ASoC: add support for TAS5720 digital amplifier
[cascardo/linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49         [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53         [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57         [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61         [HPD_CRT] = SDE_CRT_HOTPLUG,
62         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77         [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81         [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113         [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114         [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115         [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121         POSTING_READ(GEN8_##type##_IMR(which)); \
122         I915_WRITE(GEN8_##type##_IER(which), 0); \
123         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124         POSTING_READ(GEN8_##type##_IIR(which)); \
125         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126         POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128
129 #define GEN5_IRQ_RESET(type) do { \
130         I915_WRITE(type##IMR, 0xffffffff); \
131         POSTING_READ(type##IMR); \
132         I915_WRITE(type##IER, 0); \
133         I915_WRITE(type##IIR, 0xffffffff); \
134         POSTING_READ(type##IIR); \
135         I915_WRITE(type##IIR, 0xffffffff); \
136         POSTING_READ(type##IIR); \
137 } while (0)
138
139 /*
140  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141  */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143                                     i915_reg_t reg)
144 {
145         u32 val = I915_READ(reg);
146
147         if (val == 0)
148                 return;
149
150         WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151              i915_mmio_reg_offset(reg), val);
152         I915_WRITE(reg, 0xffffffff);
153         POSTING_READ(reg);
154         I915_WRITE(reg, 0xffffffff);
155         POSTING_READ(reg);
156 }
157
158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159         gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160         I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161         I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162         POSTING_READ(GEN8_##type##_IMR(which)); \
163 } while (0)
164
165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166         gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167         I915_WRITE(type##IER, (ier_val)); \
168         I915_WRITE(type##IMR, (imr_val)); \
169         POSTING_READ(type##IMR); \
170 } while (0)
171
172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173
174 /* For display hotplug interrupt */
175 static inline void
176 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
177                                      uint32_t mask,
178                                      uint32_t bits)
179 {
180         uint32_t val;
181
182         assert_spin_locked(&dev_priv->irq_lock);
183         WARN_ON(bits & ~mask);
184
185         val = I915_READ(PORT_HOTPLUG_EN);
186         val &= ~mask;
187         val |= bits;
188         I915_WRITE(PORT_HOTPLUG_EN, val);
189 }
190
191 /**
192  * i915_hotplug_interrupt_update - update hotplug interrupt enable
193  * @dev_priv: driver private
194  * @mask: bits to update
195  * @bits: bits to enable
196  * NOTE: the HPD enable bits are modified both inside and outside
197  * of an interrupt context. To avoid that read-modify-write cycles
198  * interfer, these bits are protected by a spinlock. Since this
199  * function is usually not called from a context where the lock is
200  * held already, this function acquires the lock itself. A non-locking
201  * version is also available.
202  */
203 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
204                                    uint32_t mask,
205                                    uint32_t bits)
206 {
207         spin_lock_irq(&dev_priv->irq_lock);
208         i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
209         spin_unlock_irq(&dev_priv->irq_lock);
210 }
211
212 /**
213  * ilk_update_display_irq - update DEIMR
214  * @dev_priv: driver private
215  * @interrupt_mask: mask of interrupt bits to update
216  * @enabled_irq_mask: mask of interrupt bits to enable
217  */
218 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
219                             uint32_t interrupt_mask,
220                             uint32_t enabled_irq_mask)
221 {
222         uint32_t new_val;
223
224         assert_spin_locked(&dev_priv->irq_lock);
225
226         WARN_ON(enabled_irq_mask & ~interrupt_mask);
227
228         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
229                 return;
230
231         new_val = dev_priv->irq_mask;
232         new_val &= ~interrupt_mask;
233         new_val |= (~enabled_irq_mask & interrupt_mask);
234
235         if (new_val != dev_priv->irq_mask) {
236                 dev_priv->irq_mask = new_val;
237                 I915_WRITE(DEIMR, dev_priv->irq_mask);
238                 POSTING_READ(DEIMR);
239         }
240 }
241
242 /**
243  * ilk_update_gt_irq - update GTIMR
244  * @dev_priv: driver private
245  * @interrupt_mask: mask of interrupt bits to update
246  * @enabled_irq_mask: mask of interrupt bits to enable
247  */
248 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
249                               uint32_t interrupt_mask,
250                               uint32_t enabled_irq_mask)
251 {
252         assert_spin_locked(&dev_priv->irq_lock);
253
254         WARN_ON(enabled_irq_mask & ~interrupt_mask);
255
256         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
257                 return;
258
259         dev_priv->gt_irq_mask &= ~interrupt_mask;
260         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
261         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
262         POSTING_READ(GTIMR);
263 }
264
265 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
266 {
267         ilk_update_gt_irq(dev_priv, mask, mask);
268 }
269
270 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
271 {
272         ilk_update_gt_irq(dev_priv, mask, 0);
273 }
274
275 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
276 {
277         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
278 }
279
280 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
281 {
282         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
283 }
284
285 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
286 {
287         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
288 }
289
290 /**
291  * snb_update_pm_irq - update GEN6_PMIMR
292  * @dev_priv: driver private
293  * @interrupt_mask: mask of interrupt bits to update
294  * @enabled_irq_mask: mask of interrupt bits to enable
295  */
296 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
297                               uint32_t interrupt_mask,
298                               uint32_t enabled_irq_mask)
299 {
300         uint32_t new_val;
301
302         WARN_ON(enabled_irq_mask & ~interrupt_mask);
303
304         assert_spin_locked(&dev_priv->irq_lock);
305
306         new_val = dev_priv->pm_irq_mask;
307         new_val &= ~interrupt_mask;
308         new_val |= (~enabled_irq_mask & interrupt_mask);
309
310         if (new_val != dev_priv->pm_irq_mask) {
311                 dev_priv->pm_irq_mask = new_val;
312                 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
313                 POSTING_READ(gen6_pm_imr(dev_priv));
314         }
315 }
316
317 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
318 {
319         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
320                 return;
321
322         snb_update_pm_irq(dev_priv, mask, mask);
323 }
324
325 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
326                                   uint32_t mask)
327 {
328         snb_update_pm_irq(dev_priv, mask, 0);
329 }
330
331 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
332 {
333         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334                 return;
335
336         __gen6_disable_pm_irq(dev_priv, mask);
337 }
338
339 void gen6_reset_rps_interrupts(struct drm_device *dev)
340 {
341         struct drm_i915_private *dev_priv = dev->dev_private;
342         i915_reg_t reg = gen6_pm_iir(dev_priv);
343
344         spin_lock_irq(&dev_priv->irq_lock);
345         I915_WRITE(reg, dev_priv->pm_rps_events);
346         I915_WRITE(reg, dev_priv->pm_rps_events);
347         POSTING_READ(reg);
348         dev_priv->rps.pm_iir = 0;
349         spin_unlock_irq(&dev_priv->irq_lock);
350 }
351
352 void gen6_enable_rps_interrupts(struct drm_device *dev)
353 {
354         struct drm_i915_private *dev_priv = dev->dev_private;
355
356         spin_lock_irq(&dev_priv->irq_lock);
357
358         WARN_ON(dev_priv->rps.pm_iir);
359         WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
360         dev_priv->rps.interrupts_enabled = true;
361         I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
362                                 dev_priv->pm_rps_events);
363         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
364
365         spin_unlock_irq(&dev_priv->irq_lock);
366 }
367
368 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
369 {
370         /*
371          * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
372          * if GEN6_PM_UP_EI_EXPIRED is masked.
373          *
374          * TODO: verify if this can be reproduced on VLV,CHV.
375          */
376         if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
377                 mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
378
379         if (INTEL_INFO(dev_priv)->gen >= 8)
380                 mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
381
382         return mask;
383 }
384
385 void gen6_disable_rps_interrupts(struct drm_device *dev)
386 {
387         struct drm_i915_private *dev_priv = dev->dev_private;
388
389         spin_lock_irq(&dev_priv->irq_lock);
390         dev_priv->rps.interrupts_enabled = false;
391         spin_unlock_irq(&dev_priv->irq_lock);
392
393         cancel_work_sync(&dev_priv->rps.work);
394
395         spin_lock_irq(&dev_priv->irq_lock);
396
397         I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
398
399         __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
400         I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
401                                 ~dev_priv->pm_rps_events);
402
403         spin_unlock_irq(&dev_priv->irq_lock);
404
405         synchronize_irq(dev->irq);
406 }
407
408 /**
409  * bdw_update_port_irq - update DE port interrupt
410  * @dev_priv: driver private
411  * @interrupt_mask: mask of interrupt bits to update
412  * @enabled_irq_mask: mask of interrupt bits to enable
413  */
414 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
415                                 uint32_t interrupt_mask,
416                                 uint32_t enabled_irq_mask)
417 {
418         uint32_t new_val;
419         uint32_t old_val;
420
421         assert_spin_locked(&dev_priv->irq_lock);
422
423         WARN_ON(enabled_irq_mask & ~interrupt_mask);
424
425         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
426                 return;
427
428         old_val = I915_READ(GEN8_DE_PORT_IMR);
429
430         new_val = old_val;
431         new_val &= ~interrupt_mask;
432         new_val |= (~enabled_irq_mask & interrupt_mask);
433
434         if (new_val != old_val) {
435                 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
436                 POSTING_READ(GEN8_DE_PORT_IMR);
437         }
438 }
439
440 /**
441  * bdw_update_pipe_irq - update DE pipe interrupt
442  * @dev_priv: driver private
443  * @pipe: pipe whose interrupt to update
444  * @interrupt_mask: mask of interrupt bits to update
445  * @enabled_irq_mask: mask of interrupt bits to enable
446  */
447 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
448                          enum pipe pipe,
449                          uint32_t interrupt_mask,
450                          uint32_t enabled_irq_mask)
451 {
452         uint32_t new_val;
453
454         assert_spin_locked(&dev_priv->irq_lock);
455
456         WARN_ON(enabled_irq_mask & ~interrupt_mask);
457
458         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
459                 return;
460
461         new_val = dev_priv->de_irq_mask[pipe];
462         new_val &= ~interrupt_mask;
463         new_val |= (~enabled_irq_mask & interrupt_mask);
464
465         if (new_val != dev_priv->de_irq_mask[pipe]) {
466                 dev_priv->de_irq_mask[pipe] = new_val;
467                 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
468                 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
469         }
470 }
471
472 /**
473  * ibx_display_interrupt_update - update SDEIMR
474  * @dev_priv: driver private
475  * @interrupt_mask: mask of interrupt bits to update
476  * @enabled_irq_mask: mask of interrupt bits to enable
477  */
478 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
479                                   uint32_t interrupt_mask,
480                                   uint32_t enabled_irq_mask)
481 {
482         uint32_t sdeimr = I915_READ(SDEIMR);
483         sdeimr &= ~interrupt_mask;
484         sdeimr |= (~enabled_irq_mask & interrupt_mask);
485
486         WARN_ON(enabled_irq_mask & ~interrupt_mask);
487
488         assert_spin_locked(&dev_priv->irq_lock);
489
490         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
491                 return;
492
493         I915_WRITE(SDEIMR, sdeimr);
494         POSTING_READ(SDEIMR);
495 }
496
497 static void
498 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
499                        u32 enable_mask, u32 status_mask)
500 {
501         i915_reg_t reg = PIPESTAT(pipe);
502         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
503
504         assert_spin_locked(&dev_priv->irq_lock);
505         WARN_ON(!intel_irqs_enabled(dev_priv));
506
507         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
508                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
509                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
510                       pipe_name(pipe), enable_mask, status_mask))
511                 return;
512
513         if ((pipestat & enable_mask) == enable_mask)
514                 return;
515
516         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
517
518         /* Enable the interrupt, clear any pending status */
519         pipestat |= enable_mask | status_mask;
520         I915_WRITE(reg, pipestat);
521         POSTING_READ(reg);
522 }
523
524 static void
525 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
526                         u32 enable_mask, u32 status_mask)
527 {
528         i915_reg_t reg = PIPESTAT(pipe);
529         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
530
531         assert_spin_locked(&dev_priv->irq_lock);
532         WARN_ON(!intel_irqs_enabled(dev_priv));
533
534         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
535                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
536                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
537                       pipe_name(pipe), enable_mask, status_mask))
538                 return;
539
540         if ((pipestat & enable_mask) == 0)
541                 return;
542
543         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
544
545         pipestat &= ~enable_mask;
546         I915_WRITE(reg, pipestat);
547         POSTING_READ(reg);
548 }
549
550 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
551 {
552         u32 enable_mask = status_mask << 16;
553
554         /*
555          * On pipe A we don't support the PSR interrupt yet,
556          * on pipe B and C the same bit MBZ.
557          */
558         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
559                 return 0;
560         /*
561          * On pipe B and C we don't support the PSR interrupt yet, on pipe
562          * A the same bit is for perf counters which we don't use either.
563          */
564         if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
565                 return 0;
566
567         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
568                          SPRITE0_FLIP_DONE_INT_EN_VLV |
569                          SPRITE1_FLIP_DONE_INT_EN_VLV);
570         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
571                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
572         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
573                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
574
575         return enable_mask;
576 }
577
578 void
579 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
580                      u32 status_mask)
581 {
582         u32 enable_mask;
583
584         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
585                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
586                                                            status_mask);
587         else
588                 enable_mask = status_mask << 16;
589         __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
590 }
591
592 void
593 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
594                       u32 status_mask)
595 {
596         u32 enable_mask;
597
598         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
599                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
600                                                            status_mask);
601         else
602                 enable_mask = status_mask << 16;
603         __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
604 }
605
606 /**
607  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
608  * @dev: drm device
609  */
610 static void i915_enable_asle_pipestat(struct drm_device *dev)
611 {
612         struct drm_i915_private *dev_priv = dev->dev_private;
613
614         if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
615                 return;
616
617         spin_lock_irq(&dev_priv->irq_lock);
618
619         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
620         if (INTEL_INFO(dev)->gen >= 4)
621                 i915_enable_pipestat(dev_priv, PIPE_A,
622                                      PIPE_LEGACY_BLC_EVENT_STATUS);
623
624         spin_unlock_irq(&dev_priv->irq_lock);
625 }
626
627 /*
628  * This timing diagram depicts the video signal in and
629  * around the vertical blanking period.
630  *
631  * Assumptions about the fictitious mode used in this example:
632  *  vblank_start >= 3
633  *  vsync_start = vblank_start + 1
634  *  vsync_end = vblank_start + 2
635  *  vtotal = vblank_start + 3
636  *
637  *           start of vblank:
638  *           latch double buffered registers
639  *           increment frame counter (ctg+)
640  *           generate start of vblank interrupt (gen4+)
641  *           |
642  *           |          frame start:
643  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
644  *           |          may be shifted forward 1-3 extra lines via PIPECONF
645  *           |          |
646  *           |          |  start of vsync:
647  *           |          |  generate vsync interrupt
648  *           |          |  |
649  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
650  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
651  * ----va---> <-----------------vb--------------------> <--------va-------------
652  *       |          |       <----vs----->                     |
653  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
654  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
655  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
656  *       |          |                                         |
657  *       last visible pixel                                   first visible pixel
658  *                  |                                         increment frame counter (gen3/4)
659  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
660  *
661  * x  = horizontal active
662  * _  = horizontal blanking
663  * hs = horizontal sync
664  * va = vertical active
665  * vb = vertical blanking
666  * vs = vertical sync
667  * vbs = vblank_start (number)
668  *
669  * Summary:
670  * - most events happen at the start of horizontal sync
671  * - frame start happens at the start of horizontal blank, 1-4 lines
672  *   (depending on PIPECONF settings) after the start of vblank
673  * - gen3/4 pixel and frame counter are synchronized with the start
674  *   of horizontal active on the first line of vertical active
675  */
676
677 static u32 i8xx_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
678 {
679         /* Gen2 doesn't have a hardware frame counter */
680         return 0;
681 }
682
683 /* Called from drm generic code, passed a 'crtc', which
684  * we use as a pipe index
685  */
686 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
687 {
688         struct drm_i915_private *dev_priv = dev->dev_private;
689         i915_reg_t high_frame, low_frame;
690         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
691         struct intel_crtc *intel_crtc =
692                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
693         const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
694
695         htotal = mode->crtc_htotal;
696         hsync_start = mode->crtc_hsync_start;
697         vbl_start = mode->crtc_vblank_start;
698         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
699                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
700
701         /* Convert to pixel count */
702         vbl_start *= htotal;
703
704         /* Start of vblank event occurs at start of hsync */
705         vbl_start -= htotal - hsync_start;
706
707         high_frame = PIPEFRAME(pipe);
708         low_frame = PIPEFRAMEPIXEL(pipe);
709
710         /*
711          * High & low register fields aren't synchronized, so make sure
712          * we get a low value that's stable across two reads of the high
713          * register.
714          */
715         do {
716                 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
717                 low   = I915_READ(low_frame);
718                 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
719         } while (high1 != high2);
720
721         high1 >>= PIPE_FRAME_HIGH_SHIFT;
722         pixel = low & PIPE_PIXEL_MASK;
723         low >>= PIPE_FRAME_LOW_SHIFT;
724
725         /*
726          * The frame counter increments at beginning of active.
