, pipe);
1818                 }
1819
1820                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1821                         i9xx_pipe_crc_irq_handler(dev, pipe);
1822
1823                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1824                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1825         }
1826
1827         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1828                 gmbus_irq_handler(dev);
1829 }
1830
1831 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1832 {
1833         struct drm_i915_private *dev_priv = dev->dev_private;
1834         u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1835
1836         if (hotplug_status) {
1837                 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1838                 /*
1839                  * Make sure hotplug status is cleared before we clear IIR, or else we
1840                  * may miss hotplug events.
1841                  */
1842                 POSTING_READ(PORT_HOTPLUG_STAT);
1843
1844                 if (IS_G4X(dev)) {
1845                         u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1846
1847                         intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_g4x);
1848                 } else {
1849                         u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1850
1851                         intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_i915);
1852                 }
1853
1854                 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) &&
1855                     hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1856                         dp_aux_irq_handler(dev);
1857         }
1858 }
1859
1860 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1861 {
1862         struct drm_device *dev = arg;
1863         struct drm_i915_private *dev_priv = dev->dev_private;
1864         u32 iir, gt_iir, pm_iir;
1865         irqreturn_t ret = IRQ_NONE;
1866
1867         while (true) {
1868                 /* Find, clear, then process each source of interrupt */
1869
1870                 gt_iir = I915_READ(GTIIR);
1871                 if (gt_iir)
1872                         I915_WRITE(GTIIR, gt_iir);
1873
1874                 pm_iir = I915_READ(GEN6_PMIIR);
1875                 if (pm_iir)
1876                         I915_WRITE(GEN6_PMIIR, pm_iir);
1877
1878                 iir = I915_READ(VLV_IIR);
1879                 if (iir) {
1880                         /* Consume port before clearing IIR or we'll miss events */
1881                         if (iir & I915_DISPLAY_PORT_INTERRUPT)
1882                                 i9xx_hpd_irq_handler(dev);
1883                         I915_WRITE(VLV_IIR, iir);
1884                 }
1885
1886                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1887                         goto out;
1888
1889                 ret = IRQ_HANDLED;
1890
1891                 if (gt_iir)
1892                         snb_gt_irq_handler(dev, dev_priv, gt_iir);
1893                 if (pm_iir)
1894                         gen6_rps_irq_handler(dev_priv, pm_iir);
1895                 /* Call regardless, as some status bits might not be
1896                  * signalled in iir */
1897                 valleyview_pipestat_irq_handler(dev, iir);
1898         }
1899
1900 out:
1901         return ret;
1902 }
1903
1904 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1905 {
1906         struct drm_device *dev = arg;
1907         struct drm_i915_private *dev_priv = dev->dev_private;
1908         u32 master_ctl, iir;
1909         irqreturn_t ret = IRQ_NONE;
1910
1911         for (;;) {
1912                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1913                 iir = I915_READ(VLV_IIR);
1914
1915                 if (master_ctl == 0 && iir == 0)
1916                         break;
1917
1918                 ret = IRQ_HANDLED;
1919
1920                 I915_WRITE(GEN8_MASTER_IRQ, 0);
1921
1922                 /* Find, clear, then process each source of interrupt */
1923
1924                 if (iir) {
1925                         /* Consume port before clearing IIR or we'll miss events */
1926                         if (iir & I915_DISPLAY_PORT_INTERRUPT)
1927                                 i9xx_hpd_irq_handler(dev);
1928                         I915_WRITE(VLV_IIR, iir);
1929                 }
1930
1931                 gen8_gt_irq_handler(dev, dev_priv, master_ctl);
1932
1933                 /* Call regardless, as some status bits might not be
1934                  * signalled in iir */
1935                 valleyview_pipestat_irq_handler(dev, iir);
1936
1937                 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1938                 POSTING_READ(GEN8_MASTER_IRQ);
1939         }
1940
1941         return ret;
1942 }
1943
1944 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1945 {
1946         struct drm_i915_private *dev_priv = dev->dev_private;
1947         int pipe;
1948         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1949         u32 dig_hotplug_reg;
1950
1951         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1952         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1953
1954         intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_ibx);
1955
1956         if (pch_iir & SDE_AUDIO_POWER_MASK) {
1957                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1958                                SDE_AUDIO_POWER_SHIFT);
1959                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1960                                  port_name(port));
1961         }
1962
1963         if (pch_iir & SDE_AUX_MASK)
1964                 dp_aux_irq_handler(dev);
1965
1966         if (pch_iir & SDE_GMBUS)
1967                 gmbus_irq_handler(dev);
1968
1969         if (pch_iir & SDE_AUDIO_HDCP_MASK)
1970                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1971
1972         if (pch_iir & SDE_AUDIO_TRANS_MASK)
1973                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1974
1975         if (pch_iir & SDE_POISON)
1976                 DRM_ERROR("PCH poison interrupt\n");
1977
1978         if (pch_iir & SDE_FDI_MASK)
1979                 for_each_pipe(dev_priv, pipe)
1980                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1981                                          pipe_name(pipe),
1982                                          I915_READ(FDI_RX_IIR(pipe)));
1983
1984         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1985                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1986
1987         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1988                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1989
1990         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1991                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1992
1993         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1994                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1995 }
1996
1997 static void ivb_err_int_handler(struct drm_device *dev)
1998 {
1999         struct drm_i915_private *dev_priv = dev->dev_private;
2000         u32 err_int = I915_READ(GEN7_ERR_INT);
2001         enum pipe pipe;
2002
2003         if (err_int & ERR_INT_POISON)
2004                 DRM_ERROR("Poison interrupt\n");
2005
2006         for_each_pipe(dev_priv, pipe) {
2007                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2008                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2009
2010                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2011                         if (IS_IVYBRIDGE(dev))
2012                                 ivb_pipe_crc_irq_handler(dev, pipe);
2013                         else
2014                                 hsw_pipe_crc_irq_handler(dev, pipe);
2015                 }
2016         }
2017
2018         I915_WRITE(GEN7_ERR_INT, err_int);
2019 }
2020
2021 static void cpt_serr_int_handler(struct drm_device *dev)
2022 {
2023         struct drm_i915_private *dev_priv = dev->dev_private;
2024         u32 serr_int = I915_READ(SERR_INT);
2025
2026         if (serr_int & SERR_INT_POISON)
2027                 DRM_ERROR("PCH poison interrupt\n");
2028
2029         if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2030                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2031
2032         if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2033                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2034
2035         if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2036                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
2037
2038         I915_WRITE(SERR_INT, serr_int);
2039 }
2040
2041 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
2042 {
2043         struct drm_i915_private *dev_priv = dev->dev_private;
2044         int pipe;
2045         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2046         u32 dig_hotplug_reg;
2047
2048         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2049         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2050
2051         intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_cpt);
2052
2053         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2054                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2055                                SDE_AUDIO_POWER_SHIFT_CPT);
2056                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2057                                  port_name(port));
2058         }
2059
2060         if (pch_iir & SDE_AUX_MASK_CPT)
2061                 dp_aux_irq_handler(dev);
2062
2063         if (pch_iir & SDE_GMBUS_CPT)
2064                 gmbus_irq_handler(dev);
2065
2066         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2067                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2068
2069         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2070                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2071
2072         if (pch_iir & SDE_FDI_MASK_CPT)
2073                 for_each_pipe(dev_priv, pipe)
2074                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2075                                          pipe_name(pipe),
2076                                          I915_READ(FDI_RX_IIR(pipe)));
2077
2078         if (pch_iir & SDE_ERROR_CPT)
2079                 cpt_serr_int_handler(dev);
2080 }
2081
2082 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2083 {
2084         struct drm_i915_private *dev_priv = dev->dev_private;
2085         enum pipe pipe;
2086
2087         if (de_iir & DE_AUX_CHANNEL_A)
2088                 dp_aux_irq_handler(dev);
2089
2090         if (de_iir & DE_GSE)
2091                 intel_opregion_asle_intr(dev);
2092
2093         if (de_iir & DE_POISON)
2094                 DRM_ERROR("Poison interrupt\n");
2095
2096         for_each_pipe(dev_priv, pipe) {
2097                 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2098                     intel_pipe_handle_vblank(dev, pipe))
2099                         intel_check_page_flip(dev, pipe);
2100
2101                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2102                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2103
2104                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2105                         i9xx_pipe_crc_irq_handler(dev, pipe);
2106
2107                 /* plane/pipes map 1:1 on ilk+ */
2108                 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2109                         intel_prepare_page_flip(dev, pipe);
2110                         intel_finish_page_flip_plane(dev, pipe);
2111                 }
2112         }
2113
2114         /* check event from PCH */
2115         if (de_iir & DE_PCH_EVENT) {
2116                 u32 pch_iir = I915_READ(SDEIIR);
2117
2118                 if (HAS_PCH_CPT(dev))
2119                         cpt_irq_handler(dev, pch_iir);
2120                 else
2121                         ibx_irq_handler(dev, pch_iir);
2122
2123                 /* should clear PCH hotplug event before clear CPU irq */
2124                 I915_WRITE(SDEIIR, pch_iir);
2125         }
2126
2127         if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2128                 ironlake_rps_change_irq_handler(dev);
2129 }
2130
2131 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2132 {
2133         struct drm_i915_private *dev_priv = dev->dev_private;
2134         enum pipe pipe;
2135
2136         if (de_iir & DE_ERR_INT_IVB)
2137                 ivb_err_int_handler(dev);
2138
2139         if (de_iir & DE_AUX_CHANNEL_A_IVB)
2140                 dp_aux_irq_handler(dev);
2141
2142         if (de_iir & DE_GSE_IVB)
2143                 intel_opregion_asle_intr(dev);
2144
2145         for_each_pipe(dev_priv, pipe) {
2146                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2147                     intel_pipe_handle_vblank(dev, pipe))
2148                         intel_check_page_flip(dev, pipe);
2149
2150                 /* plane/pipes map 1:1 on ilk+ */
2151                 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2152                         intel_prepare_page_flip(dev, pipe);
2153                         intel_finish_page_flip_plane(dev, pipe);
2154                 }
2155         }
2156
2157         /* check event from PCH */
2158         if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2159                 u32 pch_iir = I915_READ(SDEIIR);
2160
2161                 cpt_irq_handler(dev, pch_iir);
2162
2163                 /* clear PCH hotplug event before clear CPU irq */
2164                 I915_WRITE(SDEIIR, pch_iir);
2165         }
2166 }
2167
2168 /*
2169  * To handle irqs with the minimum potential races with fresh interrupts, we:
2170  * 1 - Disable Master Interrupt Control.
2171  * 2 - Find the source(s) of the interrupt.
2172  * 3 - Clear the Interrupt Identity bits (IIR).
2173  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2174  * 5 - Re-enable Master Interrupt Control.