727          * Cook up a vblank counter by also checking the pixel
728          * counter against vblank start.
729          */
730         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
731 }
732
733 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
734 {
735         struct drm_i915_private *dev_priv = dev->dev_private;
736
737         return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
738 }
739
740 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
741 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
742 {
743         struct drm_device *dev = crtc->base.dev;
744         struct drm_i915_private *dev_priv = dev->dev_private;
745         const struct drm_display_mode *mode = &crtc->base.hwmode;
746         enum pipe pipe = crtc->pipe;
747         int position, vtotal;
748
749         vtotal = mode->crtc_vtotal;
750         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
751                 vtotal /= 2;
752
753         if (IS_GEN2(dev))
754                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
755         else
756                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
757
758         /*
759          * On HSW, the DSL reg (0x70000) appears to return 0 if we
760          * read it just before the start of vblank.  So try it again
761          * so we don't accidentally end up spanning a vblank frame
762          * increment, causing the pipe_update_end() code to squak at us.
763          *
764          * The nature of this problem means we can't simply check the ISR
765          * bit and return the vblank start value; nor can we use the scanline
766          * debug register in the transcoder as it appears to have the same
767          * problem.  We may need to extend this to include other platforms,
768          * but so far testing only shows the problem on HSW.
769          */
770         if (HAS_DDI(dev) && !position) {
771                 int i, temp;
772
773                 for (i = 0; i < 100; i++) {
774                         udelay(1);
775                         temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
776                                 DSL_LINEMASK_GEN3;
777                         if (temp != position) {
778                                 position = temp;
779                                 break;
780                         }
781                 }
782         }
783
784         /*
785          * See update_scanline_offset() for the details on the
786          * scanline_offset adjustment.
787          */
788         return (position + crtc->scanline_offset) % vtotal;
789 }
790
791 static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
792                                     unsigned int flags, int *vpos, int *hpos,
793                                     ktime_t *stime, ktime_t *etime,
794                                     const struct drm_display_mode *mode)
795 {
796         struct drm_i915_private *dev_priv = dev->dev_private;
797         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
798         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
799         int position;
800         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
801         bool in_vbl = true;
802         int ret = 0;
803         unsigned long irqflags;
804
805         if (WARN_ON(!mode->crtc_clock)) {
806                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
807                                  "pipe %c\n", pipe_name(pipe));
808                 return 0;
809         }
810
811         htotal = mode->crtc_htotal;
812         hsync_start = mode->crtc_hsync_start;
813         vtotal = mode->crtc_vtotal;
814         vbl_start = mode->crtc_vblank_start;
815         vbl_end = mode->crtc_vblank_end;
816
817         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
818                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
819                 vbl_end /= 2;
820                 vtotal /= 2;
821         }
822
823         ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
824
825         /*
826          * Lock uncore.lock, as we will do multiple timing critical raw
827          * register reads, potentially with preemption disabled, so the
828          * following code must not block on uncore.lock.
829          */
830         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
831
832         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
833
834         /* Get optional system timestamp before query. */
835         if (stime)
836                 *stime = ktime_get();
837
838         if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
839                 /* No obvious pixelcount register. Only query vertical
840                  * scanout position from Display scan line register.
841                  */
842                 position = __intel_get_crtc_scanline(intel_crtc);
843         } else {
844                 /* Have access to pixelcount since start of frame.
845                  * We can split this into vertical and horizontal
846                  * scanout position.
847                  */
848                 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
849
850                 /* convert to pixel counts */
851                 vbl_start *= htotal;
852                 vbl_end *= htotal;
853                 vtotal *= htotal;
854
855                 /*
856                  * In interlaced modes, the pixel counter counts all pixels,
857                  * so one field will have htotal more pixels. In order to avoid
858                  * the reported position from jumping backwards when the pixel
859                  * counter is beyond the length of the shorter field, just
860                  * clamp the position the length of the shorter field. This
861                  * matches how the scanline counter based position works since
862                  * the scanline counter doesn't count the two half lines.
863                  */
864                 if (position >= vtotal)
865                         position = vtotal - 1;
866
867                 /*
868                  * Start of vblank interrupt is triggered at start of hsync,
869                  * just prior to the first active line of vblank. However we
870                  * consider lines to start at the leading edge of horizontal
871                  * active. So, should we get here before we've crossed into
872                  * the horizontal active of the first line in vblank, we would
873                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
874                  * always add htotal-hsync_start to the current pixel position.
875                  */
876                 position = (position + htotal - hsync_start) % vtotal;
877         }
878
879         /* Get optional system timestamp after query. */
880         if (etime)
881                 *etime = ktime_get();
882
883         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
884
885         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
886
887         in_vbl = position >= vbl_start && position < vbl_end;
888
889         /*
890          * While in vblank, position will be negative
891          * counting up towards 0 at vbl_end. And outside
892          * vblank, position will be positive counting
893          * up since vbl_end.
894          */
895         if (position >= vbl_start)
896                 position -= vbl_end;
897         else
898                 position += vtotal - vbl_end;
899
900         if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
901                 *vpos = position;
902                 *hpos = 0;
903         } else {
904                 *vpos = position / htotal;
905                 *hpos = position - (*vpos * htotal);
906         }
907
908         /* In vblank? */
909         if (in_vbl)
910                 ret |= DRM_SCANOUTPOS_IN_VBLANK;
911
912         return ret;
913 }
914
915 int intel_get_crtc_scanline(struct intel_crtc *crtc)
916 {
917         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
918         unsigned long irqflags;
919         int position;
920
921         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
922         position = __intel_get_crtc_scanline(crtc);
923         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
924
925         return position;
926 }
927
928 static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
929                               int *max_error,
930                               struct timeval *vblank_time,
931                               unsigned flags)
932 {
933         struct drm_crtc *crtc;
934
935         if (pipe >= INTEL_INFO(dev)->num_pipes) {
936                 DRM_ERROR("Invalid crtc %u\n", pipe);
937                 return -EINVAL;
938         }
939
940         /* Get drm_crtc to timestamp: */
941         crtc = intel_get_crtc_for_pipe(dev, pipe);
942         if (crtc == NULL) {
943                 DRM_ERROR("Invalid crtc %u\n", pipe);
944                 return -EINVAL;
945         }
946
947         if (!crtc->hwmode.crtc_clock) {
948                 DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
949                 return -EBUSY;
950         }
951
952         /* Helper routine in DRM core does all the work: */
953         return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
954                                                      vblank_time, flags,
955                                                      &crtc->hwmode);
956 }
957
958 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
959 {
960         struct drm_i915_private *dev_priv = dev->dev_private;
961         u32 busy_up, busy_down, max_avg, min_avg;
962         u8 new_delay;
963
964         spin_lock(&mchdev_lock);
965
966         I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
967
968         new_delay = dev_priv->ips.cur_delay;
969
970         I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
971         busy_up = I915_READ(RCPREVBSYTUPAVG);
972         busy_down = I915_READ(RCPREVBSYTDNAVG);
973         max_avg = I915_READ(RCBMAXAVG);
974         min_avg = I915_READ(RCBMINAVG);
975
976         /* Handle RCS change request from hw */
977         if (busy_up > max_avg) {
978                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
979                         new_delay = dev_priv->ips.cur_delay - 1;
980                 if (new_delay < dev_priv->ips.max_delay)
981                         new_delay = dev_priv->ips.max_delay;
982         } else if (busy_down < min_avg) {
983                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
984                         new_delay = dev_priv->ips.cur_delay + 1;
985                 if (new_delay > dev_priv->ips.min_delay)
986                         new_delay = dev_priv->ips.min_delay;
987         }
988
989         if (ironlake_set_drps(dev, new_delay))
990                 dev_priv->ips.cur_delay = new_delay;
991
992         spin_unlock(&mchdev_lock);
993
994         return;
995 }
996
997 static void notify_ring(struct intel_engine_cs *ring)
998 {
999         if (!intel_ring_initialized(ring))
1000                 return;
1001
1002         trace_i915_gem_request_notify(ring);
1003
1004         wake_up_all(&ring->irq_queue);
1005 }
1006
1007 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1008                         struct intel_rps_ei *ei)
1009 {
1010         ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1011         ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1012         ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1013 }
1014
1015 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
1016                          const struct intel_rps_ei *old,
1017                          const struct intel_rps_ei *now,
1018                          int threshold)
1019 {
1020         u64 time, c0;
1021         unsigned int mul = 100;
1022
1023         if (old->cz_clock == 0)
1024                 return false;
1025
1026         if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1027                 mul <<= 8;
1028
1029         time = now->cz_clock - old->cz_clock;
1030         time *= threshold * dev_priv->czclk_freq;
1031
1032         /* Workload can be split between render + media, e.g. SwapBuffers
1033          * being blitted in X after being rendered in mesa. To account for
1034          * this we need to combine both engines into our activity counter.
1035          */
1036         c0 = now->render_c0 - old->render_c0;
1037         c0 += now->media_c0 - old->media_c0;
1038         c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC;
1039
1040         return c0 >= time;
1041 }
1042
1043 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1044 {
1045         vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1046         dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1047 }
1048
1049 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1050 {
1051         struct intel_rps_ei now;
1052         u32 events = 0;
1053
1054         if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1055                 return 0;
1056
1057         vlv_c0_read(dev_priv, &now);
1058         if (now.cz_clock == 0)
1059                 return 0;
1060
1061         if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1062                 if (!vlv_c0_above(dev_priv,
1063                                   &dev_priv->rps.down_ei, &now,
1064                                   dev_priv->rps.down_threshold))
1065                         events |= GEN6_PM_RP_DOWN_THRESHOLD;
1066                 dev_priv->rps.down_ei = now;
1067         }
1068
1069         if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1070                 if (vlv_c0_above(dev_priv,
1071                                  &dev_priv->rps.up_ei, &now,
1072                                  dev_priv->rps.up_threshold))
1073                         events |= GEN6_PM_RP_UP_THRESHOLD;
1074                 dev_priv->rps.up_ei = now;
1075         }
1076
1077         return events;
1078 }
1079
1080 static bool any_waiters(struct drm_i915_private *dev_priv)
1081 {
1082         struct intel_engine_cs *ring;
1083         int i;
1084
1085         for_each_ring(ring, dev_priv, i)
1086                 if (ring->irq_refcount)
1087                         return true;
1088
1089         return false;
1090 }
1091
1092 static void gen6_pm_rps_work(struct work_struct *work)
1093 {
1094         struct drm_i915_private *dev_priv =
1095                 container_of(work, struct drm_i915_private, rps.work);
1096         bool client_boost;
1097         int new_delay, adj, min, max;
1098         u32 pm_iir;
1099
1100         spin_lock_irq(&dev_priv->irq_lock);
1101         /* Speed up work cancelation during disabling rps interrupts. */
1102         if (!dev_priv->rps.interrupts_enabled) {
1103                 spin_unlock_irq(&dev_priv->irq_lock);
1104                 return;
1105         }
1106
1107         /*
1108          * The RPS work is synced during runtime suspend, we don't require a
1109          * wakeref. TODO: instead of disabling the asserts make sure that we
1110          * always hold an RPM reference while the work is running.
1111          */
1112         DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1113
1114         pm_iir = dev_priv->rps.pm_iir;
1115         dev_priv->rps.pm_iir = 0;
1116         /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1117         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1118         client_boost = dev_priv->rps.client_boost;
1119         dev_priv->rps.client_boost = false;
1120         spin_unlock_irq(&dev_priv->irq_lock);
1121
1122         /* Make sure we didn't queue anything we're not going to process. */
1123         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1124
1125         if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1126                 goto out;
1127
1128         mutex_lock(&dev_priv->rps.hw_lock);
1129
1130         pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1131
1132         adj = dev_priv->rps.last_adj;
1133         new_delay = dev_priv->rps.cur_freq;
1134         min = dev_priv->rps.min_freq_softlimit;
1135         max = dev_priv->rps.max_freq_softlimit;
1136
1137         if (client_boost) {
1138                 new_delay = dev_priv->rps.max_freq_softlimit;
1139                 adj = 0;
1140         } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1141                 if (adj > 0)
1142                         adj *= 2;
1143                 else /* CHV needs even encode values */
1144                         adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1145                 /*
1146                  * For better performance, jump directly
1147                  * to RPe if we're below it.
1148                  */
1149                 if (new_delay < dev_priv->rps.efficient_freq - adj) {
1150                         new_delay = dev_priv->rps.efficient_freq;
1151                         adj = 0;
1152                 }
1153         } else if (any_waiters(dev_priv)) {
1154                 adj = 0;
1155         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1156                 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1157                         new_delay = dev_priv->rps.efficient_freq;
1158                 else
1159                         new_delay = dev_priv->rps.min_freq_softlimit;
1160                 adj = 0;
1161         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1162                 if (adj < 0)
1163                         adj *= 2;
1164                 else /* CHV needs even encode values */
1165                         adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1166         } else { /* unknown event */
1167                 adj = 0;
1168         }
1169
1170         dev_priv->rps.last_adj = adj;
1171
1172         /* sysfs frequency interfaces may have snuck in while servicing the
1173          * interrupt
1174          */
1175         new_delay += adj;
1176         new_delay = clamp_t(int, new_delay, min, max);
1177
1178         intel_set_rps(dev_priv->dev, new_delay);
1179
1180         mutex_unlock(&dev_priv->rps.hw_lock);
1181 out:
1182         ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1183 }
1184
1185
1186 /**
1187  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1188  * occurred.
1189  * @work: workqueue struct
1190  *
1191  * Doesn't actually do anything except notify userspace. As a consequence of
1192  * this event, userspace should try to remap the bad rows since statistically
1193  * it is likely the same row is more likely to go bad again.
1194  */
1195 static void ivybridge_parity_work(struct work_struct *work)
1196 {
1197         struct drm_i915_private *dev_priv =
1198                 container_of(work, struct drm_i915_private, l3_parity.error_work);
1199         u32 error_status, row, bank, subbank;
1200         char *parity_event[6];
1201         uint32_t misccpctl;
1202         uint8_t slice = 0;
1203
1204         /* We must turn off DOP level clock gating to access the L3 registers.
1205          * In order to prevent a get/put style interface, acquire struct mutex
1206          * any time we access those registers.
1207          */
1208         mutex_lock(&dev_priv->dev->struct_mutex);
1209
1210         /* If we've screwed up tracking, just let the interrupt fire again */
1211         if (WARN_ON(!dev_priv->l3_parity.which_slice))
1212                 goto out;
1213
1214         misccpctl = I915_READ(GEN7_MISCCPCTL);
1215         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1216         POSTING_READ(GEN7_MISCCPCTL);
1217
1218         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1219                 i915_reg_t reg;
1220
1221                 slice--;
1222                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1223                         break;
1224
1225                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1226
1227                 reg = GEN7_L3CDERRST1(slice);
1228
1229                 error_status = I915_READ(reg);
1230                 row = GEN7_PARITY_ERROR_ROW(error_status);
1231                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1232                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1233
1234                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1235                 POSTING_READ(reg);
1236
1237                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1238                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1239                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1240                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1241                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1242                 parity_event[5] = NULL;
1243
1244                 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1245                                    KOBJ_CHANGE, parity_event);
1246
1247                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1248                           slice, row, bank, subbank);
1249
1250                 kfree(parity_event[4]);
1251                 kfree(parity_event[3]);
1252                 kfree(parity_event[2]);
1253                 kfree(parity_event[1]);
1254         }
1255
1256         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1257
1258 out:
1259         WARN_ON(dev_priv->l3_parity.which_slice);
1260         spin_lock_irq(&dev_priv->irq_lock);
1261         gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1262         spin_unlock_irq(&dev_priv->irq_lock);
1263
1264         mutex_unlock(&dev_priv->dev->struct_mutex);
1265 }
1266
1267 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1268 {
1269         struct drm_i915_private *dev_priv = dev->dev_private;
1270
1271         if (!HAS_L3_DPF(dev))
1272                 return;
1273
1274         spin_lock(&dev_priv->irq_lock);
1275         gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1276         spin_unlock(&dev_priv->irq_lock);
1277
1278         iir &= GT_PARITY_ERROR(dev);
1279         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1280                 dev_priv->l3_parity.which_slice |= 1 << 1;
1281
1282         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1283                 dev_priv->l3_parity.which_slice |= 1 << 0;
1284
1285         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1286 }
1287
1288 static void ilk_gt_irq_handler(struct drm_device *dev,
1289                                struct drm_i915_private *dev_priv,
1290                                u32 gt_iir)
1291 {
1292         if (gt_iir &
1293             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1294                 notify_ring(&dev_priv->ring[RCS]);
1295         if (gt_iir & ILK_BSD_USER_INTERRUPT)
1296                 notify_ring(&dev_priv->ring[VCS]);
1297 }
1298
1299 static void snb_gt_irq_handler(struct drm_device *dev,
1300                                struct drm_i915_private *dev_priv,
1301                                u32 gt_iir)
1302 {
1303
1304         if (gt_iir &
1305             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1306                 notify_ring(&dev_priv->ring[RCS]);
1307         if (gt_iir & GT_BSD_USER_INTERRUPT)
1308                 notify_ring(&dev_priv->ring[VCS]);
1309         if (gt_iir & GT_BLT_USER_INTERRUPT)
1310                 notify_ring(&dev_priv->ring[BCS]);
1311
1312         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1313                       GT_BSD_CS_ERROR_INTERRUPT |
1314                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1315                 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1316
1317         if (gt_iir & GT_PARITY_ERROR(dev))
1318                 ivybridge_parity_error_irq_handler(dev, gt_iir);
1319 }
1320
1321 static __always_inline void
1322 gen8_cs_irq_handler(struct intel_engine_cs *ring, u32 iir, int test_shift)
1323 {
1324         if (iir & (GT_RENDER_USER_INTERRUPT << test_shift))
1325                 notify_ring(ring);
1326         if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift))
1327                 intel_lrc_irq_handler(ring);
1328 }
1329
1330 static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1331                                        u32 master_ctl)
1332 {
1333         irqreturn_t ret = IRQ_NONE;
1334
1335         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1336                 u32 iir = I915_READ_FW(GEN8_GT_IIR(0));
1337                 if (iir) {
1338                         I915_WRITE_FW(GEN8_GT_IIR(0), iir);
1339                         ret = IRQ_HANDLED;
1340
1341                         gen8_cs_irq_handler(&dev_priv->ring[RCS],
1342                                         iir, GEN8_RCS_IRQ_SHIFT);
1343
1344                         gen8_cs_irq_handler(&dev_priv->ring[BCS],
1345                                         iir, GEN8_BCS_IRQ_SHIFT);
1346                 } else
1347                         DRM_ERROR("The master control interrupt lied (GT0)!\n");
1348         }
1349
1350         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1351                 u32 iir = I915_READ_FW(GEN8_GT_IIR(1));
1352                 if (iir) {
1353                         I915_WRITE_FW(GEN8_GT_IIR(1), iir);
1354                         ret = IRQ_HANDLED;
1355
1356                         gen8_cs_irq_handler(&dev_priv->ring[VCS],
1357                                         iir, GEN8_VCS1_IRQ_SHIFT);
1358
1359                         gen8_cs_irq_handler(&dev_priv->ring[VCS2],
1360                                         iir, GEN8_VCS2_IRQ_SHIFT);
1361                 } else
1362                         DRM_ERROR("The master control interrupt lied (GT1)!\n");
1363         }
1364
1365         if (master_ctl & GEN8_GT_VECS_IRQ) {
1366                 u32 iir = I915_READ_FW(GEN8_GT_IIR(3));
1367                 if (iir) {
1368                         I915_WRITE_FW(GEN8_GT_IIR(3), iir);
1369                         ret = IRQ_HANDLED;
1370
1371                         gen8_cs_irq_handler(&dev_priv->ring[VECS],
1372                                         iir, GEN8_VECS_IRQ_SHIFT);
1373                 } else
1374                         DRM_ERROR("The master control interrupt lied (GT3)!\n");
1375         }
1376
1377         if (master_ctl & GEN8_GT_PM_IRQ) {
1378                 u32 iir = I915_READ_FW(GEN8_GT_IIR(2));
1379                 if (iir & dev_priv->pm_rps_events) {
1380                         I915_WRITE_FW(GEN8_GT_IIR(2),
1381                                       iir & dev_priv->pm_rps_events);
1382                         ret = IRQ_HANDLED;
1383                         gen6_rps_irq_handler(dev_priv, iir);
1384                 } else
1385                         DRM_ERROR("The master control interrupt lied (PM)!\n");
1386         }
1387
1388         return ret;
1389 }
1390
1391 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1392 {
1393         switch (port) {
1394         case PORT_A:
1395                 return val & PORTA_HOTPLUG_LONG_DETECT;
1396         case PORT_B:
1397                 return val & PORTB_HOTPLUG_LONG_DETECT;
1398         case PORT_C:
1399                 return val & PORTC_HOTPLUG_LONG_DETECT;
1400         default:
1401                 return false;
1402         }
1403 }
1404
1405 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1406 {
1407         switch (port) {
1408         case PORT_E:
1409                 return val & PORTE_HOTPLUG_LONG_DETECT;
1410         default:
1411                 return false;
1412         }
1413 }
1414
1415 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1416 {
1417         switch (port) {
1418         case PORT_A:
1419                 return val & PORTA_HOTPLUG_LONG_DETECT;
1420         case PORT_B:
1421                 return val & PORTB_HOTPLUG_LONG_DETECT;
1422         case PORT_C:
1423                 return val & PORTC_HOTPLUG_LONG_DETECT;
1424         case PORT_D:
1425                 return val & PORTD_HOTPLUG_LONG_DETECT;
1426         default:
1427                 return false;
1428         }
1429 }
1430
1431 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1432 {
1433         switch (port) {
1434         case PORT_A:
1435                 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1436         default:
1437                 return false;
1438         }
1439 }
1440
1441 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1442 {
1443         switch (port) {
1444         case PORT_B:
1445                 return val & PORTB_HOTPLUG_LONG_DETECT;
1446         case PORT_C:
1447                 return val & PORTC_HOTPLUG_LONG_DETECT;
1448         case PORT_D:
1449                 return val & PORTD_HOTPLUG_LONG_DETECT;
1450         default:
1451                 return false;
1452         }
1453 }
1454
1455 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1456 {
1457         switch (port) {
1458         case PORT_B:
1459                 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1460         case PORT_C:
1461                 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1462         case PORT_D:
1463                 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1464         default:
1465                 return false;
1466         }
1467 }
1468
1469 /*
1470  * Get a bit mask of pins that have triggered, and which ones may be long.
1471  * This can be called multiple times with the same masks to accumulate
1472  * hotplug detection results from several registers.
1473  *
1474  * Note that the caller is expected to zero out the masks initially.
1475  */
1476 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1477                              u32 hotplug_trigger, u32 dig_hotplug_reg,
1478                              const u32 hpd[HPD_NUM_PINS],
1479                              bool long_pulse_detect(enum port port, u32 val))
1480 {
1481         enum port port;
1482         int i;
1483
1484         for_each_hpd_pin(i) {
1485                 if ((hpd[i] & hotplug_trigger) == 0)
1486                         continue;
1487
1488                 *pin_mask |= BIT(i);
1489
1490                 if (!intel_hpd_pin_to_port(i, &port))
1491                         continue;
1492
1493                 if (long_pulse_detect(port, dig_hotplug_reg))
1494                         *long_mask |= BIT(i);
1495         }
1496
1497         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1498                          hotplug_trigger, dig_hotplug_reg, *pin_mask);
1499
1500 }
1501
1502 static void gmbus_irq_handler(struct drm_device *dev)
1503 {
1504         struct drm_i915_private *dev_priv = dev->dev_private;
1505
1506         wake_up_all(&dev_priv->gmbus_wait_queue);
1507 }
1508
1509 static void dp_aux_irq_handler(struct drm_device *dev)
1510 {
1511         struct drm_i915_private *dev_priv = dev->dev_private;
1512
1513         wake_up_all(&dev_priv->gmbus_wait_queue);
1514 }
1515
1516 #if defined(CONFIG_DEBUG_FS)
1517 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1518                                          uint32_t crc0, uint32_t crc1,
1519                                          uint32_t crc2, uint32_t crc3,
1520                                          uint32_t crc4)
1521 {
1522         struct drm_i915_private *dev_priv = dev->dev_private;
1523         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1524         struct intel_pipe_crc_entry *entry;
1525         int head, tail;
1526
1527         spin_lock(&pipe_crc->lock);
1528
1529         if (!pipe_crc->entries) {
1530                 spin_unlock(&pipe_crc->lock);
1531                 DRM_DEBUG_KMS("spurious interrupt\n");
1532                 return;
1533         }
1534
1535         head = pipe_crc->head;
1536         tail = pipe_crc->tail;
1537
1538         if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1539                 spin_unlock(&pipe_crc->lock);
1540                 DRM_ERROR("CRC buffer overflowing\n");
1541                 return;
1542         }
1543
1544         entry = &pipe_crc->entries[head];
1545
1546         entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1547         entry->crc[0] = crc0;
1548         entry->crc[1] = crc1;
1549         entry->crc[2] = crc2;
1550         entry->crc[3] = crc3;
1551         entry->crc[4] = crc4;
1552
1553         head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1554         pipe_crc->head = head;
1555
1556         spin_unlock(&pipe_crc->lock);
1557
1558         wake_up_interruptible(&pipe_crc->wq);
1559 }
1560 #else
1561 static inline void
1562 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1563                              uint32_t crc0, uint32_t crc1,
1564                              uint32_t crc2, uint32_t crc3,
1565                              uint32_t crc4) {}
1566 #endif
1567
1568
1569 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1570 {
1571         struct drm_i915_private *dev_priv = dev->dev_private;
1572
1573         display_pipe_crc_irq_handler(dev, pipe,
1574                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1575                                      0, 0, 0, 0);
1576 }
1577
1578 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1579 {
1580         struct drm_i915_private *dev_priv = dev->dev_private;
1581
1582         display_pipe_crc_irq_handler(dev, pipe,
1583                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1584                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1585                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1586                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1587                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1588 }
1589
1590 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1591 {
1592         struct drm_i915_private *dev_priv = dev->dev_private;
1593         uint32_t res1, res2;
1594
1595         if (INTEL_INFO(dev)->gen >= 3)
1596                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1597         else
1598                 res1 = 0;
1599
1600         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1601                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1602         else
1603                 res2 = 0;
1604
1605         display_pipe_crc_irq_handler(dev, pipe,
1606                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1607                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1608                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1609                                      res1, res2);
1610 }
1611
1612 /* The RPS events need forcewake, so we add them to a work queue and mask their
1613  * IMR bits until the work is done. Other interrupts can be processed without
1614  * the work queue. */
1615 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1616 {
1617         if (pm_iir & dev_priv->pm_rps_events) {
1618                 spin_lock(&dev_priv->irq_lock);
1619                 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1620                 if (dev_priv->rps.interrupts_enabled) {
1621                         dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1622                         queue_work(dev_priv->wq, &dev_priv->rps.work);
1623                 }
1624                 spin_unlock(&dev_priv->irq_lock);
1625         }
1626
1627         if (INTEL_INFO(dev_priv)->gen >= 8)
1628                 return;
1629
1630         if (HAS_VEBOX(dev_priv->dev)) {
1631                 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1632                         notify_ring(&dev_priv->ring[VECS]);
1633
1634                 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1635                         DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1636         }
1637 }
1638
1639 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1640 {
1641         if (!drm_handle_vblank(dev, pipe))
1642                 return false;
1643
1644         return true;
1645 }
1646
1647 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1648 {
1649         struct drm_i915_private *dev_priv = dev->dev_private;
1650         u32 pipe_stats[I915_MAX_PIPES] = { };
1651         int pipe;
1652
1653         spin_lock(&dev_priv->irq_lock);
1654
1655         if (!dev_priv->display_irqs_enabled) {
1656                 spin_unlock(&dev_priv->irq_lock);
1657                 return;
1658         }
1659
1660         for_each_pipe(dev_priv, pipe) {
1661                 i915_reg_t reg;
1662                 u32 mask, iir_bit = 0;
1663
1664                 /*
1665                  * PIPESTAT bits get signalled even when the interrupt is
1666                  * disabled with the mask bits, and some of the status bits do
1667                  * not generate interrupts at all (like the underrun bit). Hence
1668                  * we need to be careful that we only handle what we want to
1669                  * handle.
1670                  */
1671
1672                 /* fifo underruns are filterered in the underrun handler. */
1673                 mask = PIPE_FIFO_UNDERRUN_STATUS;
1674
1675                 switch (pipe) {
1676                 case PIPE_A:
1677                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1678                         break;
1679                 case PIPE_B:
1680                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1681                         break;
1682                 case PIPE_C:
1683                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1684                         break;
1685                 }
1686                 if (iir & iir_bit)
1687                         mask |= dev_priv->pipestat_irq_mask[pipe];
1688
1689                 if (!mask)
1690                         continue;
1691
1692                 reg = PIPESTAT(pipe);
1693                 mask |= PIPESTAT_INT_ENABLE_MASK;
1694                 pipe_stats[pipe] = I915_READ(reg) & mask;
1695
1696                 /*
1697                  * Clear the PIPE*STAT regs before the IIR
1698                  */
1699                 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1700                                         PIPESTAT_INT_STATUS_MASK))
1701                         I915_WRITE(reg, pipe_stats[pipe]);
1702         }
1703         spin_unlock(&dev_priv->irq_lock);
1704
1705         for_each_pipe(dev_priv, pipe) {
1706                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1707                     intel_pipe_handle_vblank(dev, pipe))
1708                         intel_check_page_flip(dev, pipe);
1709
1710                 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1711                         intel_prepare_page_flip(dev, pipe);
1712                         intel_finish_page_flip(dev, pipe);
1713                 }
1714
1715                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1716                         i9xx_pipe_crc_irq_handler(dev, pipe);
1717
1718                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1719                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1720         }
1721
1722         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1723                 gmbus_irq_handler(dev);
1724 }
1725
1726 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1727 {
1728         struct drm_i915_private *dev_priv = dev->dev_private;
1729         u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1730         u32 pin_mask = 0, long_mask = 0;
1731
1732         if (!hotplug_status)
1733                 return;
1734
1735         I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1736         /*
1737          * Make sure hotplug status is cleared before we clear IIR, or else we
1738          * may miss hotplug events.
1739          */
1740         POSTING_READ(PORT_HOTPLUG_STAT);
1741
1742         if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1743                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1744
1745                 if (hotplug_trigger) {
1746                         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1747                                            hotplug_trigger, hpd_status_g4x,
1748                                            i9xx_port_hotplug_long_detect);
1749
1750                         intel_hpd_irq_handler(dev, pin_mask, long_mask);
1751                 }
1752
1753                 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1754                         dp_aux_irq_handler(dev);
1755         } else {
1756                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1757
1758                 if (hotplug_trigger) {
1759                         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1760                                            hotplug_trigger, hpd_status_i915,
1761                                            i9xx_port_hotplug_long_detect);
1762                         intel_hpd_irq_handler(dev, pin_mask, long_mask);
1763                 }
1764         }
1765 }
1766
1767 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1768 {
1769         struct drm_device *dev = arg;
1770         struct drm_i915_private *dev_priv = dev->dev_private;
1771         u32 iir, gt_iir, pm_iir;
1772         irqreturn_t ret = IRQ_NONE;
1773
1774         if (!intel_irqs_enabled(dev_priv))
1775                 return IRQ_NONE;
1776
1777         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1778         disable_rpm_wakeref_asserts(dev_priv);
1779
1780         while (true) {
1781                 /* Find, clear, then process each source of interrupt */
1782
1783                 gt_iir = I915_READ(GTIIR);
1784                 if (gt_iir)
1785                         I915_WRITE(GTIIR, gt_iir);
1786
1787                 pm_iir = I915_READ(GEN6_PMIIR);
1788                 if (pm_iir)
1789                         I915_WRITE(GEN6_PMIIR, pm_iir);
1790
1791                 iir = I915_READ(VLV_IIR);
1792                 if (iir) {
1793                         /* Consume port before clearing IIR or we'll miss events */
1794                         if (iir & I915_DISPLAY_PORT_INTERRUPT)
1795                                 i9xx_hpd_irq_handler(dev);
1796                         I915_WRITE(VLV_IIR, iir);
1797                 }
1798
1799                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1800                         goto out;
1801
1802                 ret = IRQ_HANDLED;
1803
1804                 if (gt_iir)
1805                         snb_gt_irq_handler(dev, dev_priv, gt_iir);
1806                 if (pm_iir)
1807                         gen6_rps_irq_handler(dev_priv, pm_iir);
1808                 /* Call regardless, as some status bits might not be
1809                  * signalled in iir */
1810                 valleyview_pipestat_irq_handler(dev, iir);
1811         }
1812
1813 out:
1814         enable_rpm_wakeref_asserts(dev_priv);
1815
1816         return ret;
1817 }
1818
1819 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1820 {
1821         struct drm_device *dev = arg;
1822         struct drm_i915_private *dev_priv = dev->dev_private;
1823         u32 master_ctl, iir;
1824         irqreturn_t ret = IRQ_NONE;
1825
1826         if (!intel_irqs_enabled(dev_priv))
1827                 return IRQ_NONE;
1828
1829         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1830         disable_rpm_wakeref_asserts(dev_priv);
1831
1832         for (;;) {
1833                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1834                 iir = I915_READ(VLV_IIR);
1835
1836                 if (master_ctl == 0 && iir == 0)
1837                         break;
1838
1839                 ret = IRQ_HANDLED;
1840
1841                 I915_WRITE(GEN8_MASTER_IRQ, 0);
1842
1843                 /* Find, clear, then process each source of interrupt */
1844
1845                 if (iir) {
1846                         /* Consume port before clearing IIR or we'll miss events */
1847                         if (iir & I915_DISPLAY_PORT_INTERRUPT)
1848                                 i9xx_hpd_irq_handler(dev);
1849                         I915_WRITE(VLV_IIR, iir);
1850                 }
1851
1852                 gen8_gt_irq_handler(dev_priv, master_ctl);
1853
1854                 /* Call regardless, as some status bits might not be
1855                  * signalled in iir */
1856                 valleyview_pipestat_irq_handler(dev, iir);
1857
1858                 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1859                 POSTING_READ(GEN8_MASTER_IRQ);
1860         }
1861
1862         enable_rpm_wakeref_asserts(dev_priv);
1863
1864         return ret;
1865 }
1866
1867 static void ibx_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
1868                                 const u32 hpd[HPD_NUM_PINS])
1869 {
1870         struct drm_i915_private *dev_priv = to_i915(dev);
1871         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1872
1873         /*
1874          * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1875          * unless we touch the hotplug register, even if hotplug_trigger is
1876          * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1877          * errors.