2175  */
2176 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2177 {
2178         struct drm_device *dev = arg;
2179         struct drm_i915_private *dev_priv = dev->dev_private;
2180         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2181         irqreturn_t ret = IRQ_NONE;
2182
2183         /* We get interrupts on unclaimed registers, so check for this before we
2184          * do any I915_{READ,WRITE}. */
2185         intel_uncore_check_errors(dev);
2186
2187         /* disable master interrupt before clearing iir  */
2188         de_ier = I915_READ(DEIER);
2189         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2190         POSTING_READ(DEIER);
2191
2192         /* Disable south interrupts. We'll only write to SDEIIR once, so further
2193          * interrupts will will be stored on its back queue, and then we'll be
2194          * able to process them after we restore SDEIER (as soon as we restore
2195          * it, we'll get an interrupt if SDEIIR still has something to process
2196          * due to its back queue). */
2197         if (!HAS_PCH_NOP(dev)) {
2198                 sde_ier = I915_READ(SDEIER);
2199                 I915_WRITE(SDEIER, 0);
2200                 POSTING_READ(SDEIER);
2201         }
2202
2203         /* Find, clear, then process each source of interrupt */
2204
2205         gt_iir = I915_READ(GTIIR);
2206         if (gt_iir) {
2207                 I915_WRITE(GTIIR, gt_iir);
2208                 ret = IRQ_HANDLED;
2209                 if (INTEL_INFO(dev)->gen >= 6)
2210                         snb_gt_irq_handler(dev, dev_priv, gt_iir);
2211                 else
2212                         ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2213         }
2214
2215         de_iir = I915_READ(DEIIR);
2216         if (de_iir) {
2217                 I915_WRITE(DEIIR, de_iir);
2218                 ret = IRQ_HANDLED;
2219                 if (INTEL_INFO(dev)->gen >= 7)
2220                         ivb_display_irq_handler(dev, de_iir);
2221                 else
2222                         ilk_display_irq_handler(dev, de_iir);
2223         }
2224
2225         if (INTEL_INFO(dev)->gen >= 6) {
2226                 u32 pm_iir = I915_READ(GEN6_PMIIR);
2227                 if (pm_iir) {
2228                         I915_WRITE(GEN6_PMIIR, pm_iir);
2229                         ret = IRQ_HANDLED;
2230                         gen6_rps_irq_handler(dev_priv, pm_iir);
2231                 }
2232         }
2233
2234         I915_WRITE(DEIER, de_ier);
2235         POSTING_READ(DEIER);
2236         if (!HAS_PCH_NOP(dev)) {
2237                 I915_WRITE(SDEIER, sde_ier);
2238                 POSTING_READ(SDEIER);
2239         }
2240
2241         return ret;
2242 }
2243
2244 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2245 {
2246         struct drm_device *dev = arg;
2247         struct drm_i915_private *dev_priv = dev->dev_private;
2248         u32 master_ctl;
2249         irqreturn_t ret = IRQ_NONE;
2250         uint32_t tmp = 0;
2251         enum pipe pipe;
2252         u32 aux_mask = GEN8_AUX_CHANNEL_A;
2253
2254         if (IS_GEN9(dev))
2255                 aux_mask |=  GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
2256                         GEN9_AUX_CHANNEL_D;
2257
2258         master_ctl = I915_READ(GEN8_MASTER_IRQ);
2259         master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2260         if (!master_ctl)
2261                 return IRQ_NONE;
2262
2263         I915_WRITE(GEN8_MASTER_IRQ, 0);
2264         POSTING_READ(GEN8_MASTER_IRQ);
2265
2266         /* Find, clear, then process each source of interrupt */
2267
2268         ret = gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2269
2270         if (master_ctl & GEN8_DE_MISC_IRQ) {
2271                 tmp = I915_READ(GEN8_DE_MISC_IIR);
2272                 if (tmp) {
2273                         I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2274                         ret = IRQ_HANDLED;
2275                         if (tmp & GEN8_DE_MISC_GSE)
2276                                 intel_opregion_asle_intr(dev);
2277                         else
2278                                 DRM_ERROR("Unexpected DE Misc interrupt\n");
2279                 }
2280                 else
2281                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2282         }
2283
2284         if (master_ctl & GEN8_DE_PORT_IRQ) {
2285                 tmp = I915_READ(GEN8_DE_PORT_IIR);
2286                 if (tmp) {
2287                         I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2288                         ret = IRQ_HANDLED;
2289
2290                         if (tmp & aux_mask)
2291                                 dp_aux_irq_handler(dev);
2292                         else
2293                                 DRM_ERROR("Unexpected DE Port interrupt\n");
2294                 }
2295                 else
2296                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2297         }
2298
2299         for_each_pipe(dev_priv, pipe) {
2300                 uint32_t pipe_iir, flip_done = 0, fault_errors = 0;
2301
2302                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2303                         continue;
2304
2305                 pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2306                 if (pipe_iir) {
2307                         ret = IRQ_HANDLED;
2308                         I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2309
2310                         if (pipe_iir & GEN8_PIPE_VBLANK &&
2311                             intel_pipe_handle_vblank(dev, pipe))
2312                                 intel_check_page_flip(dev, pipe);
2313
2314                         if (IS_GEN9(dev))
2315                                 flip_done = pipe_iir & GEN9_PIPE_PLANE1_FLIP_DONE;
2316                         else
2317                                 flip_done = pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE;
2318
2319                         if (flip_done) {
2320                                 intel_prepare_page_flip(dev, pipe);
2321                                 intel_finish_page_flip_plane(dev, pipe);
2322                         }
2323
2324                         if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2325                                 hsw_pipe_crc_irq_handler(dev, pipe);
2326
2327                         if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN)
2328                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
2329                                                                     pipe);
2330
2331
2332                         if (IS_GEN9(dev))
2333                                 fault_errors = pipe_iir & GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2334                         else
2335                                 fault_errors = pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2336
2337                         if (fault_errors)
2338                                 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2339                                           pipe_name(pipe),
2340                                           pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2341                 } else
2342                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2343         }
2344
2345         if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
2346                 /*
2347                  * FIXME(BDW): Assume for now that the new interrupt handling
2348                  * scheme also closed the SDE interrupt handling race we've seen
2349                  * on older pch-split platforms. But this needs testing.
2350                  */
2351                 u32 pch_iir = I915_READ(SDEIIR);
2352                 if (pch_iir) {
2353                         I915_WRITE(SDEIIR, pch_iir);
2354                         ret = IRQ_HANDLED;
2355                         cpt_irq_handler(dev, pch_iir);
2356                 } else
2357                         DRM_ERROR("The master control interrupt lied (SDE)!\n");
2358
2359         }
2360
2361         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2362         POSTING_READ(GEN8_MASTER_IRQ);
2363
2364         return ret;
2365 }
2366
2367 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2368                                bool reset_completed)
2369 {
2370         struct intel_engine_cs *ring;
2371         int i;
2372
2373         /*
2374          * Notify all waiters for GPU completion events that reset state has
2375          * been changed, and that they need to restart their wait after
2376          * checking for potential errors (and bail out to drop locks if there is
2377          * a gpu reset pending so that i915_error_work_func can acquire them).
2378          */
2379
2380         /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2381         for_each_ring(ring, dev_priv, i)
2382                 wake_up_all(&ring->irq_queue);
2383
2384         /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2385         wake_up_all(&dev_priv->pending_flip_queue);
2386
2387         /*
2388          * Signal tasks blocked in i915_gem_wait_for_error that the pending
2389          * reset state is cleared.
2390          */
2391         if (reset_completed)
2392                 wake_up_all(&dev_priv->gpu_error.reset_queue);
2393 }
2394
2395 /**
2396  * i915_error_work_func - do process context error handling work
2397  * @work: work struct
2398  *
2399  * Fire an error uevent so userspace can see that a hang or error
2400  * was detected.
2401  */
2402 static void i915_error_work_func(struct work_struct *work)
2403 {
2404         struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
2405                                                     work);
2406         struct drm_i915_private *dev_priv =
2407                 container_of(error, struct drm_i915_private, gpu_error);
2408         struct drm_device *dev = dev_priv->dev;
2409         char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2410         char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2411         char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2412         int ret;
2413
2414         kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2415
2416         /*
2417          * Note that there's only one work item which does gpu resets, so we
2418          * need not worry about concurrent gpu resets potentially incrementing
2419          * error->reset_counter twice. We only need to take care of another
2420          * racing irq/hangcheck declaring the gpu dead for a second time. A
2421          * quick check for that is good enough: schedule_work ensures the
2422          * correct ordering between hang detection and this work item, and since
2423          * the reset in-progress bit is only ever set by code outside of this
2424          * work we don't need to worry about any other races.
2425          */
2426         if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2427                 DRM_DEBUG_DRIVER("resetting chip\n");
2428                 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2429                                    reset_event);
2430
2431                 /*
2432                  * In most cases it's guaranteed that we get here with an RPM
2433                  * reference held, for example because there is a pending GPU
2434                  * request that won't finish until the reset is done. This
2435                  * isn't the case at least when we get here by doing a
2436                  * simulated reset via debugs, so get an RPM reference.
2437                  */
2438                 intel_runtime_pm_get(dev_priv);
2439
2440                 intel_prepare_reset(dev);
2441
2442                 /*
2443                  * All state reset _must_ be completed before we update the
2444                  * reset counter, for otherwise waiters might miss the reset
2445                  * pending state and not properly drop locks, resulting in
2446                  * deadlocks with the reset work.
2447                  */
2448                 ret = i915_reset(dev);
2449
2450                 intel_finish_reset(dev);
2451
2452                 intel_runtime_pm_put(dev_priv);
2453
2454                 if (ret == 0) {
2455                         /*
2456                          * After all the gem state is reset, increment the reset
2457                          * counter and wake up everyone waiting for the reset to
2458                          * complete.
2459                          *
2460                          * Since unlock operations are a one-sided barrier only,
2461                          * we need to insert a barrier here to order any seqno
2462                          * updates before
2463                          * the counter increment.
2464                          */
2465                         smp_mb__before_atomic();
2466                         atomic_inc(&dev_priv->gpu_error.reset_counter);
2467
2468                         kobject_uevent_env(&dev->primary->kdev->kobj,
2469                                            KOBJ_CHANGE, reset_done_event);
2470                 } else {
2471                         atomic_set_mask(I915_WEDGED, &error->reset_counter);
2472                 }
2473
2474                 /*
2475                  * Note: The wake_up also serves as a memory barrier so that
2476                  * waiters see the update value of the reset counter atomic_t.
2477                  */
2478                 i915_error_wake_up(dev_priv, true);
2479         }
2480 }
2481
2482 static void i915_report_and_clear_eir(struct drm_device *dev)
2483 {
2484         struct drm_i915_private *dev_priv = dev->dev_private;
2485         uint32_t instdone[I915_NUM_INSTDONE_REG];
2486         u32 eir = I915_READ(EIR);
2487         int pipe, i;
2488
2489         if (!eir)
2490                 return;
2491
2492         pr_err("render error detected, EIR: 0x%08x\n", eir);
2493
2494         i915_get_extra_instdone(dev, instdone);
2495
2496         if (IS_G4X(dev)) {
2497                 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2498                         u32 ipeir = I915_READ(IPEIR_I965);
2499
2500                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2501                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2502                         for (i = 0; i < ARRAY_SIZE(instdone); i++)
2503                                 pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2504                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2505                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2506                         I915_WRITE(IPEIR_I965, ipeir);
2507                         POSTING_READ(IPEIR_I965);
2508                 }
2509                 if (eir & GM45_ERROR_PAGE_TABLE) {
2510                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2511                         pr_err("page table error\n");
2512                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2513                         I915_WRITE(PGTBL_ER, pgtbl_err);
2514                         POSTING_READ(PGTBL_ER);
2515                 }
2516         }
2517
2518         if (!IS_GEN2(dev)) {
2519                 if (eir & I915_ERROR_PAGE_TABLE) {
2520                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2521                         pr_err("page table error\n");
2522                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2523                         I915_WRITE(PGTBL_ER, pgtbl_err);
2524                         POSTING_READ(PGTBL_ER);
2525                 }
2526         }
2527
2528         if (eir & I915_ERROR_MEMORY_REFRESH) {
2529                 pr_err("memory refresh error:\n");
2530                 for_each_pipe(dev_priv, pipe)
2531                         pr_err("pipe %c stat: 0x%08x\n",
2532                                pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2533                 /* pipestat has already been acked */
2534         }
2535         if (eir & I915_ERROR_INSTRUCTION) {
2536                 pr_err("instruction error\n");
2537                 pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2538                 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2539                         pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2540                 if (INTEL_INFO(dev)->gen < 4) {
2541                         u32 ipeir = I915_READ(IPEIR);
2542
2543                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2544                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2545                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2546                         I915_WRITE(IPEIR, ipeir);
2547                         POSTING_READ(IPEIR);
2548                 } else {
2549                         u32 ipeir = I915_READ(IPEIR_I965);
2550
2551                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2552                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2553                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2554                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2555                         I915_WRITE(IPEIR_I965, ipeir);
2556                         POSTING_READ(IPEIR_I965);
2557                 }
2558         }
2559
2560         I915_WRITE(EIR, eir);
2561         POSTING_READ(EIR);
2562         eir = I915_READ(EIR);
2563         if (eir) {
2564                 /*
2565                  * some errors might have become stuck,
2566                  * mask them.
2567                  */
2568                 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2569                 I915_WRITE(EMR, I915_READ(EMR) | eir);
2570                 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2571         }
2572 }
2573
2574 /**
2575  * i915_handle_error - handle an error interrupt
2576  * @dev: drm device
2577  *
2578  * Do some basic checking of regsiter state at error interrupt time and
2579  * dump it to the syslog.  Also call i915_capture_error_state() to make
2580  * sure we get a record and make it available in debugfs.  Fire a uevent
2581  * so userspace knows something bad happened (should trigger collection
2582  * of a ring dump etc.).
2583  */
2584 void i915_handle_error(struct drm_device *dev, bool wedged,
2585                        const char *fmt, ...)
2586 {
2587         struct drm_i915_private *dev_priv = dev->dev_private;
2588         va_list args;
2589         char error_msg[80];
2590
2591         va_start(args, fmt);
2592         vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2593         va_end(args);
2594
2595         i915_capture_error_state(dev, wedged, error_msg);
2596         i915_report_and_clear_eir(dev);
2597
2598         if (wedged) {
2599                 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2600                                 &dev_priv->gpu_error.reset_counter);
2601
2602                 /*
2603                  * Wakeup waiting processes so that the reset work function
2604                  * i915_error_work_func doesn't deadlock trying to grab various
2605                  * locks. By bumping the reset counter first, the woken
2606                  * processes will see a reset in progress and back off,
2607                  * releasing their locks and then wait for the reset completion.
2608                  * We must do this for _all_ gpu waiters that might hold locks
2609                  * that the reset work needs to acquire.
2610                  *
2611                  * Note: The wake_up serves as the required memory barrier to
2612                  * ensure that the waiters see the updated value of the reset
2613                  * counter atomic_t.
2614                  */
2615                 i915_error_wake_up(dev_priv, false);
2616         }
2617
2618         /*
2619          * Our reset work can grab modeset locks (since it needs to reset the
2620          * state of outstanding pagelips). Hence it must not be run on our own
2621          * dev-priv->wq work queue for otherwise the flush_work in the pageflip
2622          * code will deadlock.
2623          */
2624         schedule_work(&dev_priv->gpu_error.work);
2625 }
2626
2627 /* Called from drm generic code, passed 'crtc' which
2628  * we use as a pipe index
2629  */
2630 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2631 {
2632         struct drm_i915_private *dev_priv = dev->dev_private;
2633         unsigned long irqflags;
2634
2635         if (!i915_pipe_enabled(dev, pipe))
2636                 return -EINVAL;
2637
2638         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2639         if (INTEL_INFO(dev)->gen >= 4)
2640                 i915_enable_pipestat(dev_priv, pipe,
2641                                      PIPE_START_VBLANK_INTERRUPT_STATUS);
2642         else
2643                 i915_enable_pipestat(dev_priv, pipe,
2644                                      PIPE_VBLANK_INTERRUPT_STATUS);
2645         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2646
2647         return 0;
2648 }
2649
2650 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2651 {
2652         struct drm_i915_private *dev_priv = dev->dev_private;
2653         unsigned long irqflags;
2654         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2655                                                      DE_PIPE_VBLANK(pipe);
2656
2657         if (!i915_pipe_enabled(dev, pipe))
2658                 return -EINVAL;
2659
2660         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2661         ironlake_enable_display_irq(dev_priv, bit);
2662         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2663
2664         return 0;
2665 }
2666
2667 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2668 {
2669         struct drm_i915_private *dev_priv = dev->dev_private;
2670         unsigned long irqflags;
2671
2672         if (!i915_pipe_enabled(dev, pipe))
2673                 return -EINVAL;
2674
2675         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2676         i915_enable_pipestat(dev_priv, pipe,
2677                              PIPE_START_VBLANK_INTERRUPT_STATUS);
2678         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2679
2680         return 0;
2681 }
2682
2683 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2684 {
2685         struct drm_i915_private *dev_priv = dev->dev_private;
2686         unsigned long irqflags;
2687
2688         if (!i915_pipe_enabled(dev, pipe))
2689                 return -EINVAL;
2690
2691         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2692         dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2693         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2694         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2695         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2696         return 0;
2697 }
2698
2699 /* Called from drm generic code, passed 'crtc' which
2700  * we use as a pipe index
2701  */
2702 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2703 {
2704         struct drm_i915_private *dev_priv = dev->dev_private;
2705         unsigned long irqflags;
2706
2707         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2708         i915_disable_pipestat(dev_priv, pipe,
2709                               PIPE_VBLANK_INTERRUPT_STATUS |
2710                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2711         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2712 }
2713
2714 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2715 {
2716         struct drm_i915_private *dev_priv = dev->dev_private;
2717         unsigned long irqflags;
2718         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2719                                                      DE_PIPE_VBLANK(pipe);
2720
2721         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2722         ironlake_disable_display_irq(dev_priv, bit);
2723         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2724 }
2725
2726 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2727 {
2728         struct drm_i915_private *dev_priv = dev->dev_private;
2729         unsigned long irqflags;
2730
2731         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2732         i915_disable_pipestat(dev_priv, pipe,
2733                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2734         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2735 }
2736
2737 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2738 {
2739         struct drm_i915_private *dev_priv = dev->dev_private;
2740         unsigned long irqflags;
2741
2742         if (!i915_pipe_enabled(dev, pipe))
2743                 return;
2744
2745         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2746         dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2747         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2748         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2749         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2750 }
2751
2752 static u32
2753 ring_last_seqno(struct intel_engine_cs *ring)
2754 {
2755         return list_entry(ring->request_list.prev,
2756                           struct drm_i915_gem_request, list)->seqno;
2757 }
2758
2759 static bool
2760 ring_idle(struct intel_engine_cs *ring, u32 seqno)
2761 {
2762         return (list_empty(&ring->request_list) ||
2763                 i915_seqno_passed(seqno, ring_last_seqno(ring)));
2764 }
2765
2766 static bool
2767 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2768 {
2769         if (INTEL_INFO(dev)->gen >= 8) {
2770                 return (ipehr >> 23) == 0x1c;
2771         } else {
2772                 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2773                 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2774                                  MI_SEMAPHORE_REGISTER);
2775         }
2776 }
2777
2778 static struct intel_engine_cs *
2779 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
2780 {
2781         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2782         struct intel_engine_cs *signaller;
2783         int i;
2784
2785         if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2786                 for_each_ring(signaller, dev_priv, i) {
2787                         if (ring == signaller)
2788                                 continue;
2789
2790                         if (offset == signaller->semaphore.signal_ggtt[ring->id])
2791                                 return signaller;
2792                 }
2793         } else {
2794                 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2795
2796                 for_each_ring(signaller, dev_priv, i) {
2797                         if(ring == signaller)
2798                                 continue;
2799
2800                         if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2801                                 return signaller;
2802                 }
2803         }
2804
2805         DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2806                   ring->id, ipehr, offset);
2807
2808         return NULL;
2809 }
2810
2811 static struct intel_engine_cs *
2812 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2813 {
2814         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2815         u32 cmd, ipehr, head;
2816         u64 offset = 0;
2817         int i, backwards;
2818
2819         ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2820         if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2821                 return NULL;
2822
2823         /*
2824          * HEAD is likely pointing to the dword after the actual command,
2825          * so scan backwards until we find the MBOX. But limit it to just 3
2826          * or 4 dwords depending on the semaphore wait command size.
2827          * Note that we don't care about ACTHD here since that might
2828          * point at at batch, and semaphores are always emitted into the
2829          * ringbuffer itself.
2830          */
2831         head = I915_READ_HEAD(ring) & HEAD_ADDR;
2832         backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
2833
2834         for (i = backwards; i; --i) {
2835                 /*
2836                  * Be paranoid and presume the hw has gone off into the wild -
2837                  * our ring is smaller than what the hardware (and hence
2838                  * HEAD_ADDR) allows. Also handles wrap-around.