1878          */
1879         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1880         if (!hotplug_trigger) {
1881                 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1882                         PORTD_HOTPLUG_STATUS_MASK |
1883                         PORTC_HOTPLUG_STATUS_MASK |
1884                         PORTB_HOTPLUG_STATUS_MASK;
1885                 dig_hotplug_reg &= ~mask;
1886         }
1887
1888         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1889         if (!hotplug_trigger)
1890                 return;
1891
1892         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1893                            dig_hotplug_reg, hpd,
1894                            pch_port_hotplug_long_detect);
1895
1896         intel_hpd_irq_handler(dev, pin_mask, long_mask);
1897 }
1898
1899 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1900 {
1901         struct drm_i915_private *dev_priv = dev->dev_private;
1902         int pipe;
1903         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1904
1905         ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1906
1907         if (pch_iir & SDE_AUDIO_POWER_MASK) {
1908                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1909                                SDE_AUDIO_POWER_SHIFT);
1910                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1911                                  port_name(port));
1912         }
1913
1914         if (pch_iir & SDE_AUX_MASK)
1915                 dp_aux_irq_handler(dev);
1916
1917         if (pch_iir & SDE_GMBUS)
1918                 gmbus_irq_handler(dev);
1919
1920         if (pch_iir & SDE_AUDIO_HDCP_MASK)
1921                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1922
1923         if (pch_iir & SDE_AUDIO_TRANS_MASK)
1924                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1925
1926         if (pch_iir & SDE_POISON)
1927                 DRM_ERROR("PCH poison interrupt\n");
1928
1929         if (pch_iir & SDE_FDI_MASK)
1930                 for_each_pipe(dev_priv, pipe)
1931                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1932                                          pipe_name(pipe),
1933                                          I915_READ(FDI_RX_IIR(pipe)));
1934
1935         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1936                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1937
1938         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1939                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1940
1941         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1942                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1943
1944         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1945                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1946 }
1947
1948 static void ivb_err_int_handler(struct drm_device *dev)
1949 {
1950         struct drm_i915_private *dev_priv = dev->dev_private;
1951         u32 err_int = I915_READ(GEN7_ERR_INT);
1952         enum pipe pipe;
1953
1954         if (err_int & ERR_INT_POISON)
1955                 DRM_ERROR("Poison interrupt\n");
1956
1957         for_each_pipe(dev_priv, pipe) {
1958                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1959                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1960
1961                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1962                         if (IS_IVYBRIDGE(dev))
1963                                 ivb_pipe_crc_irq_handler(dev, pipe);
1964                         else
1965                                 hsw_pipe_crc_irq_handler(dev, pipe);
1966                 }
1967         }
1968
1969         I915_WRITE(GEN7_ERR_INT, err_int);
1970 }
1971
1972 static void cpt_serr_int_handler(struct drm_device *dev)
1973 {
1974         struct drm_i915_private *dev_priv = dev->dev_private;
1975         u32 serr_int = I915_READ(SERR_INT);
1976
1977         if (serr_int & SERR_INT_POISON)
1978                 DRM_ERROR("PCH poison interrupt\n");
1979
1980         if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1981                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1982
1983         if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1984                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1985
1986         if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1987                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
1988
1989         I915_WRITE(SERR_INT, serr_int);
1990 }
1991
1992 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1993 {
1994         struct drm_i915_private *dev_priv = dev->dev_private;
1995         int pipe;
1996         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1997
1998         ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1999
2000         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2001                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2002                                SDE_AUDIO_POWER_SHIFT_CPT);
2003                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2004                                  port_name(port));
2005         }
2006
2007         if (pch_iir & SDE_AUX_MASK_CPT)
2008                 dp_aux_irq_handler(dev);
2009
2010         if (pch_iir & SDE_GMBUS_CPT)
2011                 gmbus_irq_handler(dev);
2012
2013         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2014                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2015
2016         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2017                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2018
2019         if (pch_iir & SDE_FDI_MASK_CPT)
2020                 for_each_pipe(dev_priv, pipe)
2021                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2022                                          pipe_name(pipe),
2023                                          I915_READ(FDI_RX_IIR(pipe)));
2024
2025         if (pch_iir & SDE_ERROR_CPT)
2026                 cpt_serr_int_handler(dev);
2027 }
2028
2029 static void spt_irq_handler(struct drm_device *dev, u32 pch_iir)
2030 {
2031         struct drm_i915_private *dev_priv = dev->dev_private;
2032         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2033                 ~SDE_PORTE_HOTPLUG_SPT;
2034         u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2035         u32 pin_mask = 0, long_mask = 0;
2036
2037         if (hotplug_trigger) {
2038                 u32 dig_hotplug_reg;
2039
2040                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2041                 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2042
2043                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2044                                    dig_hotplug_reg, hpd_spt,
2045                                    spt_port_hotplug_long_detect);
2046         }
2047
2048         if (hotplug2_trigger) {
2049                 u32 dig_hotplug_reg;
2050
2051                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2052                 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2053
2054                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2055                                    dig_hotplug_reg, hpd_spt,
2056                                    spt_port_hotplug2_long_detect);
2057         }
2058
2059         if (pin_mask)
2060                 intel_hpd_irq_handler(dev, pin_mask, long_mask);
2061
2062         if (pch_iir & SDE_GMBUS_CPT)
2063                 gmbus_irq_handler(dev);
2064 }
2065
2066 static void ilk_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2067                                 const u32 hpd[HPD_NUM_PINS])
2068 {
2069         struct drm_i915_private *dev_priv = to_i915(dev);
2070         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2071
2072         dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2073         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2074
2075         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2076                            dig_hotplug_reg, hpd,
2077                            ilk_port_hotplug_long_detect);
2078
2079         intel_hpd_irq_handler(dev, pin_mask, long_mask);
2080 }
2081
2082 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2083 {
2084         struct drm_i915_private *dev_priv = dev->dev_private;
2085         enum pipe pipe;
2086         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2087
2088         if (hotplug_trigger)
2089                 ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ilk);
2090
2091         if (de_iir & DE_AUX_CHANNEL_A)
2092                 dp_aux_irq_handler(dev);
2093
2094         if (de_iir & DE_GSE)
2095                 intel_opregion_asle_intr(dev);
2096
2097         if (de_iir & DE_POISON)
2098                 DRM_ERROR("Poison interrupt\n");
2099
2100         for_each_pipe(dev_priv, pipe) {
2101                 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2102                     intel_pipe_handle_vblank(dev, pipe))
2103                         intel_check_page_flip(dev, pipe);
2104
2105                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2106                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2107
2108                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2109                         i9xx_pipe_crc_irq_handler(dev, pipe);
2110
2111                 /* plane/pipes map 1:1 on ilk+ */
2112                 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2113                         intel_prepare_page_flip(dev, pipe);
2114                         intel_finish_page_flip_plane(dev, pipe);
2115                 }
2116         }
2117
2118         /* check event from PCH */
2119         if (de_iir & DE_PCH_EVENT) {
2120                 u32 pch_iir = I915_READ(SDEIIR);
2121
2122                 if (HAS_PCH_CPT(dev))
2123                         cpt_irq_handler(dev, pch_iir);
2124                 else
2125                         ibx_irq_handler(dev, pch_iir);
2126
2127                 /* should clear PCH hotplug event before clear CPU irq */
2128                 I915_WRITE(SDEIIR, pch_iir);
2129         }
2130
2131         if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2132                 ironlake_rps_change_irq_handler(dev);
2133 }
2134
2135 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2136 {
2137         struct drm_i915_private *dev_priv = dev->dev_private;
2138         enum pipe pipe;
2139         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2140
2141         if (hotplug_trigger)
2142                 ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ivb);
2143
2144         if (de_iir & DE_ERR_INT_IVB)
2145                 ivb_err_int_handler(dev);
2146
2147         if (de_iir & DE_AUX_CHANNEL_A_IVB)
2148                 dp_aux_irq_handler(dev);
2149
2150         if (de_iir & DE_GSE_IVB)
2151                 intel_opregion_asle_intr(dev);
2152
2153         for_each_pipe(dev_priv, pipe) {
2154                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2155                     intel_pipe_handle_vblank(dev, pipe))
2156                         intel_check_page_flip(dev, pipe);
2157
2158                 /* plane/pipes map 1:1 on ilk+ */
2159                 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2160                         intel_prepare_page_flip(dev, pipe);
2161                         intel_finish_page_flip_plane(dev, pipe);
2162                 }
2163         }
2164
2165         /* check event from PCH */
2166         if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2167                 u32 pch_iir = I915_READ(SDEIIR);
2168
2169                 cpt_irq_handler(dev, pch_iir);
2170
2171                 /* clear PCH hotplug event before clear CPU irq */
2172                 I915_WRITE(SDEIIR, pch_iir);
2173         }
2174 }
2175
2176 /*
2177  * To handle irqs with the minimum potential races with fresh interrupts, we:
2178  * 1 - Disable Master Interrupt Control.
2179  * 2 - Find the source(s) of the interrupt.
2180  * 3 - Clear the Interrupt Identity bits (IIR).
2181  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2182  * 5 - Re-enable Master Interrupt Control.
2183  */
2184 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2185 {
2186         struct drm_device *dev = arg;
2187         struct drm_i915_private *dev_priv = dev->dev_private;
2188         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2189         irqreturn_t ret = IRQ_NONE;
2190
2191         if (!intel_irqs_enabled(dev_priv))
2192                 return IRQ_NONE;
2193
2194         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2195         disable_rpm_wakeref_asserts(dev_priv);
2196
2197         /* disable master interrupt before clearing iir  */
2198         de_ier = I915_READ(DEIER);
2199         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2200         POSTING_READ(DEIER);
2201
2202         /* Disable south interrupts. We'll only write to SDEIIR once, so further
2203          * interrupts will will be stored on its back queue, and then we'll be
2204          * able to process them after we restore SDEIER (as soon as we restore
2205          * it, we'll get an interrupt if SDEIIR still has something to process
2206          * due to its back queue). */
2207         if (!HAS_PCH_NOP(dev)) {
2208                 sde_ier = I915_READ(SDEIER);
2209                 I915_WRITE(SDEIER, 0);
2210                 POSTING_READ(SDEIER);
2211         }
2212
2213         /* Find, clear, then process each source of interrupt */
2214
2215         gt_iir = I915_READ(GTIIR);
2216         if (gt_iir) {
2217                 I915_WRITE(GTIIR, gt_iir);
2218                 ret = IRQ_HANDLED;
2219                 if (INTEL_INFO(dev)->gen >= 6)
2220                         snb_gt_irq_handler(dev, dev_priv, gt_iir);
2221                 else
2222                         ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2223         }
2224
2225         de_iir = I915_READ(DEIIR);
2226         if (de_iir) {
2227                 I915_WRITE(DEIIR, de_iir);
2228                 ret = IRQ_HANDLED;
2229                 if (INTEL_INFO(dev)->gen >= 7)
2230                         ivb_display_irq_handler(dev, de_iir);
2231                 else
2232                         ilk_display_irq_handler(dev, de_iir);
2233         }
2234
2235         if (INTEL_INFO(dev)->gen >= 6) {
2236                 u32 pm_iir = I915_READ(GEN6_PMIIR);
2237                 if (pm_iir) {
2238                         I915_WRITE(GEN6_PMIIR, pm_iir);
2239                         ret = IRQ_HANDLED;
2240                         gen6_rps_irq_handler(dev_priv, pm_iir);
2241                 }
2242         }
2243
2244         I915_WRITE(DEIER, de_ier);
2245         POSTING_READ(DEIER);
2246         if (!HAS_PCH_NOP(dev)) {
2247                 I915_WRITE(SDEIER, sde_ier);
2248                 POSTING_READ(SDEIER);
2249         }
2250
2251         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2252         enable_rpm_wakeref_asserts(dev_priv);
2253
2254         return ret;
2255 }
2256
2257 static void bxt_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2258                                 const u32 hpd[HPD_NUM_PINS])
2259 {
2260         struct drm_i915_private *dev_priv = to_i915(dev);
2261         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2262
2263         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2264         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2265
2266         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2267                            dig_hotplug_reg, hpd,
2268                            bxt_port_hotplug_long_detect);
2269
2270         intel_hpd_irq_handler(dev, pin_mask, long_mask);
2271 }
2272
2273 static irqreturn_t
2274 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2275 {
2276         struct drm_device *dev = dev_priv->dev;
2277         irqreturn_t ret = IRQ_NONE;
2278         u32 iir;
2279         enum pipe pipe;
2280
2281         if (master_ctl & GEN8_DE_MISC_IRQ) {
2282                 iir = I915_READ(GEN8_DE_MISC_IIR);
2283                 if (iir) {
2284                         I915_WRITE(GEN8_DE_MISC_IIR, iir);
2285                         ret = IRQ_HANDLED;
2286                         if (iir & GEN8_DE_MISC_GSE)
2287                                 intel_opregion_asle_intr(dev);
2288                         else
2289                                 DRM_ERROR("Unexpected DE Misc interrupt\n");
2290                 }
2291                 else
2292                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2293         }
2294
2295         if (master_ctl & GEN8_DE_PORT_IRQ) {
2296                 iir = I915_READ(GEN8_DE_PORT_IIR);
2297                 if (iir) {
2298                         u32 tmp_mask;
2299                         bool found = false;
2300
2301                         I915_WRITE(GEN8_DE_PORT_IIR, iir);
2302                         ret = IRQ_HANDLED;
2303
2304                         tmp_mask = GEN8_AUX_CHANNEL_A;
2305                         if (INTEL_INFO(dev_priv)->gen >= 9)
2306                                 tmp_mask |= GEN9_AUX_CHANNEL_B |
2307                                             GEN9_AUX_CHANNEL_C |
2308                                             GEN9_AUX_CHANNEL_D;
2309
2310                         if (iir & tmp_mask) {
2311                                 dp_aux_irq_handler(dev);
2312                                 found = true;
2313                         }
2314
2315                         if (IS_BROXTON(dev_priv)) {
2316                                 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2317                                 if (tmp_mask) {
2318                                         bxt_hpd_irq_handler(dev, tmp_mask, hpd_bxt);
2319                                         found = true;
2320                                 }
2321                         } else if (IS_BROADWELL(dev_priv)) {
2322                                 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2323                                 if (tmp_mask) {
2324                                         ilk_hpd_irq_handler(dev, tmp_mask, hpd_bdw);
2325                                         found = true;
2326                                 }
2327                         }
2328
2329                         if (IS_BROXTON(dev) && (iir & BXT_DE_PORT_GMBUS)) {
2330                                 gmbus_irq_handler(dev);
2331                                 found = true;
2332                         }
2333
2334                         if (!found)
2335                                 DRM_ERROR("Unexpected DE Port interrupt\n");
2336                 }
2337                 else
2338                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2339         }
2340
2341         for_each_pipe(dev_priv, pipe) {
2342                 u32 flip_done, fault_errors;
2343
2344                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2345                         continue;
2346
2347                 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2348                 if (!iir) {
2349                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2350                         continue;
2351                 }
2352
2353                 ret = IRQ_HANDLED;
2354                 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2355
2356                 if (iir & GEN8_PIPE_VBLANK &&
2357                     intel_pipe_handle_vblank(dev, pipe))
2358                         intel_check_page_flip(dev, pipe);
2359
2360                 flip_done = iir;
2361                 if (INTEL_INFO(dev_priv)->gen >= 9)
2362                         flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
2363                 else
2364                         flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
2365
2366                 if (flip_done) {
2367                         intel_prepare_page_flip(dev, pipe);
2368                         intel_finish_page_flip_plane(dev, pipe);
2369                 }
2370
2371                 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2372                         hsw_pipe_crc_irq_handler(dev, pipe);
2373
2374                 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2375                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2376
2377                 fault_errors = iir;
2378                 if (INTEL_INFO(dev_priv)->gen >= 9)
2379                         fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2380                 else
2381                         fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2382
2383                 if (fault_errors)
2384                         DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2385                                   pipe_name(pipe),
2386                                   fault_errors);
2387         }
2388
2389         if (HAS_PCH_SPLIT(dev) && !HAS_PCH_NOP(dev) &&
2390             master_ctl & GEN8_DE_PCH_IRQ) {
2391                 /*
2392                  * FIXME(BDW): Assume for now that the new interrupt handling
2393                  * scheme also closed the SDE interrupt handling race we've seen
2394                  * on older pch-split platforms. But this needs testing.