2839                  */
2840                 head &= ring->buffer->size - 1;
2841
2842                 /* This here seems to blow up */
2843                 cmd = ioread32(ring->buffer->virtual_start + head);
2844                 if (cmd == ipehr)
2845                         break;
2846
2847                 head -= 4;
2848         }
2849
2850         if (!i)
2851                 return NULL;
2852
2853         *seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2854         if (INTEL_INFO(ring->dev)->gen >= 8) {
2855                 offset = ioread32(ring->buffer->virtual_start + head + 12);
2856                 offset <<= 32;
2857                 offset = ioread32(ring->buffer->virtual_start + head + 8);
2858         }
2859         return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
2860 }
2861
2862 static int semaphore_passed(struct intel_engine_cs *ring)
2863 {
2864         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2865         struct intel_engine_cs *signaller;
2866         u32 seqno;
2867
2868         ring->hangcheck.deadlock++;
2869
2870         signaller = semaphore_waits_for(ring, &seqno);
2871         if (signaller == NULL)
2872                 return -1;
2873
2874         /* Prevent pathological recursion due to driver bugs */
2875         if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2876                 return -1;
2877
2878         if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2879                 return 1;
2880
2881         /* cursory check for an unkickable deadlock */
2882         if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2883             semaphore_passed(signaller) < 0)
2884                 return -1;
2885
2886         return 0;
2887 }
2888
2889 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2890 {
2891         struct intel_engine_cs *ring;
2892         int i;
2893
2894         for_each_ring(ring, dev_priv, i)
2895                 ring->hangcheck.deadlock = 0;
2896 }
2897
2898 static enum intel_ring_hangcheck_action
2899 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
2900 {
2901         struct drm_device *dev = ring->dev;
2902         struct drm_i915_private *dev_priv = dev->dev_private;
2903         u32 tmp;
2904
2905         if (acthd != ring->hangcheck.acthd) {
2906                 if (acthd > ring->hangcheck.max_acthd) {
2907                         ring->hangcheck.max_acthd = acthd;
2908                         return HANGCHECK_ACTIVE;
2909                 }
2910
2911                 return HANGCHECK_ACTIVE_LOOP;
2912         }
2913
2914         if (IS_GEN2(dev))
2915                 return HANGCHECK_HUNG;
2916
2917         /* Is the chip hanging on a WAIT_FOR_EVENT?
2918          * If so we can simply poke the RB_WAIT bit
2919          * and break the hang. This should work on
2920          * all but the second generation chipsets.
2921          */
2922         tmp = I915_READ_CTL(ring);
2923         if (tmp & RING_WAIT) {
2924                 i915_handle_error(dev, false,
2925                                   "Kicking stuck wait on %s",
2926                                   ring->name);
2927                 I915_WRITE_CTL(ring, tmp);
2928                 return HANGCHECK_KICK;
2929         }
2930
2931         if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2932                 switch (semaphore_passed(ring)) {
2933                 default:
2934                         return HANGCHECK_HUNG;
2935                 case 1:
2936                         i915_handle_error(dev, false,
2937                                           "Kicking stuck semaphore on %s",
2938                                           ring->name);
2939                         I915_WRITE_CTL(ring, tmp);
2940                         return HANGCHECK_KICK;
2941                 case 0:
2942                         return HANGCHECK_WAIT;
2943                 }
2944         }
2945
2946         return HANGCHECK_HUNG;
2947 }
2948
2949 /**
2950  * This is called when the chip hasn't reported back with completed
2951  * batchbuffers in a long time. We keep track per ring seqno progress and
2952  * if there are no progress, hangcheck score for that ring is increased.
2953  * Further, acthd is inspected to see if the ring is stuck. On stuck case
2954  * we kick the ring. If we see no progress on three subsequent calls
2955  * we assume chip is wedged and try to fix it by resetting the chip.
2956  */
2957 static void i915_hangcheck_elapsed(unsigned long data)
2958 {
2959         struct drm_device *dev = (struct drm_device *)data;
2960         struct drm_i915_private *dev_priv = dev->dev_private;
2961         struct intel_engine_cs *ring;
2962         int i;
2963         int busy_count = 0, rings_hung = 0;
2964         bool stuck[I915_NUM_RINGS] = { 0 };
2965 #define BUSY 1
2966 #define KICK 5
2967 #define HUNG 20
2968
2969         if (!i915.enable_hangcheck)
2970                 return;
2971
2972         for_each_ring(ring, dev_priv, i) {
2973                 u64 acthd;
2974                 u32 seqno;
2975                 bool busy = true;
2976
2977                 semaphore_clear_deadlocks(dev_priv);
2978
2979                 seqno = ring->get_seqno(ring, false);
2980                 acthd = intel_ring_get_active_head(ring);
2981
2982                 if (ring->hangcheck.seqno == seqno) {
2983                         if (ring_idle(ring, seqno)) {
2984                                 ring->hangcheck.action = HANGCHECK_IDLE;
2985
2986                                 if (waitqueue_active(&ring->irq_queue)) {
2987                                         /* Issue a wake-up to catch stuck h/w. */
2988                                         if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2989                                                 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2990                                                         DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2991                                                                   ring->name);
2992                                                 else
2993                                                         DRM_INFO("Fake missed irq on %s\n",
2994                                                                  ring->name);
2995                                                 wake_up_all(&ring->irq_queue);
2996                                         }
2997                                         /* Safeguard against driver failure */
2998                                         ring->hangcheck.score += BUSY;
2999                                 } else
3000                                         busy = false;
3001                         } else {
3002                                 /* We always increment the hangcheck score
3003                                  * if the ring is busy and still processing
3004                                  * the same request, so that no single request
3005                                  * can run indefinitely (such as a chain of
3006                                  * batches). The only time we do not increment
3007                                  * the hangcheck score on this ring, if this
3008                                  * ring is in a legitimate wait for another
3009                                  * ring. In that case the waiting ring is a
3010                                  * victim and we want to be sure we catch the
3011                                  * right culprit. Then every time we do kick
3012                                  * the ring, add a small increment to the
3013                                  * score so that we can catch a batch that is
3014                                  * being repeatedly kicked and so responsible
3015                                  * for stalling the machine.
3016                                  */
3017                                 ring->hangcheck.action = ring_stuck(ring,
3018                                                                     acthd);
3019
3020                                 switch (ring->hangcheck.action) {
3021                                 case HANGCHECK_IDLE:
3022                                 case HANGCHECK_WAIT:
3023                                 case HANGCHECK_ACTIVE:
3024                                         break;
3025                                 case HANGCHECK_ACTIVE_LOOP:
3026                                         ring->hangcheck.score += BUSY;
3027                                         break;
3028                                 case HANGCHECK_KICK:
3029                                         ring->hangcheck.score += KICK;
3030                                         break;
3031                                 case HANGCHECK_HUNG:
3032                                         ring->hangcheck.score += HUNG;
3033                                         stuck[i] = true;
3034                                         break;
3035                                 }
3036                         }
3037                 } else {
3038                         ring->hangcheck.action = HANGCHECK_ACTIVE;
3039
3040                         /* Gradually reduce the count so that we catch DoS
3041                          * attempts across multiple batches.
3042                          */
3043                         if (ring->hangcheck.score > 0)
3044                                 ring->hangcheck.score--;
3045
3046                         ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
3047                 }
3048
3049                 ring->hangcheck.seqno = seqno;
3050                 ring->hangcheck.acthd = acthd;
3051                 busy_count += busy;
3052         }
3053
3054         for_each_ring(ring, dev_priv, i) {
3055                 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3056                         DRM_INFO("%s on %s\n",
3057                                  stuck[i] ? "stuck" : "no progress",
3058                                  ring->name);
3059                         rings_hung++;
3060                 }
3061         }
3062
3063         if (rings_hung)
3064                 return i915_handle_error(dev, true, "Ring hung");
3065
3066         if (busy_count)
3067                 /* Reset timer case chip hangs without another request
3068                  * being added */
3069                 i915_queue_hangcheck(dev);
3070 }
3071
3072 void i915_queue_hangcheck(struct drm_device *dev)
3073 {
3074         struct drm_i915_private *dev_priv = dev->dev_private;
3075         struct timer_list *timer = &dev_priv->gpu_error.hangcheck_timer;
3076
3077         if (!i915.enable_hangcheck)
3078                 return;
3079
3080         /* Don't continually defer the hangcheck, but make sure it is active */
3081         if (timer_pending(timer))
3082                 return;
3083         mod_timer(timer,
3084                   round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
3085 }
3086
3087 static void ibx_irq_reset(struct drm_device *dev)
3088 {
3089         struct drm_i915_private *dev_priv = dev->dev_private;
3090
3091         if (HAS_PCH_NOP(dev))
3092                 return;
3093
3094         GEN5_IRQ_RESET(SDE);
3095
3096         if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3097                 I915_WRITE(SERR_INT, 0xffffffff);
3098 }
3099
3100 /*
3101  * SDEIER is also touched by the interrupt handler to work around missed PCH
3102  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3103  * instead we unconditionally enable all PCH interrupt sources here, but then
3104  * only unmask them as needed with SDEIMR.
3105  *
3106  * This function needs to be called before interrupts are enabled.
3107  */
3108 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3109 {
3110         struct drm_i915_private *dev_priv = dev->dev_private;
3111
3112         if (HAS_PCH_NOP(dev))
3113                 return;
3114
3115         WARN_ON(I915_READ(SDEIER) != 0);
3116         I915_WRITE(SDEIER, 0xffffffff);
3117         POSTING_READ(SDEIER);
3118 }
3119
3120 static void gen5_gt_irq_reset(struct drm_device *dev)
3121 {
3122         struct drm_i915_private *dev_priv = dev->dev_private;
3123
3124         GEN5_IRQ_RESET(GT);
3125         if (INTEL_INFO(dev)->gen >= 6)
3126                 GEN5_IRQ_RESET(GEN6_PM);
3127 }
3128
3129 /* drm_dma.h hooks
3130 */
3131 static void ironlake_irq_reset(struct drm_device *dev)
3132 {
3133         struct drm_i915_private *dev_priv = dev->dev_private;
3134
3135         I915_WRITE(HWSTAM, 0xffffffff);
3136
3137         GEN5_IRQ_RESET(DE);
3138         if (IS_GEN7(dev))
3139                 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3140
3141         gen5_gt_irq_reset(dev);
3142
3143         ibx_irq_reset(dev);
3144 }
3145
3146 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3147 {
3148         enum pipe pipe;
3149
3150         I915_WRITE(PORT_HOTPLUG_EN, 0);
3151         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3152
3153         for_each_pipe(dev_priv, pipe)
3154                 I915_WRITE(PIPESTAT(pipe), 0xffff);
3155
3156         GEN5_IRQ_RESET(VLV_);
3157 }
3158
3159 static void valleyview_irq_preinstall(struct drm_device *dev)
3160 {
3161         struct drm_i915_private *dev_priv = dev->dev_private;
3162
3163         /* VLV magic */
3164         I915_WRITE(VLV_IMR, 0);
3165         I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3166         I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3167         I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3168
3169         gen5_gt_irq_reset(dev);
3170
3171         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3172
3173         vlv_display_irq_reset(dev_priv);
3174 }
3175
3176 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3177 {
3178         GEN8_IRQ_RESET_NDX(GT, 0);
3179         GEN8_IRQ_RESET_NDX(GT, 1);
3180         GEN8_IRQ_RESET_NDX(GT, 2);
3181         GEN8_IRQ_RESET_NDX(GT, 3);
3182 }
3183
3184 static void gen8_irq_reset(struct drm_device *dev)
3185 {
3186         struct drm_i915_private *dev_priv = dev->dev_private;
3187         int pipe;
3188
3189         I915_WRITE(GEN8_MASTER_IRQ, 0);
3190         POSTING_READ(GEN8_MASTER_IRQ);
3191
3192         gen8_gt_irq_reset(dev_priv);
3193
3194         for_each_pipe(dev_priv, pipe)
3195                 if (intel_display_power_is_enabled(dev_priv,
3196                                                    POWER_DOMAIN_PIPE(pipe)))
3197                         GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3198
3199         GEN5_IRQ_RESET(GEN8_DE_PORT_);
3200         GEN5_IRQ_RESET(GEN8_DE_MISC_);
3201         GEN5_IRQ_RESET(GEN8_PCU_);
3202
3203         ibx_irq_reset(dev);
3204 }
3205
3206 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv)
3207 {
3208         uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3209
3210         spin_lock_irq(&dev_priv->irq_lock);
3211         GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B, dev_priv->de_irq_mask[PIPE_B],
3212                           ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
3213         GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C, dev_priv->de_irq_mask[PIPE_C],
3214                           ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
3215         spin_unlock_irq(&dev_priv->irq_lock);
3216 }
3217
3218 static void cherryview_irq_preinstall(struct drm_device *dev)
3219 {
3220         struct drm_i915_private *dev_priv = dev->dev_private;
3221
3222         I915_WRITE(GEN8_MASTER_IRQ, 0);
3223         POSTING_READ(GEN8_MASTER_IRQ);
3224
3225         gen8_gt_irq_reset(dev_priv);
3226
3227         GEN5_IRQ_RESET(GEN8_PCU_);
3228
3229         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3230
3231         vlv_display_irq_reset(dev_priv);
3232 }
3233
3234 static void ibx_hpd_irq_setup(struct drm_device *dev)
3235 {
3236         struct drm_i915_private *dev_priv = dev->dev_private;
3237         struct intel_encoder *intel_encoder;
3238         u32 hotplug_irqs, hotplug, enabled_irqs = 0;
3239
3240         if (HAS_PCH_IBX(dev)) {
3241                 hotplug_irqs = SDE_HOTPLUG_MASK;
3242                 for_each_intel_encoder(dev, intel_encoder)
3243                         if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3244                                 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
3245         } else {
3246                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3247                 for_each_intel_encoder(dev, intel_encoder)
3248                         if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3249                                 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
3250         }
3251
3252         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3253
3254         /*
3255          * Enable digital hotplug on the PCH, and configure the DP short pulse
3256          * duration to 2ms (which is the minimum in the Display Port spec)
3257          *
3258          * This register is the same on all known PCH chips.
3259          */
3260         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3261         hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3262         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3263         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3264         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3265         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3266 }
3267
3268 static void ibx_irq_postinstall(struct drm_device *dev)
3269 {
3270         struct drm_i915_private *dev_priv = dev->dev_private;
3271         u32 mask;
3272
3273         if (HAS_PCH_NOP(dev))
3274                 return;
3275
3276         if (HAS_PCH_IBX(dev))
3277                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3278         else
3279                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3280
3281         GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3282         I915_WRITE(SDEIMR, ~mask);
3283 }
3284
3285 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3286 {
3287         struct drm_i915_private *dev_priv = dev->dev_private;
3288         u32 pm_irqs, gt_irqs;
3289
3290         pm_irqs = gt_irqs = 0;
3291
3292         dev_priv->gt_irq_mask = ~0;
3293         if (HAS_L3_DPF(dev)) {
3294                 /* L3 parity interrupt is always unmasked. */
3295                 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3296                 gt_irqs |= GT_PARITY_ERROR(dev);
3297         }
3298
3299         gt_irqs |= GT_RENDER_USER_INTERRUPT;
3300         if (IS_GEN5(dev)) {
3301                 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3302                            ILK_BSD_USER_INTERRUPT;
3303         } else {
3304                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3305         }
3306
3307         GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3308
3309         if (INTEL_INFO(dev)->gen >= 6) {
3310                 pm_irqs |= dev_priv->pm_rps_events;
3311
3312                 if (HAS_VEBOX(dev))
3313                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3314
3315                 dev_priv->pm_irq_mask = 0xffffffff;
3316                 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3317         }
3318 }
3319
3320 static int ironlake_irq_postinstall(struct drm_device *dev)
3321 {
3322         struct drm_i915_private *dev_priv = dev->dev_private;
3323         u32 display_mask, extra_mask;
3324
3325         if (INTEL_INFO(dev)->gen >= 7) {
3326                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3327                                 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3328                                 DE_PLANEB_FLIP_DONE_IVB |
3329                                 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3330                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3331                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3332         } else {
3333                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3334                                 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3335                                 DE_AUX_CHANNEL_A |
3336                                 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3337                                 DE_POISON);
3338                 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3339                                 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3340         }
3341
3342         dev_priv->irq_mask = ~display_mask;
3343
3344         I915_WRITE(HWSTAM, 0xeffe);
3345
3346         ibx_irq_pre_postinstall(dev);
3347
3348         GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3349
3350         gen5_gt_irq_postinstall(dev);
3351
3352         ibx_irq_postinstall(dev);
3353
3354         if (IS_IRONLAKE_M(dev)) {
3355                 /* Enable PCU event interrupts
3356                  *
3357                  * spinlocking not required here for correctness since interrupt
3358                  * setup is guaranteed to run in single-threaded context. But we
3359                  * need it to make the assert_spin_locked happy. */
3360                 spin_lock_irq(&dev_priv->irq_lock);
3361                 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3362                 spin_unlock_irq(&dev_priv->irq_lock);
3363         }
3364
3365         return 0;
3366 }
3367
3368 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3369 {
3370         u32 pipestat_mask;
3371         u32 iir_mask;
3372         enum pipe pipe;
3373
3374         pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3375                         PIPE_FIFO_UNDERRUN_STATUS;
3376
3377         for_each_pipe(dev_priv, pipe)
3378                 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3379         POSTING_READ(PIPESTAT(PIPE_A));
3380
3381         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3382                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3383
3384         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3385         for_each_pipe(dev_priv, pipe)
3386                       i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3387
3388         iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3389                    I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3390                    I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3391         if (IS_CHERRYVIEW(dev_priv))
3392                 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3393         dev_priv->irq_mask &= ~iir_mask;
3394
3395         I915_WRITE(VLV_IIR, iir_mask);
3396         I915_WRITE(VLV_IIR, iir_mask);
3397         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3398         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3399         POSTING_READ(VLV_IMR);
3400 }
3401
3402 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3403 {
3404         u32 pipestat_mask;
3405         u32 iir_mask;
3406         enum pipe pipe;
3407
3408         iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3409                    I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3410                    I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3411         if (IS_CHERRYVIEW(dev_priv))
3412                 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3413
3414         dev_priv->irq_mask |= iir_mask;
3415         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3416         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3417         I915_WRITE(VLV_IIR, iir_mask);
3418         I915_WRITE(VLV_IIR, iir_mask);
3419         POSTING_READ(VLV_IIR);
3420
3421         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3422                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3423
3424         i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3425         for_each_pipe(dev_priv, pipe)
3426                 i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
3427
3428         pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3429                         PIPE_FIFO_UNDERRUN_STATUS;
3430
3431         for_each_pipe(dev_priv, pipe)
3432                 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3433         POSTING_READ(PIPESTAT(PIPE_A));
3434 }
3435
3436 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3437 {
3438         assert_spin_locked(&dev_priv->irq_lock);
3439
3440         if (dev_priv->display_irqs_enabled)
3441                 return;
3442
3443         dev_priv->display_irqs_enabled = true;
3444
3445         if (intel_irqs_enabled(dev_priv))
3446                 valleyview_display_irqs_install(dev_priv);
3447 }
3448
3449 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3450 {
3451         assert_spin_locked(&dev_priv->irq_lock);
3452
3453         if (!dev_priv->display_irqs_enabled)
3454                 return;
3455
3456         dev_priv->display_irqs_enabled = false;
3457
3458         if (intel_irqs_enabled(dev_priv))
3459                 valleyview_display_irqs_uninstall(dev_priv);
3460 }
3461
3462 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3463 {
3464         dev_priv->irq_mask = ~0;
3465
3466         I915_WRITE(PORT_HOTPLUG_EN, 0);
3467         POSTING_READ(PORT_HOTPLUG_EN);
3468
3469         I915_WRITE(VLV_IIR, 0xffffffff);
3470         I915_WRITE(VLV_IIR, 0xffffffff);
3471         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3472         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3473         POSTING_READ(VLV_IMR);
3474
3475         /* Interrupt setup is already guaranteed to be single-threaded, this is
3476          * just to make the assert_spin_locked check happy. */
3477         spin_lock_irq(&dev_priv->irq_lock);
3478         if (dev_priv->display_irqs_enabled)
3479                 valleyview_display_irqs_install(dev_priv);
3480         spin_unlock_irq(&dev_priv->irq_lock);
3481 }
3482
3483 static int valleyview_irq_postinstall(struct drm_device *dev)
3484 {
3485         struct drm_i915_private *dev_priv = dev->dev_private;
3486
3487         vlv_display_irq_postinstall(dev_priv);
3488
3489         gen5_gt_irq_postinstall(dev);
3490
3491         /* ack & enable invalid PTE error interrupts */
3492 #if 0 /* FIXME: add support to irq handler for checking these bits */
3493         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3494         I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3495 #endif
3496
3497         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3498
3499         return 0;
3500 }
3501
3502 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3503 {
3504         /* These are interrupts we'll toggle with the ring mask register */
3505         uint32_t gt_interrupts[] = {
3506                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3507                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3508                         GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3509                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3510                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3511                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3512                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3513                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3514                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3515                 0,
3516                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3517                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3518                 };
3519
3520         dev_priv->pm_irq_mask = 0xffffffff;
3521         GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3522         GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3523         GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, dev_priv->pm_rps_events);
3524         GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3525 }
3526
3527 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3528 {
3529         uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3530         uint32_t de_pipe_enables;
3531         int pipe;
3532         u32 aux_en = GEN8_AUX_CHANNEL_A;
3533
3534         if (IS_GEN9(dev_priv)) {
3535                 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3536                                   GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3537                 aux_en |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3538                         GEN9_AUX_CHANNEL_D;
3539         } else
3540                 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3541                                   GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3542
3543         de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3544                                            GEN8_PIPE_FIFO_UNDERRUN;
3545
3546         dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3547         dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3548         dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3549
3550         for_each_pipe(dev_priv, pipe)
3551                 if (intel_display_power_is_enabled(dev_priv,
3552                                 POWER_DOMAIN_PIPE(pipe)))
3553                         GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3554                                           dev_priv->de_irq_mask[pipe],
3555                                           de_pipe_enables);
3556
3557         GEN5_IRQ_INIT(GEN8_DE_PORT_, ~aux_en, aux_en);
3558 }
3559
3560 static int gen8_irq_postinstall(struct drm_device *dev)
3561 {
3562         struct drm_i915_private *dev_priv = dev->dev_private;
3563
3564         ibx_irq_pre_postinstall(dev);
3565
3566         gen8_gt_irq_postinstall(dev_priv);