2395                  */
2396                 iir = I915_READ(SDEIIR);
2397                 if (iir) {
2398                         I915_WRITE(SDEIIR, iir);
2399                         ret = IRQ_HANDLED;
2400
2401                         if (HAS_PCH_SPT(dev_priv))
2402                                 spt_irq_handler(dev, iir);
2403                         else
2404                                 cpt_irq_handler(dev, iir);
2405                 } else {
2406                         /*
2407                          * Like on previous PCH there seems to be something
2408                          * fishy going on with forwarding PCH interrupts.
2409                          */
2410                         DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2411                 }
2412         }
2413
2414         return ret;
2415 }
2416
2417 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2418 {
2419         struct drm_device *dev = arg;
2420         struct drm_i915_private *dev_priv = dev->dev_private;
2421         u32 master_ctl;
2422         irqreturn_t ret;
2423
2424         if (!intel_irqs_enabled(dev_priv))
2425                 return IRQ_NONE;
2426
2427         master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2428         master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2429         if (!master_ctl)
2430                 return IRQ_NONE;
2431
2432         I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2433
2434         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2435         disable_rpm_wakeref_asserts(dev_priv);
2436
2437         /* Find, clear, then process each source of interrupt */
2438         ret = gen8_gt_irq_handler(dev_priv, master_ctl);
2439         ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2440
2441         I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2442         POSTING_READ_FW(GEN8_MASTER_IRQ);
2443
2444         enable_rpm_wakeref_asserts(dev_priv);
2445
2446         return ret;
2447 }
2448
2449 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2450                                bool reset_completed)
2451 {
2452         struct intel_engine_cs *ring;
2453         int i;
2454
2455         /*
2456          * Notify all waiters for GPU completion events that reset state has
2457          * been changed, and that they need to restart their wait after
2458          * checking for potential errors (and bail out to drop locks if there is
2459          * a gpu reset pending so that i915_error_work_func can acquire them).
2460          */
2461
2462         /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2463         for_each_ring(ring, dev_priv, i)
2464                 wake_up_all(&ring->irq_queue);
2465
2466         /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2467         wake_up_all(&dev_priv->pending_flip_queue);
2468
2469         /*
2470          * Signal tasks blocked in i915_gem_wait_for_error that the pending
2471          * reset state is cleared.
2472          */
2473         if (reset_completed)
2474                 wake_up_all(&dev_priv->gpu_error.reset_queue);
2475 }
2476
2477 /**
2478  * i915_reset_and_wakeup - do process context error handling work
2479  * @dev: drm device
2480  *
2481  * Fire an error uevent so userspace can see that a hang or error
2482  * was detected.
2483  */
2484 static void i915_reset_and_wakeup(struct drm_device *dev)
2485 {
2486         struct drm_i915_private *dev_priv = to_i915(dev);
2487         struct i915_gpu_error *error = &dev_priv->gpu_error;
2488         char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2489         char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2490         char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2491         int ret;
2492
2493         kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2494
2495         /*
2496          * Note that there's only one work item which does gpu resets, so we
2497          * need not worry about concurrent gpu resets potentially incrementing
2498          * error->reset_counter twice. We only need to take care of another
2499          * racing irq/hangcheck declaring the gpu dead for a second time. A
2500          * quick check for that is good enough: schedule_work ensures the
2501          * correct ordering between hang detection and this work item, and since
2502          * the reset in-progress bit is only ever set by code outside of this
2503          * work we don't need to worry about any other races.
2504          */
2505         if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2506                 DRM_DEBUG_DRIVER("resetting chip\n");
2507                 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2508                                    reset_event);
2509
2510                 /*
2511                  * In most cases it's guaranteed that we get here with an RPM
2512                  * reference held, for example because there is a pending GPU
2513                  * request that won't finish until the reset is done. This
2514                  * isn't the case at least when we get here by doing a
2515                  * simulated reset via debugs, so get an RPM reference.
2516                  */
2517                 intel_runtime_pm_get(dev_priv);
2518
2519                 intel_prepare_reset(dev);
2520
2521                 /*
2522                  * All state reset _must_ be completed before we update the
2523                  * reset counter, for otherwise waiters might miss the reset
2524                  * pending state and not properly drop locks, resulting in
2525                  * deadlocks with the reset work.
2526                  */
2527                 ret = i915_reset(dev);
2528
2529                 intel_finish_reset(dev);
2530
2531                 intel_runtime_pm_put(dev_priv);
2532
2533                 if (ret == 0) {
2534                         /*
2535                          * After all the gem state is reset, increment the reset
2536                          * counter and wake up everyone waiting for the reset to
2537                          * complete.
2538                          *
2539                          * Since unlock operations are a one-sided barrier only,
2540                          * we need to insert a barrier here to order any seqno
2541                          * updates before
2542                          * the counter increment.
2543                          */
2544                         smp_mb__before_atomic();
2545                         atomic_inc(&dev_priv->gpu_error.reset_counter);
2546
2547                         kobject_uevent_env(&dev->primary->kdev->kobj,
2548                                            KOBJ_CHANGE, reset_done_event);
2549                 } else {
2550                         atomic_or(I915_WEDGED, &error->reset_counter);
2551                 }
2552
2553                 /*
2554                  * Note: The wake_up also serves as a memory barrier so that
2555                  * waiters see the update value of the reset counter atomic_t.
2556                  */
2557                 i915_error_wake_up(dev_priv, true);
2558         }
2559 }
2560
2561 static void i915_report_and_clear_eir(struct drm_device *dev)
2562 {
2563         struct drm_i915_private *dev_priv = dev->dev_private;
2564         uint32_t instdone[I915_NUM_INSTDONE_REG];
2565         u32 eir = I915_READ(EIR);
2566         int pipe, i;
2567
2568         if (!eir)
2569                 return;
2570
2571         pr_err("render error detected, EIR: 0x%08x\n", eir);
2572
2573         i915_get_extra_instdone(dev, instdone);
2574
2575         if (IS_G4X(dev)) {
2576                 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2577                         u32 ipeir = I915_READ(IPEIR_I965);
2578
2579                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2580                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2581                         for (i = 0; i < ARRAY_SIZE(instdone); i++)
2582                                 pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2583                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2584                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2585                         I915_WRITE(IPEIR_I965, ipeir);
2586                         POSTING_READ(IPEIR_I965);
2587                 }
2588                 if (eir & GM45_ERROR_PAGE_TABLE) {
2589                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2590                         pr_err("page table error\n");
2591                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2592                         I915_WRITE(PGTBL_ER, pgtbl_err);
2593                         POSTING_READ(PGTBL_ER);
2594                 }
2595         }
2596
2597         if (!IS_GEN2(dev)) {
2598                 if (eir & I915_ERROR_PAGE_TABLE) {
2599                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2600                         pr_err("page table error\n");
2601                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2602                         I915_WRITE(PGTBL_ER, pgtbl_err);
2603                         POSTING_READ(PGTBL_ER);
2604                 }
2605         }
2606
2607         if (eir & I915_ERROR_MEMORY_REFRESH) {
2608                 pr_err("memory refresh error:\n");
2609                 for_each_pipe(dev_priv, pipe)
2610                         pr_err("pipe %c stat: 0x%08x\n",
2611                                pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2612                 /* pipestat has already been acked */
2613         }
2614         if (eir & I915_ERROR_INSTRUCTION) {
2615                 pr_err("instruction error\n");
2616                 pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2617                 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2618                         pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2619                 if (INTEL_INFO(dev)->gen < 4) {
2620                         u32 ipeir = I915_READ(IPEIR);
2621
2622                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2623                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2624                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2625                         I915_WRITE(IPEIR, ipeir);
2626                         POSTING_READ(IPEIR);
2627                 } else {
2628                         u32 ipeir = I915_READ(IPEIR_I965);
2629
2630                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2631                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2632                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2633                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2634                         I915_WRITE(IPEIR_I965, ipeir);
2635                         POSTING_READ(IPEIR_I965);
2636                 }
2637         }
2638
2639         I915_WRITE(EIR, eir);
2640         POSTING_READ(EIR);
2641         eir = I915_READ(EIR);
2642         if (eir) {
2643                 /*
2644                  * some errors might have become stuck,
2645                  * mask them.
2646                  */
2647                 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2648                 I915_WRITE(EMR, I915_READ(EMR) | eir);
2649                 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2650         }
2651 }
2652
2653 /**
2654  * i915_handle_error - handle a gpu error
2655  * @dev: drm device
2656  *
2657  * Do some basic checking of register state at error time and
2658  * dump it to the syslog.  Also call i915_capture_error_state() to make
2659  * sure we get a record and make it available in debugfs.  Fire a uevent
2660  * so userspace knows something bad happened (should trigger collection
2661  * of a ring dump etc.).
2662  */
2663 void i915_handle_error(struct drm_device *dev, bool wedged,
2664                        const char *fmt, ...)
2665 {
2666         struct drm_i915_private *dev_priv = dev->dev_private;
2667         va_list args;
2668         char error_msg[80];
2669
2670         va_start(args, fmt);
2671         vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2672         va_end(args);
2673
2674         i915_capture_error_state(dev, wedged, error_msg);
2675         i915_report_and_clear_eir(dev);
2676
2677         if (wedged) {
2678                 atomic_or(I915_RESET_IN_PROGRESS_FLAG,
2679                                 &dev_priv->gpu_error.reset_counter);
2680
2681                 /*
2682                  * Wakeup waiting processes so that the reset function
2683                  * i915_reset_and_wakeup doesn't deadlock trying to grab
2684                  * various locks. By bumping the reset counter first, the woken
2685                  * processes will see a reset in progress and back off,
2686                  * releasing their locks and then wait for the reset completion.
2687                  * We must do this for _all_ gpu waiters that might hold locks
2688                  * that the reset work needs to acquire.
2689                  *
2690                  * Note: The wake_up serves as the required memory barrier to
2691                  * ensure that the waiters see the updated value of the reset
2692                  * counter atomic_t.
2693                  */
2694                 i915_error_wake_up(dev_priv, false);
2695         }
2696
2697         i915_reset_and_wakeup(dev);
2698 }
2699
2700 /* Called from drm generic code, passed 'crtc' which
2701  * we use as a pipe index
2702  */
2703 static int i915_enable_vblank(struct drm_device *dev, unsigned int pipe)
2704 {
2705         struct drm_i915_private *dev_priv = dev->dev_private;
2706         unsigned long irqflags;
2707
2708         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2709         if (INTEL_INFO(dev)->gen >= 4)
2710                 i915_enable_pipestat(dev_priv, pipe,
2711                                      PIPE_START_VBLANK_INTERRUPT_STATUS);
2712         else
2713                 i915_enable_pipestat(dev_priv, pipe,
2714                                      PIPE_VBLANK_INTERRUPT_STATUS);
2715         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2716
2717         return 0;
2718 }
2719
2720 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2721 {
2722         struct drm_i915_private *dev_priv = dev->dev_private;
2723         unsigned long irqflags;
2724         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2725                                                      DE_PIPE_VBLANK(pipe);
2726
2727         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2728         ilk_enable_display_irq(dev_priv, bit);
2729         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2730
2731         return 0;
2732 }
2733
2734 static int valleyview_enable_vblank(struct drm_device *dev, unsigned int pipe)
2735 {
2736         struct drm_i915_private *dev_priv = dev->dev_private;
2737         unsigned long irqflags;
2738
2739         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2740         i915_enable_pipestat(dev_priv, pipe,
2741                              PIPE_START_VBLANK_INTERRUPT_STATUS);
2742         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2743
2744         return 0;
2745 }
2746
2747 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2748 {
2749         struct drm_i915_private *dev_priv = dev->dev_private;
2750         unsigned long irqflags;
2751
2752         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2753         bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2754         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2755
2756         return 0;
2757 }
2758
2759 /* Called from drm generic code, passed 'crtc' which
2760  * we use as a pipe index
2761  */
2762 static void i915_disable_vblank(struct drm_device *dev, unsigned int pipe)
2763 {
2764         struct drm_i915_private *dev_priv = dev->dev_private;
2765         unsigned long irqflags;
2766
2767         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2768         i915_disable_pipestat(dev_priv, pipe,
2769                               PIPE_VBLANK_INTERRUPT_STATUS |
2770                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2771         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2772 }
2773
2774 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2775 {
2776         struct drm_i915_private *dev_priv = dev->dev_private;
2777         unsigned long irqflags;
2778         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2779                                                      DE_PIPE_VBLANK(pipe);
2780
2781         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2782         ilk_disable_display_irq(dev_priv, bit);
2783         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2784 }
2785
2786 static void valleyview_disable_vblank(struct drm_device *dev, unsigned int pipe)
2787 {
2788         struct drm_i915_private *dev_priv = dev->dev_private;
2789         unsigned long irqflags;
2790
2791         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2792         i915_disable_pipestat(dev_priv, pipe,
2793                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2794         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2795 }
2796
2797 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2798 {
2799         struct drm_i915_private *dev_priv = dev->dev_private;
2800         unsigned long irqflags;
2801
2802         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2803         bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2804         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2805 }
2806
2807 static bool
2808 ring_idle(struct intel_engine_cs *ring, u32 seqno)
2809 {
2810         return (list_empty(&ring->request_list) ||
2811                 i915_seqno_passed(seqno, ring->last_submitted_seqno));
2812 }
2813
2814 static bool
2815 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2816 {
2817         if (INTEL_INFO(dev)->gen >= 8) {
2818                 return (ipehr >> 23) == 0x1c;
2819         } else {
2820                 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2821                 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2822                                  MI_SEMAPHORE_REGISTER);
2823         }
2824 }
2825
2826 static struct intel_engine_cs *
2827 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
2828 {
2829         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2830         struct intel_engine_cs *signaller;
2831         int i;
2832
2833         if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2834                 for_each_ring(signaller, dev_priv, i) {
2835                         if (ring == signaller)
2836                                 continue;
2837
2838                         if (offset == signaller->semaphore.signal_ggtt[ring->id])
2839                                 return signaller;
2840                 }
2841         } else {
2842                 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2843
2844                 for_each_ring(signaller, dev_priv, i) {
2845                         if(ring == signaller)
2846                                 continue;
2847
2848                         if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2849                                 return signaller;
2850                 }
2851         }
2852
2853         DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2854                   ring->id, ipehr, offset);
2855
2856         return NULL;
2857 }
2858
2859 static struct intel_engine_cs *
2860 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2861 {
2862         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2863         u32 cmd, ipehr, head;
2864         u64 offset = 0;
2865         int i, backwards;
2866
2867         /*
2868          * This function does not support execlist mode - any attempt to
2869          * proceed further into this function will result in a kernel panic
2870          * when dereferencing ring->buffer, which is not set up in execlist
2871          * mode.
2872          *
2873          * The correct way of doing it would be to derive the currently
2874          * executing ring buffer from the current context, which is derived
2875          * from the currently running request. Unfortunately, to get the
2876          * current request we would have to grab the struct_mutex before doing
2877          * anything else, which would be ill-advised since some other thread
2878          * might have grabbed it already and managed to hang itself, causing
2879          * the hang checker to deadlock.
2880          *
2881          * Therefore, this function does not support execlist mode in its
2882          * current form. Just return NULL and move on.
2883          */
2884         if (ring->buffer == NULL)
2885                 return NULL;
2886
2887         ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2888         if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2889                 return NULL;
2890
2891         /*
2892          * HEAD is likely pointing to the dword after the actual command,
2893          * so scan backwards until we find the MBOX. But limit it to just 3
2894          * or 4 dwords depending on the semaphore wait command size.
2895          * Note that we don't care about ACTHD here since that might
2896          * point at at batch, and semaphores are always emitted into the
2897          * ringbuffer itself.
2898          */
2899         head = I915_READ_HEAD(ring) & HEAD_ADDR;
2900         backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
2901
2902         for (i = backwards; i; --i) {
2903                 /*
2904                  * Be paranoid and presume the hw has gone off into the wild -
2905                  * our ring is smaller than what the hardware (and hence
2906                  * HEAD_ADDR) allows. Also handles wrap-around.