3567         gen8_de_irq_postinstall(dev_priv);
3568
3569         ibx_irq_postinstall(dev);
3570
3571         I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3572         POSTING_READ(GEN8_MASTER_IRQ);
3573
3574         return 0;
3575 }
3576
3577 static int cherryview_irq_postinstall(struct drm_device *dev)
3578 {
3579         struct drm_i915_private *dev_priv = dev->dev_private;
3580
3581         vlv_display_irq_postinstall(dev_priv);
3582
3583         gen8_gt_irq_postinstall(dev_priv);
3584
3585         I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3586         POSTING_READ(GEN8_MASTER_IRQ);
3587
3588         return 0;
3589 }
3590
3591 static void gen8_irq_uninstall(struct drm_device *dev)
3592 {
3593         struct drm_i915_private *dev_priv = dev->dev_private;
3594
3595         if (!dev_priv)
3596                 return;
3597
3598         gen8_irq_reset(dev);
3599 }
3600
3601 static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3602 {
3603         /* Interrupt setup is already guaranteed to be single-threaded, this is
3604          * just to make the assert_spin_locked check happy. */
3605         spin_lock_irq(&dev_priv->irq_lock);
3606         if (dev_priv->display_irqs_enabled)
3607                 valleyview_display_irqs_uninstall(dev_priv);
3608         spin_unlock_irq(&dev_priv->irq_lock);
3609
3610         vlv_display_irq_reset(dev_priv);
3611
3612         dev_priv->irq_mask = 0;
3613 }
3614
3615 static void valleyview_irq_uninstall(struct drm_device *dev)
3616 {
3617         struct drm_i915_private *dev_priv = dev->dev_private;
3618
3619         if (!dev_priv)
3620                 return;
3621
3622         I915_WRITE(VLV_MASTER_IER, 0);
3623
3624         gen5_gt_irq_reset(dev);
3625
3626         I915_WRITE(HWSTAM, 0xffffffff);
3627
3628         vlv_display_irq_uninstall(dev_priv);
3629 }
3630
3631 static void cherryview_irq_uninstall(struct drm_device *dev)
3632 {
3633         struct drm_i915_private *dev_priv = dev->dev_private;
3634
3635         if (!dev_priv)
3636                 return;
3637
3638         I915_WRITE(GEN8_MASTER_IRQ, 0);
3639         POSTING_READ(GEN8_MASTER_IRQ);
3640
3641         gen8_gt_irq_reset(dev_priv);
3642
3643         GEN5_IRQ_RESET(GEN8_PCU_);
3644
3645         vlv_display_irq_uninstall(dev_priv);
3646 }
3647
3648 static void ironlake_irq_uninstall(struct drm_device *dev)
3649 {
3650         struct drm_i915_private *dev_priv = dev->dev_private;
3651
3652         if (!dev_priv)
3653                 return;
3654
3655         ironlake_irq_reset(dev);
3656 }
3657
3658 static void i8xx_irq_preinstall(struct drm_device * dev)
3659 {
3660         struct drm_i915_private *dev_priv = dev->dev_private;
3661         int pipe;
3662
3663         for_each_pipe(dev_priv, pipe)
3664                 I915_WRITE(PIPESTAT(pipe), 0);
3665         I915_WRITE16(IMR, 0xffff);
3666         I915_WRITE16(IER, 0x0);
3667         POSTING_READ16(IER);
3668 }
3669
3670 static int i8xx_irq_postinstall(struct drm_device *dev)
3671 {
3672         struct drm_i915_private *dev_priv = dev->dev_private;
3673
3674         I915_WRITE16(EMR,
3675                      ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3676
3677         /* Unmask the interrupts that we always want on. */
3678         dev_priv->irq_mask =
3679                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3680                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3681                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3682                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3683                   I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3684         I915_WRITE16(IMR, dev_priv->irq_mask);
3685
3686         I915_WRITE16(IER,
3687                      I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3688                      I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3689                      I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3690                      I915_USER_INTERRUPT);
3691         POSTING_READ16(IER);
3692
3693         /* Interrupt setup is already guaranteed to be single-threaded, this is
3694          * just to make the assert_spin_locked check happy. */
3695         spin_lock_irq(&dev_priv->irq_lock);
3696         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3697         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3698         spin_unlock_irq(&dev_priv->irq_lock);
3699
3700         return 0;
3701 }
3702
3703 /*
3704  * Returns true when a page flip has completed.
3705  */
3706 static bool i8xx_handle_vblank(struct drm_device *dev,
3707                                int plane, int pipe, u32 iir)
3708 {
3709         struct drm_i915_private *dev_priv = dev->dev_private;
3710         u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3711
3712         if (!intel_pipe_handle_vblank(dev, pipe))
3713                 return false;
3714
3715         if ((iir & flip_pending) == 0)
3716                 goto check_page_flip;
3717
3718         intel_prepare_page_flip(dev, plane);
3719
3720         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3721          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3722          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3723          * the flip is completed (no longer pending). Since this doesn't raise
3724          * an interrupt per se, we watch for the change at vblank.
3725          */
3726         if (I915_READ16(ISR) & flip_pending)
3727                 goto check_page_flip;
3728
3729         intel_finish_page_flip(dev, pipe);
3730         return true;
3731
3732 check_page_flip:
3733         intel_check_page_flip(dev, pipe);
3734         return false;
3735 }
3736
3737 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3738 {
3739         struct drm_device *dev = arg;
3740         struct drm_i915_private *dev_priv = dev->dev_private;
3741         u16 iir, new_iir;
3742         u32 pipe_stats[2];
3743         int pipe;
3744         u16 flip_mask =
3745                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3746                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3747
3748         iir = I915_READ16(IIR);
3749         if (iir == 0)
3750                 return IRQ_NONE;
3751
3752         while (iir & ~flip_mask) {
3753                 /* Can't rely on pipestat interrupt bit in iir as it might
3754                  * have been cleared after the pipestat interrupt was received.
3755                  * It doesn't set the bit in iir again, but it still produces
3756                  * interrupts (for non-MSI).
3757                  */
3758                 spin_lock(&dev_priv->irq_lock);
3759                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3760                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3761
3762                 for_each_pipe(dev_priv, pipe) {
3763                         int reg = PIPESTAT(pipe);
3764                         pipe_stats[pipe] = I915_READ(reg);
3765
3766                         /*
3767                          * Clear the PIPE*STAT regs before the IIR
3768                          */
3769                         if (pipe_stats[pipe] & 0x8000ffff)
3770                                 I915_WRITE(reg, pipe_stats[pipe]);
3771                 }
3772                 spin_unlock(&dev_priv->irq_lock);
3773
3774                 I915_WRITE16(IIR, iir & ~flip_mask);
3775                 new_iir = I915_READ16(IIR); /* Flush posted writes */
3776
3777                 if (iir & I915_USER_INTERRUPT)
3778                         notify_ring(dev, &dev_priv->ring[RCS]);
3779
3780                 for_each_pipe(dev_priv, pipe) {
3781                         int plane = pipe;
3782                         if (HAS_FBC(dev))
3783                                 plane = !plane;
3784
3785                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3786                             i8xx_handle_vblank(dev, plane, pipe, iir))
3787                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3788
3789                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3790                                 i9xx_pipe_crc_irq_handler(dev, pipe);
3791
3792                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3793                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3794                                                                     pipe);
3795                 }
3796
3797                 iir = new_iir;
3798         }
3799
3800         return IRQ_HANDLED;
3801 }
3802
3803 static void i8xx_irq_uninstall(struct drm_device * dev)
3804 {
3805         struct drm_i915_private *dev_priv = dev->dev_private;
3806         int pipe;
3807
3808         for_each_pipe(dev_priv, pipe) {
3809                 /* Clear enable bits; then clear status bits */
3810                 I915_WRITE(PIPESTAT(pipe), 0);
3811                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3812         }
3813         I915_WRITE16(IMR, 0xffff);
3814         I915_WRITE16(IER, 0x0);
3815         I915_WRITE16(IIR, I915_READ16(IIR));
3816 }
3817
3818 static void i915_irq_preinstall(struct drm_device * dev)
3819 {
3820         struct drm_i915_private *dev_priv = dev->dev_private;
3821         int pipe;
3822
3823         if (I915_HAS_HOTPLUG(dev)) {
3824                 I915_WRITE(PORT_HOTPLUG_EN, 0);
3825                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3826         }
3827
3828         I915_WRITE16(HWSTAM, 0xeffe);
3829         for_each_pipe(dev_priv, pipe)
3830                 I915_WRITE(PIPESTAT(pipe), 0);
3831         I915_WRITE(IMR, 0xffffffff);
3832         I915_WRITE(IER, 0x0);
3833         POSTING_READ(IER);
3834 }
3835
3836 static int i915_irq_postinstall(struct drm_device *dev)
3837 {
3838         struct drm_i915_private *dev_priv = dev->dev_private;
3839         u32 enable_mask;
3840
3841         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3842
3843         /* Unmask the interrupts that we always want on. */
3844         dev_priv->irq_mask =
3845                 ~(I915_ASLE_INTERRUPT |
3846                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3847                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3848                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3849                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3850                   I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3851
3852         enable_mask =
3853                 I915_ASLE_INTERRUPT |
3854                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3855                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3856                 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3857                 I915_USER_INTERRUPT;
3858
3859         if (I915_HAS_HOTPLUG(dev)) {
3860                 I915_WRITE(PORT_HOTPLUG_EN, 0);
3861                 POSTING_READ(PORT_HOTPLUG_EN);
3862
3863                 /* Enable in IER... */
3864                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3865                 /* and unmask in IMR */
3866                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3867         }
3868
3869         I915_WRITE(IMR, dev_priv->irq_mask);
3870         I915_WRITE(IER, enable_mask);
3871         POSTING_READ(IER);
3872
3873         i915_enable_asle_pipestat(dev);
3874
3875         /* Interrupt setup is already guaranteed to be single-threaded, this is
3876          * just to make the assert_spin_locked check happy. */
3877         spin_lock_irq(&dev_priv->irq_lock);
3878         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3879         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3880         spin_unlock_irq(&dev_priv->irq_lock);
3881
3882         return 0;
3883 }
3884
3885 /*
3886  * Returns true when a page flip has completed.
3887  */
3888 static bool i915_handle_vblank(struct drm_device *dev,
3889                                int plane, int pipe, u32 iir)
3890 {
3891         struct drm_i915_private *dev_priv = dev->dev_private;
3892         u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3893
3894         if (!intel_pipe_handle_vblank(dev, pipe))
3895                 return false;
3896
3897         if ((iir & flip_pending) == 0)
3898                 goto check_page_flip;
3899
3900         intel_prepare_page_flip(dev, plane);
3901
3902         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3903          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3904          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3905          * the flip is completed (no longer pending). Since this doesn't raise
3906          * an interrupt per se, we watch for the change at vblank.
3907          */
3908         if (I915_READ(ISR) & flip_pending)
3909                 goto check_page_flip;
3910
3911         intel_finish_page_flip(dev, pipe);
3912         return true;
3913
3914 check_page_flip:
3915         intel_check_page_flip(dev, pipe);
3916         return false;
3917 }
3918
3919 static irqreturn_t i915_irq_handler(int irq, void *arg)
3920 {
3921         struct drm_device *dev = arg;
3922         struct drm_i915_private *dev_priv = dev->dev_private;
3923         u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3924         u32 flip_mask =
3925                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3926                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3927         int pipe, ret = IRQ_NONE;
3928
3929         iir = I915_READ(IIR);
3930         do {
3931                 bool irq_received = (iir & ~flip_mask) != 0;
3932                 bool blc_event = false;
3933
3934                 /* Can't rely on pipestat interrupt bit in iir as it might
3935                  * have been cleared after the pipestat interrupt was received.
3936                  * It doesn't set the bit in iir again, but it still produces
3937                  * interrupts (for non-MSI).
3938                  */
3939                 spin_lock(&dev_priv->irq_lock);
3940                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3941                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3942
3943                 for_each_pipe(dev_priv, pipe) {
3944                         int reg = PIPESTAT(pipe);
3945                         pipe_stats[pipe] = I915_READ(reg);
3946
3947                         /* Clear the PIPE*STAT regs before the IIR */
3948                         if (pipe_stats[pipe] & 0x8000ffff) {
3949                                 I915_WRITE(reg, pipe_stats[pipe]);
3950                                 irq_received = true;
3951                         }
3952                 }
3953                 spin_unlock(&dev_priv->irq_lock);
3954
3955                 if (!irq_received)
3956                         break;
3957
3958                 /* Consume port.  Then clear IIR or we'll miss events */
3959                 if (I915_HAS_HOTPLUG(dev) &&
3960                     iir & I915_DISPLAY_PORT_INTERRUPT)
3961                         i9xx_hpd_irq_handler(dev);
3962
3963                 I915_WRITE(IIR, iir & ~flip_mask);
3964                 new_iir = I915_READ(IIR); /* Flush posted writes */
3965
3966                 if (iir & I915_USER_INTERRUPT)
3967                         notify_ring(dev, &dev_priv->ring[RCS]);
3968
3969                 for_each_pipe(dev_priv, pipe) {
3970                         int plane = pipe;
3971                         if (HAS_FBC(dev))
3972                                 plane = !plane;
3973
3974                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3975                             i915_handle_vblank(dev, plane, pipe, iir))
3976                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3977
3978                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3979                                 blc_event = true;
3980
3981                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3982                                 i9xx_pipe_crc_irq_handler(dev, pipe);
3983
3984                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3985                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3986                                                                     pipe);
3987                 }
3988
3989                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3990                         intel_opregion_asle_intr(dev);
3991
3992                 /* With MSI, interrupts are only generated when iir
3993                  * transitions from zero to nonzero.  If another bit got
3994                  * set while we were handling the existing iir bits, then
3995                  * we would never get another interrupt.
3996                  *
3997                  * This is fine on non-MSI as well, as if we hit this path
3998                  * we avoid exiting the interrupt handler only to generate
3999                  * another one.
4000                  *
4001                  * Note that for MSI this could cause a stray interrupt report
4002                  * if an interrupt landed in the time between writing IIR and
4003                  * the posting read.  This should be rare enough to never
4004                  * trigger the 99% of 100,000 interrupts test for disabling
4005                  * stray interrupts.
4006                  */
4007                 ret = IRQ_HANDLED;
4008                 iir = new_iir;
4009         } while (iir & ~flip_mask);
4010
4011         return ret;
4012 }
4013
4014 static void i915_irq_uninstall(struct drm_device * dev)
4015 {
4016         struct drm_i915_private *dev_priv = dev->dev_private;
4017         int pipe;
4018
4019         if (I915_HAS_HOTPLUG(dev)) {
4020                 I915_WRITE(PORT_HOTPLUG_EN, 0);
4021                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4022         }
4023
4024         I915_WRITE16(HWSTAM, 0xffff);
4025         for_each_pipe(dev_priv, pipe) {
4026                 /* Clear enable bits; then clear status bits */
4027                 I915_WRITE(PIPESTAT(pipe), 0);
4028                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4029         }
4030         I915_WRITE(IMR, 0xffffffff);
4031         I915_WRITE(IER, 0x0);
4032
4033         I915_WRITE(IIR, I915_READ(IIR));
4034 }
4035
4036 static void i965_irq_preinstall(struct drm_device * dev)
4037 {
4038         struct drm_i915_private *dev_priv = dev->dev_private;
4039         int pipe;
4040
4041         I915_WRITE(PORT_HOTPLUG_EN, 0);
4042         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4043
4044         I915_WRITE(HWSTAM, 0xeffe);
4045         for_each_pipe(dev_priv, pipe)
4046                 I915_WRITE(PIPESTAT(pipe), 0);
4047         I915_WRITE(IMR, 0xffffffff);
4048         I915_WRITE(IER, 0x0);
4049         POSTING_READ(IER);
4050 }
4051
4052 static int i965_irq_postinstall(struct drm_device *dev)
4053 {
4054         struct drm_i915_private *dev_priv = dev->dev_private;
4055         u32 enable_mask;
4056         u32 error_mask;
4057
4058         /* Unmask the interrupts that we always want on. */
4059         dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4060                                I915_DISPLAY_PORT_INTERRUPT |
4061                                I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4062                                I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4063                                I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4064                                I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4065                                I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4066
4067         enable_mask = ~dev_priv->irq_mask;
4068         enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4069                          I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4070         enable_mask |= I915_USER_INTERRUPT;
4071
4072         if (IS_G4X(dev))
4073                 enable_mask |= I915_BSD_USER_INTERRUPT;
4074
4075         /* Interrupt setup is already guaranteed to be single-threaded, this is
4076          * just to make the assert_spin_locked check happy. */
4077         spin_lock_irq(&dev_priv->irq_lock);
4078         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4079         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4080         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4081         spin_unlock_irq(&dev_priv->irq_lock);
4082
4083         /*
4084          * Enable some error detection, note the instruction error mask
4085          * bit is reserved, so we leave it masked.
4086          */
4087         if (IS_G4X(dev)) {
4088                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4089                                GM45_ERROR_MEM_PRIV |
4090                                GM45_ERROR_CP_PRIV |
4091                                I915_ERROR_MEMORY_REFRESH);
4092         } else {
4093                 error_mask = ~(I915_ERROR_PAGE_TABLE |
4094                                I915_ERROR_MEMORY_REFRESH);
4095         }
4096         I915_WRITE(EMR, error_mask);
4097
4098         I915_WRITE(IMR, dev_priv->irq_mask);
4099         I915_WRITE(IER, enable_mask);
4100         POSTING_READ(IER);
4101
4102         I915_WRITE(PORT_HOTPLUG_EN, 0);
4103         POSTING_READ(PORT_HOTPLUG_EN);
4104
4105         i915_enable_asle_pipestat(dev);
4106
4107         return 0;
4108 }
4109
4110 static void i915_hpd_irq_setup(struct drm_device *dev)
4111 {
4112         struct drm_i915_private *dev_priv = dev->dev_private;
4113         struct intel_encoder *intel_encoder;
4114         u32 hotplug_en;
4115
4116         assert_spin_locked(&dev_priv->irq_lock);
4117
4118         if (I915_HAS_HOTPLUG(dev)) {
4119                 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
4120                 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
4121                 /* Note HDMI and DP share hotplug bits */
4122                 /* enable bits are the same for all generations */
4123                 for_each_intel_encoder(dev, intel_encoder)
4124                         if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
4125                                 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
4126                 /* Programming the CRT detection parameters tends
4127                    to generate a spurious hotplug event about three
4128                    seconds later.  So just do it once.
4129                 */
4130                 if (IS_G4X(dev))
4131                         hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4132                 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
4133                 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4134
4135                 /* Ignore TV since it's buggy */
4136                 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
4137         }
4138 }
4139
4140 static irqreturn_t i965_irq_handler(int irq, void *arg)
4141 {
4142         struct drm_device *dev = arg;
4143         struct drm_i915_private *dev_priv = dev->dev_private;
4144         u32 iir, new_iir;
4145         u32 pipe_stats[I915_MAX_PIPES];
4146         int ret = IRQ_NONE, pipe;
4147         u32 flip_mask =
4148                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4149                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4150
4151         iir = I915_READ(IIR);
4152
4153         for (;;) {
4154                 bool irq_received = (iir & ~flip_mask) != 0;
4155                 bool blc_event = false;
4156
4157                 /* Can't rely on pipestat interrupt bit in iir as it might
4158                  * have been cleared after the pipestat interrupt was received.
4159                  * It doesn't set the bit in iir again, but it still produces
4160                  * interrupts (for non-MSI).
4161                  */
4162                 spin_lock(&dev_priv->irq_lock);
4163                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4164                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4165
4166                 for_each_pipe(dev_priv, pipe) {
4167                         int reg = PIPESTAT(pipe);
4168                         pipe_stats[pipe] = I915_READ(reg);
4169
4170                         /*
4171                          * Clear the PIPE*STAT regs before the IIR
4172                          */
4173                         if (pipe_stats[pipe] & 0x8000ffff) {
4174                                 I915_WRITE(reg, pipe_stats[pipe]);
4175                                 irq_received = true;
4176                         }
4177                 }
4178                 spin_unlock(&dev_priv->irq_lock);
4179
4180                 if (!irq_received)
4181                         break;
4182
4183                 ret = IRQ_HANDLED;
4184
4185                 /* Consume port.  Then clear IIR or we'll miss events */
4186                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4187                         i9xx_hpd_irq_handler(dev);
4188
4189                 I915_WRITE(IIR, iir & ~flip_mask);
4190                 new_iir = I915_READ(IIR); /* Flush posted writes */
4191
4192                 if (iir & I915_USER_INTERRUPT)
4193                         notify_ring(dev, &dev_priv->ring[RCS]);
4194                 if (iir & I915_BSD_USER_INTERRUPT)
4195                         notify_ring(dev, &dev_priv->ring[VCS]);
4196
4197                 for_each_pipe(dev_priv, pipe) {
4198                         if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4199                             i915_handle_vblank(dev, pipe, pipe, iir))
4200                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4201
4202                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4203                                 blc_event = true;
4204
4205                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4206                                 i9xx_pipe_crc_irq_handler(dev, pipe);
4207
4208                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4209                                 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4210                 }
4211
4212                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4213                         intel_opregion_asle_intr(dev);
4214
4215                 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4216                         gmbus_irq_handler(dev);
4217
4218                 /* With MSI, interrupts are only generated when iir
4219                  * transitions from zero to nonzero.  If another bit got
4220                  * set while we were handling the existing iir bits, then
4221                  * we would never get another interrupt.
4222                  *
4223                  * This is fine on non-MSI as well, as if we hit this path
4224                  * we avoid exiting the interrupt handler only to generate
4225                  * another one.