2907                  */
2908                 head &= ring->buffer->size - 1;
2909
2910                 /* This here seems to blow up */
2911                 cmd = ioread32(ring->buffer->virtual_start + head);
2912                 if (cmd == ipehr)
2913                         break;
2914
2915                 head -= 4;
2916         }
2917
2918         if (!i)
2919                 return NULL;
2920
2921         *seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2922         if (INTEL_INFO(ring->dev)->gen >= 8) {
2923                 offset = ioread32(ring->buffer->virtual_start + head + 12);
2924                 offset <<= 32;
2925                 offset = ioread32(ring->buffer->virtual_start + head + 8);
2926         }
2927         return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
2928 }
2929
2930 static int semaphore_passed(struct intel_engine_cs *ring)
2931 {
2932         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2933         struct intel_engine_cs *signaller;
2934         u32 seqno;
2935
2936         ring->hangcheck.deadlock++;
2937
2938         signaller = semaphore_waits_for(ring, &seqno);
2939         if (signaller == NULL)
2940                 return -1;
2941
2942         /* Prevent pathological recursion due to driver bugs */
2943         if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2944                 return -1;
2945
2946         if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2947                 return 1;
2948
2949         /* cursory check for an unkickable deadlock */
2950         if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2951             semaphore_passed(signaller) < 0)
2952                 return -1;
2953
2954         return 0;
2955 }
2956
2957 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2958 {
2959         struct intel_engine_cs *ring;
2960         int i;
2961
2962         for_each_ring(ring, dev_priv, i)
2963                 ring->hangcheck.deadlock = 0;
2964 }
2965
2966 static bool subunits_stuck(struct intel_engine_cs *ring)
2967 {
2968         u32 instdone[I915_NUM_INSTDONE_REG];
2969         bool stuck;
2970         int i;
2971
2972         if (ring->id != RCS)
2973                 return true;
2974
2975         i915_get_extra_instdone(ring->dev, instdone);
2976
2977         /* There might be unstable subunit states even when
2978          * actual head is not moving. Filter out the unstable ones by
2979          * accumulating the undone -> done transitions and only
2980          * consider those as progress.
2981          */
2982         stuck = true;
2983         for (i = 0; i < I915_NUM_INSTDONE_REG; i++) {
2984                 const u32 tmp = instdone[i] | ring->hangcheck.instdone[i];
2985
2986                 if (tmp != ring->hangcheck.instdone[i])
2987                         stuck = false;
2988
2989                 ring->hangcheck.instdone[i] |= tmp;
2990         }
2991
2992         return stuck;
2993 }
2994
2995 static enum intel_ring_hangcheck_action
2996 head_stuck(struct intel_engine_cs *ring, u64 acthd)
2997 {
2998         if (acthd != ring->hangcheck.acthd) {
2999
3000                 /* Clear subunit states on head movement */
3001                 memset(ring->hangcheck.instdone, 0,
3002                        sizeof(ring->hangcheck.instdone));
3003
3004                 if (acthd > ring->hangcheck.max_acthd) {
3005                         ring->hangcheck.max_acthd = acthd;
3006                         return HANGCHECK_ACTIVE;
3007                 }
3008
3009                 return HANGCHECK_ACTIVE_LOOP;
3010         }
3011
3012         if (!subunits_stuck(ring))
3013                 return HANGCHECK_ACTIVE;
3014
3015         return HANGCHECK_HUNG;
3016 }
3017
3018 static enum intel_ring_hangcheck_action
3019 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
3020 {
3021         struct drm_device *dev = ring->dev;
3022         struct drm_i915_private *dev_priv = dev->dev_private;
3023         enum intel_ring_hangcheck_action ha;
3024         u32 tmp;
3025
3026         ha = head_stuck(ring, acthd);
3027         if (ha != HANGCHECK_HUNG)
3028                 return ha;
3029
3030         if (IS_GEN2(dev))
3031                 return HANGCHECK_HUNG;
3032
3033         /* Is the chip hanging on a WAIT_FOR_EVENT?
3034          * If so we can simply poke the RB_WAIT bit
3035          * and break the hang. This should work on
3036          * all but the second generation chipsets.
3037          */
3038         tmp = I915_READ_CTL(ring);
3039         if (tmp & RING_WAIT) {
3040                 i915_handle_error(dev, false,
3041                                   "Kicking stuck wait on %s",
3042                                   ring->name);
3043                 I915_WRITE_CTL(ring, tmp);
3044                 return HANGCHECK_KICK;
3045         }
3046
3047         if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
3048                 switch (semaphore_passed(ring)) {
3049                 default:
3050                         return HANGCHECK_HUNG;
3051                 case 1:
3052                         i915_handle_error(dev, false,
3053                                           "Kicking stuck semaphore on %s",
3054                                           ring->name);
3055                         I915_WRITE_CTL(ring, tmp);
3056                         return HANGCHECK_KICK;
3057                 case 0:
3058                         return HANGCHECK_WAIT;
3059                 }
3060         }
3061
3062         return HANGCHECK_HUNG;
3063 }
3064
3065 /*
3066  * This is called when the chip hasn't reported back with completed
3067  * batchbuffers in a long time. We keep track per ring seqno progress and
3068  * if there are no progress, hangcheck score for that ring is increased.
3069  * Further, acthd is inspected to see if the ring is stuck. On stuck case
3070  * we kick the ring. If we see no progress on three subsequent calls
3071  * we assume chip is wedged and try to fix it by resetting the chip.
3072  */
3073 static void i915_hangcheck_elapsed(struct work_struct *work)
3074 {
3075         struct drm_i915_private *dev_priv =
3076                 container_of(work, typeof(*dev_priv),
3077                              gpu_error.hangcheck_work.work);
3078         struct drm_device *dev = dev_priv->dev;
3079         struct intel_engine_cs *ring;
3080         int i;
3081         int busy_count = 0, rings_hung = 0;
3082         bool stuck[I915_NUM_RINGS] = { 0 };
3083 #define BUSY 1
3084 #define KICK 5
3085 #define HUNG 20
3086
3087         if (!i915.enable_hangcheck)
3088                 return;
3089
3090         /*
3091          * The hangcheck work is synced during runtime suspend, we don't
3092          * require a wakeref. TODO: instead of disabling the asserts make
3093          * sure that we hold a reference when this work is running.
3094          */
3095         DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3096
3097         /* As enabling the GPU requires fairly extensive mmio access,
3098          * periodically arm the mmio checker to see if we are triggering
3099          * any invalid access.
3100          */
3101         intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
3102
3103         for_each_ring(ring, dev_priv, i) {
3104                 u64 acthd;
3105                 u32 seqno;
3106                 bool busy = true;
3107
3108                 semaphore_clear_deadlocks(dev_priv);
3109
3110                 seqno = ring->get_seqno(ring, false);
3111                 acthd = intel_ring_get_active_head(ring);
3112
3113                 if (ring->hangcheck.seqno == seqno) {
3114                         if (ring_idle(ring, seqno)) {
3115                                 ring->hangcheck.action = HANGCHECK_IDLE;
3116
3117                                 if (waitqueue_active(&ring->irq_queue)) {
3118                                         /* Issue a wake-up to catch stuck h/w. */
3119                                         if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
3120                                                 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
3121                                                         DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3122                                                                   ring->name);
3123                                                 else
3124                                                         DRM_INFO("Fake missed irq on %s\n",
3125                                                                  ring->name);
3126                                                 wake_up_all(&ring->irq_queue);
3127                                         }
3128                                         /* Safeguard against driver failure */
3129                                         ring->hangcheck.score += BUSY;
3130                                 } else
3131                                         busy = false;
3132                         } else {
3133                                 /* We always increment the hangcheck score
3134                                  * if the ring is busy and still processing
3135                                  * the same request, so that no single request
3136                                  * can run indefinitely (such as a chain of
3137                                  * batches). The only time we do not increment
3138                                  * the hangcheck score on this ring, if this
3139                                  * ring is in a legitimate wait for another
3140                                  * ring. In that case the waiting ring is a
3141                                  * victim and we want to be sure we catch the
3142                                  * right culprit. Then every time we do kick
3143                                  * the ring, add a small increment to the
3144                                  * score so that we can catch a batch that is
3145                                  * being repeatedly kicked and so responsible
3146                                  * for stalling the machine.
3147                                  */
3148                                 ring->hangcheck.action = ring_stuck(ring,
3149                                                                     acthd);
3150
3151                                 switch (ring->hangcheck.action) {
3152                                 case HANGCHECK_IDLE:
3153                                 case HANGCHECK_WAIT:
3154                                 case HANGCHECK_ACTIVE:
3155                                         break;
3156                                 case HANGCHECK_ACTIVE_LOOP:
3157                                         ring->hangcheck.score += BUSY;
3158                                         break;
3159                                 case HANGCHECK_KICK:
3160                                         ring->hangcheck.score += KICK;
3161                                         break;
3162                                 case HANGCHECK_HUNG:
3163                                         ring->hangcheck.score += HUNG;
3164                                         stuck[i] = true;
3165                                         break;
3166                                 }
3167                         }
3168                 } else {
3169                         ring->hangcheck.action = HANGCHECK_ACTIVE;
3170
3171                         /* Gradually reduce the count so that we catch DoS
3172                          * attempts across multiple batches.
3173                          */
3174                         if (ring->hangcheck.score > 0)
3175                                 ring->hangcheck.score--;
3176
3177                         /* Clear head and subunit states on seqno movement */
3178                         ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
3179
3180                         memset(ring->hangcheck.instdone, 0,
3181                                sizeof(ring->hangcheck.instdone));
3182                 }
3183
3184                 ring->hangcheck.seqno = seqno;
3185                 ring->hangcheck.acthd = acthd;
3186                 busy_count += busy;
3187         }
3188
3189         for_each_ring(ring, dev_priv, i) {
3190                 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3191                         DRM_INFO("%s on %s\n",
3192                                  stuck[i] ? "stuck" : "no progress",
3193                                  ring->name);
3194                         rings_hung++;
3195                 }
3196         }
3197
3198         if (rings_hung) {
3199                 i915_handle_error(dev, true, "Ring hung");
3200                 goto out;
3201         }
3202
3203         if (busy_count)
3204                 /* Reset timer case chip hangs without another request
3205                  * being added */
3206                 i915_queue_hangcheck(dev);
3207
3208 out:
3209         ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3210 }
3211
3212 void i915_queue_hangcheck(struct drm_device *dev)
3213 {
3214         struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
3215
3216         if (!i915.enable_hangcheck)
3217                 return;
3218
3219         /* Don't continually defer the hangcheck so that it is always run at
3220          * least once after work has been scheduled on any ring. Otherwise,
3221          * we will ignore a hung ring if a second ring is kept busy.
3222          */
3223
3224         queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
3225                            round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
3226 }
3227
3228 static void ibx_irq_reset(struct drm_device *dev)
3229 {
3230         struct drm_i915_private *dev_priv = dev->dev_private;
3231
3232         if (HAS_PCH_NOP(dev))
3233                 return;
3234
3235         GEN5_IRQ_RESET(SDE);
3236
3237         if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3238                 I915_WRITE(SERR_INT, 0xffffffff);
3239 }
3240
3241 /*
3242  * SDEIER is also touched by the interrupt handler to work around missed PCH
3243  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3244  * instead we unconditionally enable all PCH interrupt sources here, but then
3245  * only unmask them as needed with SDEIMR.
3246  *
3247  * This function needs to be called before interrupts are enabled.
3248  */
3249 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3250 {
3251         struct drm_i915_private *dev_priv = dev->dev_private;
3252
3253         if (HAS_PCH_NOP(dev))
3254                 return;
3255
3256         WARN_ON(I915_READ(SDEIER) != 0);
3257         I915_WRITE(SDEIER, 0xffffffff);
3258         POSTING_READ(SDEIER);
3259 }
3260
3261 static void gen5_gt_irq_reset(struct drm_device *dev)
3262 {
3263         struct drm_i915_private *dev_priv = dev->dev_private;
3264
3265         GEN5_IRQ_RESET(GT);
3266         if (INTEL_INFO(dev)->gen >= 6)
3267                 GEN5_IRQ_RESET(GEN6_PM);
3268 }
3269
3270 /* drm_dma.h hooks
3271 */
3272 static void ironlake_irq_reset(struct drm_device *dev)
3273 {
3274         struct drm_i915_private *dev_priv = dev->dev_private;
3275
3276         I915_WRITE(HWSTAM, 0xffffffff);
3277
3278         GEN5_IRQ_RESET(DE);
3279         if (IS_GEN7(dev))
3280                 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3281
3282         gen5_gt_irq_reset(dev);
3283
3284         ibx_irq_reset(dev);
3285 }
3286
3287 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3288 {
3289         enum pipe pipe;
3290
3291         i915_hotplug_interrupt_update(dev_priv, 0xFFFFFFFF, 0);
3292         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3293
3294         for_each_pipe(dev_priv, pipe)
3295                 I915_WRITE(PIPESTAT(pipe), 0xffff);
3296
3297         GEN5_IRQ_RESET(VLV_);
3298 }
3299
3300 static void valleyview_irq_preinstall(struct drm_device *dev)
3301 {
3302         struct drm_i915_private *dev_priv = dev->dev_private;
3303
3304         /* VLV magic */
3305         I915_WRITE(VLV_IMR, 0);
3306         I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3307         I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3308         I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3309
3310         gen5_gt_irq_reset(dev);
3311
3312         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3313
3314         vlv_display_irq_reset(dev_priv);
3315 }
3316
3317 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3318 {
3319         GEN8_IRQ_RESET_NDX(GT, 0);
3320         GEN8_IRQ_RESET_NDX(GT, 1);
3321         GEN8_IRQ_RESET_NDX(GT, 2);
3322         GEN8_IRQ_RESET_NDX(GT, 3);
3323 }
3324
3325 static void gen8_irq_reset(struct drm_device *dev)
3326 {
3327         struct drm_i915_private *dev_priv = dev->dev_private;
3328         int pipe;
3329
3330         I915_WRITE(GEN8_MASTER_IRQ, 0);
3331         POSTING_READ(GEN8_MASTER_IRQ);
3332
3333         gen8_gt_irq_reset(dev_priv);
3334
3335         for_each_pipe(dev_priv, pipe)
3336                 if (intel_display_power_is_enabled(dev_priv,
3337                                                    POWER_DOMAIN_PIPE(pipe)))
3338                         GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3339
3340         GEN5_IRQ_RESET(GEN8_DE_PORT_);
3341         GEN5_IRQ_RESET(GEN8_DE_MISC_);
3342         GEN5_IRQ_RESET(GEN8_PCU_);
3343
3344         if (HAS_PCH_SPLIT(dev))
3345                 ibx_irq_reset(dev);
3346 }
3347
3348 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3349                                      unsigned int pipe_mask)
3350 {
3351         uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3352         enum pipe pipe;
3353
3354         spin_lock_irq(&dev_priv->irq_lock);
3355         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3356                 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3357                                   dev_priv->de_irq_mask[pipe],
3358                                   ~dev_priv->de_irq_mask[pipe] | extra_ier);
3359         spin_unlock_irq(&dev_priv->irq_lock);
3360 }
3361
3362 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3363                                      unsigned int pipe_mask)
3364 {
3365         enum pipe pipe;
3366
3367         spin_lock_irq(&dev_priv->irq_lock);
3368         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3369                 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3370         spin_unlock_irq(&dev_priv->irq_lock);
3371
3372         /* make sure we're done processing display irqs */
3373         synchronize_irq(dev_priv->dev->irq);
3374 }
3375
3376 static void cherryview_irq_preinstall(struct drm_device *dev)
3377 {
3378         struct drm_i915_private *dev_priv = dev->dev_private;
3379
3380         I915_WRITE(GEN8_MASTER_IRQ, 0);
3381         POSTING_READ(GEN8_MASTER_IRQ);
3382
3383         gen8_gt_irq_reset(dev_priv);
3384
3385         GEN5_IRQ_RESET(GEN8_PCU_);
3386
3387         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3388
3389         vlv_display_irq_reset(dev_priv);
3390 }
3391
3392 static u32 intel_hpd_enabled_irqs(struct drm_device *dev,
3393                                   const u32 hpd[HPD_NUM_PINS])
3394 {
3395         struct drm_i915_private *dev_priv = to_i915(dev);
3396         struct intel_encoder *encoder;
3397         u32 enabled_irqs = 0;
3398
3399         for_each_intel_encoder(dev, encoder)
3400                 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3401                         enabled_irqs |= hpd[encoder->hpd_pin];
3402
3403         return enabled_irqs;
3404 }
3405
3406 static void ibx_hpd_irq_setup(struct drm_device *dev)
3407 {
3408         struct drm_i915_private *dev_priv = dev->dev_private;
3409         u32 hotplug_irqs, hotplug, enabled_irqs;
3410
3411         if (HAS_PCH_IBX(dev)) {
3412                 hotplug_irqs = SDE_HOTPLUG_MASK;
3413                 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ibx);
3414         } else {
3415                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3416                 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_cpt);
3417         }
3418
3419         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3420
3421         /*
3422          * Enable digital hotplug on the PCH, and configure the DP short pulse
3423          * duration to 2ms (which is the minimum in the Display Port spec).
3424          * The pulse duration bits are reserved on LPT+.
3425          */
3426         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3427         hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3428         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3429         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3430         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3431         /*
3432          * When CPU and PCH are on the same package, port A
3433          * HPD must be enabled in both north and south.