4226                  *
4227                  * Note that for MSI this could cause a stray interrupt report
4228                  * if an interrupt landed in the time between writing IIR and
4229                  * the posting read.  This should be rare enough to never
4230                  * trigger the 99% of 100,000 interrupts test for disabling
4231                  * stray interrupts.
4232                  */
4233                 iir = new_iir;
4234         }
4235
4236         return ret;
4237 }
4238
4239 static void i965_irq_uninstall(struct drm_device * dev)
4240 {
4241         struct drm_i915_private *dev_priv = dev->dev_private;
4242         int pipe;
4243
4244         if (!dev_priv)
4245                 return;
4246
4247         I915_WRITE(PORT_HOTPLUG_EN, 0);
4248         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4249
4250         I915_WRITE(HWSTAM, 0xffffffff);
4251         for_each_pipe(dev_priv, pipe)
4252                 I915_WRITE(PIPESTAT(pipe), 0);
4253         I915_WRITE(IMR, 0xffffffff);
4254         I915_WRITE(IER, 0x0);
4255
4256         for_each_pipe(dev_priv, pipe)
4257                 I915_WRITE(PIPESTAT(pipe),
4258                            I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4259         I915_WRITE(IIR, I915_READ(IIR));
4260 }
4261
4262 static void intel_hpd_irq_reenable_work(struct work_struct *work)
4263 {
4264         struct drm_i915_private *dev_priv =
4265                 container_of(work, typeof(*dev_priv),
4266                              hotplug_reenable_work.work);
4267         struct drm_device *dev = dev_priv->dev;
4268         struct drm_mode_config *mode_config = &dev->mode_config;
4269         int i;
4270
4271         intel_runtime_pm_get(dev_priv);
4272
4273         spin_lock_irq(&dev_priv->irq_lock);
4274         for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
4275                 struct drm_connector *connector;
4276
4277                 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
4278                         continue;
4279
4280                 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4281
4282                 list_for_each_entry(connector, &mode_config->connector_list, head) {
4283                         struct intel_connector *intel_connector = to_intel_connector(connector);
4284
4285                         if (intel_connector->encoder->hpd_pin == i) {
4286                                 if (connector->polled != intel_connector->polled)
4287                                         DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
4288                                                          connector->name);
4289                                 connector->polled = intel_connector->polled;
4290                                 if (!connector->polled)
4291                                         connector->polled = DRM_CONNECTOR_POLL_HPD;
4292                         }
4293                 }
4294         }
4295         if (dev_priv->display.hpd_irq_setup)
4296                 dev_priv->display.hpd_irq_setup(dev);
4297         spin_unlock_irq(&dev_priv->irq_lock);
4298
4299         intel_runtime_pm_put(dev_priv);
4300 }
4301
4302 /**
4303  * intel_irq_init - initializes irq support
4304  * @dev_priv: i915 device instance
4305  *
4306  * This function initializes all the irq support including work items, timers
4307  * and all the vtables. It does not setup the interrupt itself though.
4308  */
4309 void intel_irq_init(struct drm_i915_private *dev_priv)
4310 {
4311         struct drm_device *dev = dev_priv->dev;
4312
4313         INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
4314         INIT_WORK(&dev_priv->dig_port_work, i915_digport_work_func);
4315         INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
4316         INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4317         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4318
4319         /* Let's track the enabled rps events */
4320         if (IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
4321                 /* WaGsvRC0ResidencyMethod:vlv */
4322                 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4323         else
4324                 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4325
4326         setup_timer(&dev_priv->gpu_error.hangcheck_timer,
4327                     i915_hangcheck_elapsed,
4328                     (unsigned long) dev);
4329         INIT_DELAYED_WORK(&dev_priv->hotplug_reenable_work,
4330                           intel_hpd_irq_reenable_work);
4331
4332         pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4333
4334         if (IS_GEN2(dev_priv)) {
4335                 dev->max_vblank_count = 0;
4336                 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4337         } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4338                 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4339                 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4340         } else {
4341                 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4342                 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4343         }
4344
4345         /*
4346          * Opt out of the vblank disable timer on everything except gen2.
4347          * Gen2 doesn't have a hardware frame counter and so depends on
4348          * vblank interrupts to produce sane vblank seuquence numbers.
4349          */
4350         if (!IS_GEN2(dev_priv))
4351                 dev->vblank_disable_immediate = true;
4352
4353         if (drm_core_check_feature(dev, DRIVER_MODESET)) {
4354                 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4355                 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4356         }
4357
4358         if (IS_CHERRYVIEW(dev_priv)) {
4359                 dev->driver->irq_handler = cherryview_irq_handler;
4360                 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4361                 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4362                 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4363                 dev->driver->enable_vblank = valleyview_enable_vblank;
4364                 dev->driver->disable_vblank = valleyview_disable_vblank;
4365                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4366         } else if (IS_VALLEYVIEW(dev_priv)) {
4367                 dev->driver->irq_handler = valleyview_irq_handler;
4368                 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4369                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4370                 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4371                 dev->driver->enable_vblank = valleyview_enable_vblank;
4372                 dev->driver->disable_vblank = valleyview_disable_vblank;
4373                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4374         } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4375                 dev->driver->irq_handler = gen8_irq_handler;
4376                 dev->driver->irq_preinstall = gen8_irq_reset;
4377                 dev->driver->irq_postinstall = gen8_irq_postinstall;
4378                 dev->driver->irq_uninstall = gen8_irq_uninstall;
4379                 dev->driver->enable_vblank = gen8_enable_vblank;
4380                 dev->driver->disable_vblank = gen8_disable_vblank;
4381                 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4382         } else if (HAS_PCH_SPLIT(dev)) {
4383                 dev->driver->irq_handler = ironlake_irq_handler;
4384                 dev->driver->irq_preinstall = ironlake_irq_reset;
4385                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4386                 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4387                 dev->driver->enable_vblank = ironlake_enable_vblank;
4388                 dev->driver->disable_vblank = ironlake_disable_vblank;
4389                 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4390         } else {
4391                 if (INTEL_INFO(dev_priv)->gen == 2) {
4392                         dev->driver->irq_preinstall = i8xx_irq_preinstall;
4393                         dev->driver->irq_postinstall = i8xx_irq_postinstall;
4394                         dev->driver->irq_handler = i8xx_irq_handler;
4395                         dev->driver->irq_uninstall = i8xx_irq_uninstall;
4396                 } else if (INTEL_INFO(dev_priv)->gen == 3) {
4397                         dev->driver->irq_preinstall = i915_irq_preinstall;
4398                         dev->driver->irq_postinstall = i915_irq_postinstall;
4399                         dev->driver->irq_uninstall = i915_irq_uninstall;
4400                         dev->driver->irq_handler = i915_irq_handler;
4401                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4402                 } else {
4403                         dev->driver->irq_preinstall = i965_irq_preinstall;
4404                         dev->driver->irq_postinstall = i965_irq_postinstall;
4405                         dev->driver->irq_uninstall = i965_irq_uninstall;
4406                         dev->driver->irq_handler = i965_irq_handler;
4407                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4408                 }
4409                 dev->driver->enable_vblank = i915_enable_vblank;
4410                 dev->driver->disable_vblank = i915_disable_vblank;
4411         }
4412 }
4413
4414 /**
4415  * intel_hpd_init - initializes and enables hpd support
4416  * @dev_priv: i915 device instance
4417  *
4418  * This function enables the hotplug support. It requires that interrupts have
4419  * already been enabled with intel_irq_init_hw(). From this point on hotplug and
4420  * poll request can run concurrently to other code, so locking rules must be
4421  * obeyed.
4422  *
4423  * This is a separate step from interrupt enabling to simplify the locking rules
4424  * in the driver load and resume code.
4425  */
4426 void intel_hpd_init(struct drm_i915_private *dev_priv)
4427 {
4428         struct drm_device *dev = dev_priv->dev;
4429         struct drm_mode_config *mode_config = &dev->mode_config;
4430         struct drm_connector *connector;
4431         int i;
4432
4433         for (i = 1; i < HPD_NUM_PINS; i++) {
4434                 dev_priv->hpd_stats[i].hpd_cnt = 0;
4435                 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4436         }
4437         list_for_each_entry(connector, &mode_config->connector_list, head) {
4438                 struct intel_connector *intel_connector = to_intel_connector(connector);
4439                 connector->polled = intel_connector->polled;
4440                 if (connector->encoder && !connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4441                         connector->polled = DRM_CONNECTOR_POLL_HPD;
4442                 if (intel_connector->mst_port)
4443                         connector->polled = DRM_CONNECTOR_POLL_HPD;
4444         }
4445
4446         /* Interrupt setup is already guaranteed to be single-threaded, this is
4447          * just to make the assert_spin_locked checks happy. */
4448         spin_lock_irq(&dev_priv->irq_lock);
4449         if (dev_priv->display.hpd_irq_setup)
4450                 dev_priv->display.hpd_irq_setup(dev);
4451         spin_unlock_irq(&dev_priv->irq_lock);
4452 }
4453
4454 /**
4455  * intel_irq_install - enables the hardware interrupt
4456  * @dev_priv: i915 device instance
4457  *
4458  * This function enables the hardware interrupt handling, but leaves the hotplug
4459  * handling still disabled. It is called after intel_irq_init().
4460  *
4461  * In the driver load and resume code we need working interrupts in a few places
4462  * but don't want to deal with the hassle of concurrent probe and hotplug
4463  * workers. Hence the split into this two-stage approach.
4464  */
4465 int intel_irq_install(struct drm_i915_private *dev_priv)
4466 {
4467         /*
4468          * We enable some interrupt sources in our postinstall hooks, so mark
4469          * interrupts as enabled _before_ actually enabling them to avoid
4470          * special cases in our ordering checks.
4471          */
4472         dev_priv->pm.irqs_enabled = true;
4473
4474         return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4475 }
4476
4477 /**
4478  * intel_irq_uninstall - finilizes all irq handling
4479  * @dev_priv: i915 device instance
4480  *
4481  * This stops interrupt and hotplug handling and unregisters and frees all
4482  * resources acquired in the init functions.
4483  */
4484 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4485 {
4486         drm_irq_uninstall(dev_priv->dev);
4487         intel_hpd_cancel_work(dev_priv);
4488         dev_priv->pm.irqs_enabled = false;
4489 }
4490
4491 /**
4492  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4493  * @dev_priv: i915 device instance
4494  *
4495  * This function is used to disable interrupts at runtime, both in the runtime
4496  * pm and the system suspend/resume code.
4497  */
4498 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4499 {
4500         dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4501         dev_priv->pm.irqs_enabled = false;
4502 }
4503
4504 /**
4505  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4506  * @dev_priv: i915 device instance
4507  *
4508  * This function is used to enable interrupts at runtime, both in the runtime
4509  * pm and the system suspend/resume code.
4510  */
4511 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4512 {
4513         dev_priv->pm.irqs_enabled = true;
4514         dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4515         dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4516 }