3434          */
3435         if (HAS_PCH_LPT_LP(dev))
3436                 hotplug |= PORTA_HOTPLUG_ENABLE;
3437         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3438 }
3439
3440 static void spt_hpd_irq_setup(struct drm_device *dev)
3441 {
3442         struct drm_i915_private *dev_priv = dev->dev_private;
3443         u32 hotplug_irqs, hotplug, enabled_irqs;
3444
3445         hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3446         enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_spt);
3447
3448         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3449
3450         /* Enable digital hotplug on the PCH */
3451         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3452         hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
3453                 PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
3454         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3455
3456         hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3457         hotplug |= PORTE_HOTPLUG_ENABLE;
3458         I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3459 }
3460
3461 static void ilk_hpd_irq_setup(struct drm_device *dev)
3462 {
3463         struct drm_i915_private *dev_priv = dev->dev_private;
3464         u32 hotplug_irqs, hotplug, enabled_irqs;
3465
3466         if (INTEL_INFO(dev)->gen >= 8) {
3467                 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3468                 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bdw);
3469
3470                 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3471         } else if (INTEL_INFO(dev)->gen >= 7) {
3472                 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3473                 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ivb);
3474
3475                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3476         } else {
3477                 hotplug_irqs = DE_DP_A_HOTPLUG;
3478                 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ilk);
3479
3480                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3481         }
3482
3483         /*
3484          * Enable digital hotplug on the CPU, and configure the DP short pulse
3485          * duration to 2ms (which is the minimum in the Display Port spec)
3486          * The pulse duration bits are reserved on HSW+.
3487          */
3488         hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3489         hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3490         hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3491         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3492
3493         ibx_hpd_irq_setup(dev);
3494 }
3495
3496 static void bxt_hpd_irq_setup(struct drm_device *dev)
3497 {
3498         struct drm_i915_private *dev_priv = dev->dev_private;
3499         u32 hotplug_irqs, hotplug, enabled_irqs;
3500
3501         enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bxt);
3502         hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3503
3504         bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3505
3506         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3507         hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
3508                 PORTA_HOTPLUG_ENABLE;
3509         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3510 }
3511
3512 static void ibx_irq_postinstall(struct drm_device *dev)
3513 {
3514         struct drm_i915_private *dev_priv = dev->dev_private;
3515         u32 mask;
3516
3517         if (HAS_PCH_NOP(dev))
3518                 return;
3519
3520         if (HAS_PCH_IBX(dev))
3521                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3522         else
3523                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3524
3525         gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3526         I915_WRITE(SDEIMR, ~mask);
3527 }
3528
3529 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3530 {
3531         struct drm_i915_private *dev_priv = dev->dev_private;
3532         u32 pm_irqs, gt_irqs;
3533
3534         pm_irqs = gt_irqs = 0;
3535
3536         dev_priv->gt_irq_mask = ~0;
3537         if (HAS_L3_DPF(dev)) {
3538                 /* L3 parity interrupt is always unmasked. */
3539                 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3540                 gt_irqs |= GT_PARITY_ERROR(dev);
3541         }
3542
3543         gt_irqs |= GT_RENDER_USER_INTERRUPT;
3544         if (IS_GEN5(dev)) {
3545                 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3546                            ILK_BSD_USER_INTERRUPT;
3547         } else {
3548                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3549         }
3550
3551         GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3552
3553         if (INTEL_INFO(dev)->gen >= 6) {
3554                 /*
3555                  * RPS interrupts will get enabled/disabled on demand when RPS
3556                  * itself is enabled/disabled.
3557                  */
3558                 if (HAS_VEBOX(dev))
3559                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3560
3561                 dev_priv->pm_irq_mask = 0xffffffff;
3562                 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3563         }
3564 }
3565
3566 static int ironlake_irq_postinstall(struct drm_device *dev)
3567 {
3568         struct drm_i915_private *dev_priv = dev->dev_private;
3569         u32 display_mask, extra_mask;
3570
3571         if (INTEL_INFO(dev)->gen >= 7) {
3572                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3573                                 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3574                                 DE_PLANEB_FLIP_DONE_IVB |
3575                                 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3576                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3577                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3578                               DE_DP_A_HOTPLUG_IVB);
3579         } else {
3580                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3581                                 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3582                                 DE_AUX_CHANNEL_A |
3583                                 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3584                                 DE_POISON);
3585                 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3586                               DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3587                               DE_DP_A_HOTPLUG);
3588         }
3589
3590         dev_priv->irq_mask = ~display_mask;
3591
3592         I915_WRITE(HWSTAM, 0xeffe);
3593
3594         ibx_irq_pre_postinstall(dev);
3595
3596         GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3597
3598         gen5_gt_irq_postinstall(dev);
3599
3600         ibx_irq_postinstall(dev);
3601
3602         if (IS_IRONLAKE_M(dev)) {
3603                 /* Enable PCU event interrupts
3604                  *
3605                  * spinlocking not required here for correctness since interrupt
3606                  * setup is guaranteed to run in single-threaded context. But we
3607                  * need it to make the assert_spin_locked happy. */
3608                 spin_lock_irq(&dev_priv->irq_lock);
3609                 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3610                 spin_unlock_irq(&dev_priv->irq_lock);
3611         }
3612
3613         return 0;
3614 }
3615
3616 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3617 {
3618         u32 pipestat_mask;
3619         u32 iir_mask;
3620         enum pipe pipe;
3621
3622         pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3623                         PIPE_FIFO_UNDERRUN_STATUS;
3624
3625         for_each_pipe(dev_priv, pipe)
3626                 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3627         POSTING_READ(PIPESTAT(PIPE_A));
3628
3629         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3630                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3631
3632         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3633         for_each_pipe(dev_priv, pipe)
3634                       i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3635
3636         iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3637                    I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3638                    I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3639         if (IS_CHERRYVIEW(dev_priv))
3640                 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3641         dev_priv->irq_mask &= ~iir_mask;
3642
3643         I915_WRITE(VLV_IIR, iir_mask);
3644         I915_WRITE(VLV_IIR, iir_mask);
3645         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3646         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3647         POSTING_READ(VLV_IMR);
3648 }
3649
3650 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3651 {
3652         u32 pipestat_mask;
3653         u32 iir_mask;
3654         enum pipe pipe;
3655
3656         iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3657                    I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3658                    I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3659         if (IS_CHERRYVIEW(dev_priv))
3660                 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3661
3662         dev_priv->irq_mask |= iir_mask;
3663         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3664         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3665         I915_WRITE(VLV_IIR, iir_mask);
3666         I915_WRITE(VLV_IIR, iir_mask);
3667         POSTING_READ(VLV_IIR);
3668
3669         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3670                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3671
3672         i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3673         for_each_pipe(dev_priv, pipe)
3674                 i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
3675
3676         pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3677                         PIPE_FIFO_UNDERRUN_STATUS;
3678
3679         for_each_pipe(dev_priv, pipe)
3680                 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3681         POSTING_READ(PIPESTAT(PIPE_A));
3682 }
3683
3684 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3685 {
3686         assert_spin_locked(&dev_priv->irq_lock);
3687
3688         if (dev_priv->display_irqs_enabled)
3689                 return;
3690
3691         dev_priv->display_irqs_enabled = true;
3692
3693         if (intel_irqs_enabled(dev_priv))
3694                 valleyview_display_irqs_install(dev_priv);
3695 }
3696
3697 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3698 {
3699         assert_spin_locked(&dev_priv->irq_lock);
3700
3701         if (!dev_priv->display_irqs_enabled)
3702                 return;
3703
3704         dev_priv->display_irqs_enabled = false;
3705
3706         if (intel_irqs_enabled(dev_priv))
3707                 valleyview_display_irqs_uninstall(dev_priv);
3708 }
3709
3710 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3711 {
3712         dev_priv->irq_mask = ~0;
3713
3714         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3715         POSTING_READ(PORT_HOTPLUG_EN);
3716
3717         I915_WRITE(VLV_IIR, 0xffffffff);
3718         I915_WRITE(VLV_IIR, 0xffffffff);
3719         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3720         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3721         POSTING_READ(VLV_IMR);
3722
3723         /* Interrupt setup is already guaranteed to be single-threaded, this is
3724          * just to make the assert_spin_locked check happy. */
3725         spin_lock_irq(&dev_priv->irq_lock);
3726         if (dev_priv->display_irqs_enabled)
3727                 valleyview_display_irqs_install(dev_priv);
3728         spin_unlock_irq(&dev_priv->irq_lock);
3729 }
3730
3731 static int valleyview_irq_postinstall(struct drm_device *dev)
3732 {
3733         struct drm_i915_private *dev_priv = dev->dev_private;
3734
3735         vlv_display_irq_postinstall(dev_priv);
3736
3737         gen5_gt_irq_postinstall(dev);
3738
3739         /* ack & enable invalid PTE error interrupts */
3740 #if 0 /* FIXME: add support to irq handler for checking these bits */
3741         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3742         I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3743 #endif
3744
3745         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3746
3747         return 0;
3748 }
3749
3750 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3751 {
3752         /* These are interrupts we'll toggle with the ring mask register */
3753         uint32_t gt_interrupts[] = {
3754                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3755                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3756                         GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3757                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3758                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3759                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3760                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3761                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3762                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3763                 0,
3764                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3765                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3766                 };
3767
3768         dev_priv->pm_irq_mask = 0xffffffff;
3769         GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3770         GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3771         /*
3772          * RPS interrupts will get enabled/disabled on demand when RPS itself
3773          * is enabled/disabled.
3774          */
3775         GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3776         GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3777 }
3778
3779 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3780 {
3781         uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3782         uint32_t de_pipe_enables;
3783         u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3784         u32 de_port_enables;
3785         enum pipe pipe;
3786
3787         if (INTEL_INFO(dev_priv)->gen >= 9) {
3788                 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3789                                   GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3790                 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3791                                   GEN9_AUX_CHANNEL_D;
3792                 if (IS_BROXTON(dev_priv))
3793                         de_port_masked |= BXT_DE_PORT_GMBUS;
3794         } else {
3795                 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3796                                   GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3797         }
3798
3799         de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3800                                            GEN8_PIPE_FIFO_UNDERRUN;
3801
3802         de_port_enables = de_port_masked;
3803         if (IS_BROXTON(dev_priv))
3804                 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3805         else if (IS_BROADWELL(dev_priv))
3806                 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3807
3808         dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3809         dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3810         dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3811
3812         for_each_pipe(dev_priv, pipe)
3813                 if (intel_display_power_is_enabled(dev_priv,
3814                                 POWER_DOMAIN_PIPE(pipe)))
3815                         GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3816                                           dev_priv->de_irq_mask[pipe],
3817                                           de_pipe_enables);
3818
3819         GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3820 }
3821
3822 static int gen8_irq_postinstall(struct drm_device *dev)
3823 {
3824         struct drm_i915_private *dev_priv = dev->dev_private;
3825
3826         if (HAS_PCH_SPLIT(dev))
3827                 ibx_irq_pre_postinstall(dev);
3828
3829         gen8_gt_irq_postinstall(dev_priv);
3830         gen8_de_irq_postinstall(dev_priv);
3831
3832         if (HAS_PCH_SPLIT(dev))
3833                 ibx_irq_postinstall(dev);
3834
3835         I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3836         POSTING_READ(GEN8_MASTER_IRQ);
3837
3838         return 0;
3839 }
3840
3841 static int cherryview_irq_postinstall(struct drm_device *dev)
3842 {
3843         struct drm_i915_private *dev_priv = dev->dev_private;
3844
3845         vlv_display_irq_postinstall(dev_priv);
3846
3847         gen8_gt_irq_postinstall(dev_priv);
3848
3849         I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3850         POSTING_READ(GEN8_MASTER_IRQ);
3851
3852         return 0;
3853 }
3854
3855 static void gen8_irq_uninstall(struct drm_device *dev)
3856 {
3857         struct drm_i915_private *dev_priv = dev->dev_private;
3858
3859         if (!dev_priv)
3860                 return;
3861
3862         gen8_irq_reset(dev);
3863 }
3864
3865 static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3866 {
3867         /* Interrupt setup is already guaranteed to be single-threaded, this is
3868          * just to make the assert_spin_locked check happy. */
3869         spin_lock_irq(&dev_priv->irq_lock);
3870         if (dev_priv->display_irqs_enabled)
3871                 valleyview_display_irqs_uninstall(dev_priv);
3872         spin_unlock_irq(&dev_priv->irq_lock);
3873
3874         vlv_display_irq_reset(dev_priv);
3875
3876         dev_priv->irq_mask = ~0;
3877 }
3878
3879 static void valleyview_irq_uninstall(struct drm_device *dev)
3880 {
3881         struct drm_i915_private *dev_priv = dev->dev_private;
3882
3883         if (!dev_priv)
3884                 return;
3885
3886         I915_WRITE(VLV_MASTER_IER, 0);
3887
3888         gen5_gt_irq_reset(dev);
3889
3890         I915_WRITE(HWSTAM, 0xffffffff);
3891
3892         vlv_display_irq_uninstall(dev_priv);
3893 }
3894
3895 static void cherryview_irq_uninstall(struct drm_device *dev)
3896 {
3897         struct drm_i915_private *dev_priv = dev->dev_private;
3898
3899         if (!dev_priv)
3900                 return;
3901
3902         I915_WRITE(GEN8_MASTER_IRQ, 0);
3903         POSTING_READ(GEN8_MASTER_IRQ);
3904
3905         gen8_gt_irq_reset(dev_priv);
3906
3907         GEN5_IRQ_RESET(GEN8_PCU_);
3908
3909         vlv_display_irq_uninstall(dev_priv);
3910 }
3911
3912 static void ironlake_irq_uninstall(struct drm_device *dev)
3913 {
3914         struct drm_i915_private *dev_priv = dev->dev_private;
3915
3916         if (!dev_priv)
3917                 return;
3918
3919         ironlake_irq_reset(dev);
3920 }
3921
3922 static void i8xx_irq_preinstall(struct drm_device * dev)
3923 {
3924         struct drm_i915_private *dev_priv = dev->dev_private;
3925         int pipe;
3926
3927         for_each_pipe(dev_priv, pipe)
3928                 I915_WRITE(PIPESTAT(pipe), 0);
3929         I915_WRITE16(IMR, 0xffff);
3930         I915_WRITE16(IER, 0x0);
3931         POSTING_READ16(IER);
3932 }
3933
3934 static int i8xx_irq_postinstall(struct drm_device *dev)
3935 {
3936         struct drm_i915_private *dev_priv = dev->dev_private;
3937
3938         I915_WRITE16(EMR,
3939                      ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3940
3941         /* Unmask the interrupts that we always want on. */
3942         dev_priv->irq_mask =
3943                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3944                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3945                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3946                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3947         I915_WRITE16(IMR, dev_priv->irq_mask);
3948
3949         I915_WRITE16(IER,
3950                      I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3951                      I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3952                      I915_USER_INTERRUPT);
3953         POSTING_READ16(IER);
3954
3955         /* Interrupt setup is already guaranteed to be single-threaded, this is
3956          * just to make the assert_spin_locked check happy. */
3957         spin_lock_irq(&dev_priv->irq_lock);
3958         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3959         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3960         spin_unlock_irq(&dev_priv->irq_lock);
3961
3962         return 0;
3963 }
3964
3965 /*
3966  * Returns true when a page flip has completed.
3967  */
3968 static bool i8xx_handle_vblank(struct drm_device *dev,
3969                                int plane, int pipe, u32 iir)
3970 {
3971         struct drm_i915_private *dev_priv = dev->dev_private;
3972         u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3973
3974         if (!intel_pipe_handle_vblank(dev, pipe))
3975                 return false;
3976
3977         if ((iir & flip_pending) == 0)
3978                 goto check_page_flip;
3979
3980         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3981          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3982          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3983          * the flip is completed (no longer pending). Since this doesn't raise
3984          * an interrupt per se, we watch for the change at vblank.
3985          */
3986         if (I915_READ16(ISR) & flip_pending)
3987                 goto check_page_flip;
3988
3989         intel_prepare_page_flip(dev, plane);
3990         intel_finish_page_flip(dev, pipe);
3991         return true;
3992
3993 check_page_flip:
3994         intel_check_page_flip(dev, pipe);
3995         return false;
3996 }
3997
3998 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3999 {
4000         struct drm_device *dev = arg;
4001         struct drm_i915_private *dev_priv = dev->dev_private;
4002         u16 iir, new_iir;
4003         u32 pipe_stats[2];
4004         int pipe;
4005         u16 flip_mask =
4006                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4007                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4008         irqreturn_t ret;
4009
4010         if (!intel_irqs_enabled(dev_priv))
4011                 return IRQ_NONE;
4012
4013         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4014         disable_rpm_wakeref_asserts(dev_priv);
4015
4016         ret = IRQ_NONE;
4017         iir = I915_READ16(IIR);
4018         if (iir == 0)
4019                 goto out;
4020
4021         while (iir & ~flip_mask) {
4022                 /* Can't rely on pipestat interrupt bit in iir as it might
4023                  * have been cleared after the pipestat interrupt was received.
4024                  * It doesn't set the bit in iir again, but it still produces
4025                  * interrupts (for non-MSI).
4026                  */
4027                 spin_lock(&dev_priv->irq_lock);
4028                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4029                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4030
4031                 for_each_pipe(dev_priv, pipe) {
4032                         i915_reg_t reg = PIPESTAT(pipe);
4033                         pipe_stats[pipe] = I915_READ(reg);
4034
4035                         /*
4036                          * Clear the PIPE*STAT regs before the IIR
4037                          */
4038                         if (pipe_stats[pipe] & 0x8000ffff)
4039                                 I915_WRITE(reg, pipe_stats[pipe]);
4040                 }
4041                 spin_unlock(&dev_priv->irq_lock);
4042
4043                 I915_WRITE16(IIR, iir & ~flip_mask);
4044                 new_iir = I915_READ16(IIR); /* Flush posted writes */
4045
4046                 if (iir & I915_USER_INTERRUPT)
4047                         notify_ring(&dev_priv->ring[RCS]);
4048
4049                 for_each_pipe(dev_priv, pipe) {
4050                         int plane = pipe;
4051                         if (HAS_FBC(dev))
4052                                 plane = !plane;
4053
4054                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4055                             i8xx_handle_vblank(dev, plane, pipe, iir))
4056                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4057
4058                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4059                                 i9xx_pipe_crc_irq_handler(dev, pipe);
4060
4061                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4062                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4063                                                                     pipe);
4064                 }
4065
4066                 iir = new_iir;
4067         }
4068         ret = IRQ_HANDLED;
4069
4070 out:
4071         enable_rpm_wakeref_asserts(dev_priv);
4072
4073         return ret;
4074 }
4075
4076 static void i8xx_irq_uninstall(struct drm_device * dev)
4077 {
4078         struct drm_i915_private *dev_priv = dev->dev_private;
4079         int pipe;
4080
4081         for_each_pipe(dev_priv, pipe) {
4082                 /* Clear enable bits; then clear status bits */
4083                 I915_WRITE(PIPESTAT(pipe), 0);
4084                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4085         }
4086         I915_WRITE16(IMR, 0xffff);
4087         I915_WRITE16(IER, 0x0);
4088         I915_WRITE16(IIR, I915_READ16(IIR));
4089 }
4090
4091 static void i915_irq_preinstall(struct drm_device * dev)
4092 {
4093         struct drm_i915_private *dev_priv = dev->dev_private;
4094         int pipe;
4095
4096         if (I915_HAS_HOTPLUG(dev)) {
4097                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4098                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4099         }
4100
4101         I915_WRITE16(HWSTAM, 0xeffe);
4102         for_each_pipe(dev_priv, pipe)
4103                 I915_WRITE(PIPESTAT(pipe), 0);
4104         I915_WRITE(IMR, 0xffffffff);
4105         I915_WRITE(IER, 0x0);
4106         POSTING_READ(IER);
4107 }
4108
4109 static int i915_irq_postinstall(struct drm_device *dev)
4110 {
4111         struct drm_i915_private *dev_priv = dev->dev_private;
4112         u32 enable_mask;
4113
4114         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4115
4116         /* Unmask the interrupts that we always want on. */
4117         dev_priv->irq_mask =
4118                 ~(I915_ASLE_INTERRUPT |
4119                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4120                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4121                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4122                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4123
4124         enable_mask =
4125                 I915_ASLE_INTERRUPT |
4126                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4127                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4128                 I915_USER_INTERRUPT;
4129
4130         if (I915_HAS_HOTPLUG(dev)) {
4131                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4132                 POSTING_READ(PORT_HOTPLUG_EN);
4133
4134                 /* Enable in IER... */
4135                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4136                 /* and unmask in IMR */
4137                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4138         }
4139
4140         I915_WRITE(IMR, dev_priv->irq_mask);
4141         I915_WRITE(IER, enable_mask);
4142         POSTING_READ(IER);
4143
4144         i915_enable_asle_pipestat(dev);
4145
4146         /* Interrupt setup is already guaranteed to be single-threaded, this is
4147          * just to make the assert_spin_locked check happy. */
4148         spin_lock_irq(&dev_priv->irq_lock);
4149         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4150         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4151         spin_unlock_irq(&dev_priv->irq_lock);
4152
4153         return 0;
4154 }
4155
4156 /*
4157  * Returns true when a page flip has completed.
4158  */
4159 static bool i915_handle_vblank(struct drm_device *dev,
4160                                int plane, int pipe, u32 iir)
4161 {
4162         struct drm_i915_private *dev_priv = dev->dev_private;
4163         u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4164
4165         if (!intel_pipe_handle_vblank(dev, pipe))
4166                 return false;
4167
4168         if ((iir & flip_pending) == 0)
4169                 goto check_page_flip;
4170
4171         /* We detect FlipDone by looking for the change in PendingFlip from '1'
4172          * to '0' on the following vblank, i.e. IIR has the Pendingflip
4173          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4174          * the flip is completed (no longer pending). Since this doesn't raise
4175          * an interrupt per se, we watch for the change at vblank.
4176          */
4177         if (I915_READ(ISR) & flip_pending)
4178                 goto check_page_flip;
4179
4180         intel_prepare_page_flip(dev, plane);
4181         intel_finish_page_flip(dev, pipe);
4182         return true;
4183
4184 check_page_flip:
4185         intel_check_page_flip(dev, pipe);
4186         return false;
4187 }
4188
4189 static irqreturn_t i915_irq_handler(int irq, void *arg)
4190 {
4191         struct drm_device *dev = arg;
4192         struct drm_i915_private *dev_priv = dev->dev_private;
4193         u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4194         u32 flip_mask =
4195                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4196                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4197         int pipe, ret = IRQ_NONE;
4198
4199         if (!intel_irqs_enabled(dev_priv))
4200                 return IRQ_NONE;
4201
4202         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4203         disable_rpm_wakeref_asserts(dev_priv);
4204
4205         iir = I915_READ(IIR);
4206         do {
4207                 bool irq_received = (iir & ~flip_mask) != 0;
4208                 bool blc_event = false;
4209
4210                 /* Can't rely on pipestat interrupt bit in iir as it might
4211                  * have been cleared after the pipestat interrupt was received.
4212                  * It doesn't set the bit in iir again, but it still produces
4213                  * interrupts (for non-MSI).
4214                  */
4215                 spin_lock(&dev_priv->irq_lock);
4216                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4217                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4218
4219                 for_each_pipe(dev_priv, pipe) {
4220                         i915_reg_t reg = PIPESTAT(pipe);
4221                         pipe_stats[pipe] = I915_READ(reg);
4222
4223                         /* Clear the PIPE*STAT regs before the IIR */
4224                         if (pipe_stats[pipe] & 0x8000ffff) {
4225                                 I915_WRITE(reg, pipe_stats[pipe]);
4226                                 irq_received = true;
4227                         }
4228                 }
4229                 spin_unlock(&dev_priv->irq_lock);
4230
4231                 if (!irq_received)
4232                         break;
4233
4234                 /* Consume port.  Then clear IIR or we'll miss events */
4235                 if (I915_HAS_HOTPLUG(dev) &&
4236                     iir & I915_DISPLAY_PORT_INTERRUPT)
4237                         i9xx_hpd_irq_handler(dev);
4238
4239                 I915_WRITE(IIR, iir & ~flip_mask);
4240                 new_iir = I915_READ(IIR); /* Flush posted writes */
4241
4242                 if (iir & I915_USER_INTERRUPT)
4243                         notify_ring(&dev_priv->ring[RCS]);
4244
4245                 for_each_pipe(dev_priv, pipe) {
4246                         int plane = pipe;
4247                         if (HAS_FBC(dev))
4248                                 plane = !plane;
4249
4250                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4251                             i915_handle_vblank(dev, plane, pipe, iir))
4252                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4253
4254                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4255                                 blc_event = true;
4256
4257                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4258                                 i9xx_pipe_crc_irq_handler(dev, pipe);
4259
4260                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4261                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4262                                                                     pipe);
4263                 }
4264
4265                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4266                         intel_opregion_asle_intr(dev);
4267
4268                 /* With MSI, interrupts are only generated when iir
4269                  * transitions from zero to nonzero.  If another bit got
4270                  * set while we were handling the existing iir bits, then
4271                  * we would never get another interrupt.
4272                  *
4273                  * This is fine on non-MSI as well, as if we hit this path
4274                  * we avoid exiting the interrupt handler only to generate
4275                  * another one.
4276                  *
4277                  * Note that for MSI this could cause a stray interrupt report
4278                  * if an interrupt landed in the time between writing IIR and
4279                  * the posting read.  This should be rare enough to never
4280                  * trigger the 99% of 100,000 interrupts test for disabling
4281                  * stray interrupts.
4282                  */
4283                 ret = IRQ_HANDLED;
4284                 iir = new_iir;
4285         } while (iir & ~flip_mask);
4286
4287         enable_rpm_wakeref_asserts(dev_priv);
4288
4289         return ret;
4290 }
4291
4292 static void i915_irq_uninstall(struct drm_device * dev)
4293 {
4294         struct drm_i915_private *dev_priv = dev->dev_private;
4295         int pipe;
4296
4297         if (I915_HAS_HOTPLUG(dev)) {
4298                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4299                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4300         }
4301
4302         I915_WRITE16(HWSTAM, 0xffff);
4303         for_each_pipe(dev_priv, pipe) {
4304                 /* Clear enable bits; then clear status bits */
4305                 I915_WRITE(PIPESTAT(pipe), 0);
4306                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4307         }
4308         I915_WRITE(IMR, 0xffffffff);
4309         I915_WRITE(IER, 0x0);
4310
4311         I915_WRITE(IIR, I915_READ(IIR));
4312 }
4313
4314 static void i965_irq_preinstall(struct drm_device * dev)
4315 {
4316         struct drm_i915_private *dev_priv = dev->dev_private;
4317         int pipe;
4318
4319         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4320         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4321
4322         I915_WRITE(HWSTAM, 0xeffe);
4323         for_each_pipe(dev_priv, pipe)
4324                 I915_WRITE(PIPESTAT(pipe), 0);
4325         I915_WRITE(IMR, 0xffffffff);
4326         I915_WRITE(IER, 0x0);
4327         POSTING_READ(IER);
4328 }
4329
4330 static int i965_irq_postinstall(struct drm_device *dev)
4331 {
4332         struct drm_i915_private *dev_priv = dev->dev_private;
4333         u32 enable_mask;
4334         u32 error_mask;
4335
4336         /* Unmask the interrupts that we always want on. */
4337         dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4338                                I915_DISPLAY_PORT_INTERRUPT |
4339                                I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4340                                I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4341                                I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4342                                I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4343                                I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4344
4345         enable_mask = ~dev_priv->irq_mask;
4346         enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4347                          I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4348         enable_mask |= I915_USER_INTERRUPT;
4349
4350         if (IS_G4X(dev))
4351                 enable_mask |= I915_BSD_USER_INTERRUPT;
4352
4353         /* Interrupt setup is already guaranteed to be single-threaded, this is
4354          * just to make the assert_spin_locked check happy. */
4355         spin_lock_irq(&dev_priv->irq_lock);
4356         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4357         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4358         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4359         spin_unlock_irq(&dev_priv->irq_lock);
4360
4361         /*
4362          * Enable some error detection, note the instruction error mask
4363          * bit is reserved, so we leave it masked.
4364          */
4365         if (IS_G4X(dev)) {
4366                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4367                                GM45_ERROR_MEM_PRIV |
4368                                GM45_ERROR_CP_PRIV |
4369                                I915_ERROR_MEMORY_REFRESH);
4370         } else {
4371                 error_mask = ~(I915_ERROR_PAGE_TABLE |
4372                                I915_ERROR_MEMORY_REFRESH);
4373         }
4374         I915_WRITE(EMR, error_mask);
4375
4376         I915_WRITE(IMR, dev_priv->irq_mask);
4377         I915_WRITE(IER, enable_mask);
4378         POSTING_READ(IER);
4379
4380         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4381         POSTING_READ(PORT_HOTPLUG_EN);
4382
4383         i915_enable_asle_pipestat(dev);
4384
4385         return 0;
4386 }
4387
4388 static void i915_hpd_irq_setup(struct drm_device *dev)
4389 {
4390         struct drm_i915_private *dev_priv = dev->dev_private;
4391         u32 hotplug_en;
4392
4393         assert_spin_locked(&dev_priv->irq_lock);
4394
4395         /* Note HDMI and DP share hotplug bits */
4396         /* enable bits are the same for all generations */
4397         hotplug_en = intel_hpd_enabled_irqs(dev, hpd_mask_i915);
4398         /* Programming the CRT detection parameters tends
4399            to generate a spurious hotplug event about three
4400            seconds later.  So just do it once.
4401         */
4402         if (IS_G4X(dev))
4403                 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4404         hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4405
4406         /* Ignore TV since it's buggy */
4407         i915_hotplug_interrupt_update_locked(dev_priv,
4408                                              HOTPLUG_INT_EN_MASK |
4409                                              CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4410                                              CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4411                                              hotplug_en);
4412 }
4413
4414 static irqreturn_t i965_irq_handler(int irq, void *arg)
4415 {
4416         struct drm_device *dev = arg;
4417         struct drm_i915_private *dev_priv = dev->dev_private;
4418         u32 iir, new_iir;
4419         u32 pipe_stats[I915_MAX_PIPES];
4420         int ret = IRQ_NONE, pipe;
4421         u32 flip_mask =
4422                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4423                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4424
4425         if (!intel_irqs_enabled(dev_priv))
4426                 return IRQ_NONE;
4427
4428         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4429         disable_rpm_wakeref_asserts(dev_priv);
4430
4431         iir = I915_READ(IIR);
4432
4433         for (;;) {
4434                 bool irq_received = (iir & ~flip_mask) != 0;
4435                 bool blc_event = false;
4436
4437                 /* Can't rely on pipestat interrupt bit in iir as it might
4438                  * have been cleared after the pipestat interrupt was received.
4439                  * It doesn't set the bit in iir again, but it still produces
4440                  * interrupts (for non-MSI).
4441                  */
4442                 spin_lock(&dev_priv->irq_lock);
4443                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4444                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4445
4446                 for_each_pipe(dev_priv, pipe) {
4447                         i915_reg_t reg = PIPESTAT(pipe);
4448                         pipe_stats[pipe] = I915_READ(reg);
4449
4450                         /*
4451                          * Clear the PIPE*STAT regs before the IIR
4452                          */
4453                         if (pipe_stats[pipe] & 0x8000ffff) {
4454                                 I915_WRITE(reg, pipe_stats[pipe]);
4455                                 irq_received = true;
4456                         }
4457                 }
4458                 spin_unlock(&dev_priv->irq_lock);
4459
4460                 if (!irq_received)
4461                         break;
4462
4463                 ret = IRQ_HANDLED;
4464
4465                 /* Consume port.  Then clear IIR or we'll miss events */
4466                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4467                         i9xx_hpd_irq_handler(dev);
4468
4469                 I915_WRITE(IIR, iir & ~flip_mask);
4470                 new_iir = I915_READ(IIR); /* Flush posted writes */
4471
4472                 if (iir & I915_USER_INTERRUPT)
4473                         notify_ring(&dev_priv->ring[RCS]);
4474                 if (iir & I915_BSD_USER_INTERRUPT)
4475                         notify_ring(&dev_priv->ring[VCS]);
4476
4477                 for_each_pipe(dev_priv, pipe) {
4478                         if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4479                             i915_handle_vblank(dev, pipe, pipe, iir))
4480                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4481
4482                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4483                                 blc_event = true;
4484
4485                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4486                                 i9xx_pipe_crc_irq_handler(dev, pipe);
4487
4488                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4489                                 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4490                 }
4491
4492                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4493                         intel_opregion_asle_intr(dev);
4494
4495                 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4496                         gmbus_irq_handler(dev);
4497
4498                 /* With MSI, interrupts are only generated when iir
4499                  * transitions from zero to nonzero.  If another bit got
4500                  * set while we were handling the existing iir bits, then
4501                  * we would never get another interrupt.
4502                  *
4503                  * This is fine on non-MSI as well, as if we hit this path
4504                  * we avoid exiting the interrupt handler only to generate
4505                  * another one.
4506                  *
4507                  * Note that for MSI this could cause a stray interrupt report
4508                  * if an interrupt landed in the time between writing IIR and
4509                  * the posting read.  This should be rare enough to never
4510                  * trigger the 99% of 100,000 interrupts test for disabling
4511                  * stray interrupts.
4512                  */
4513                 iir = new_iir;
4514         }
4515
4516         enable_rpm_wakeref_asserts(dev_priv);
4517
4518         return ret;
4519 }
4520
4521 static void i965_irq_uninstall(struct drm_device * dev)
4522 {
4523         struct drm_i915_private *dev_priv = dev->dev_private;
4524         int pipe;
4525
4526         if (!dev_priv)
4527                 return;
4528
4529         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4530         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4531
4532         I915_WRITE(HWSTAM, 0xffffffff);
4533         for_each_pipe(dev_priv, pipe)
4534                 I915_WRITE(PIPESTAT(pipe), 0);
4535         I915_WRITE(IMR, 0xffffffff);
4536         I915_WRITE(IER, 0x0);
4537
4538         for_each_pipe(dev_priv, pipe)
4539                 I915_WRITE(PIPESTAT(pipe),
4540                            I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4541         I915_WRITE(IIR, I915_READ(IIR));
4542 }
4543
4544 /**
4545  * intel_irq_init - initializes irq support
4546  * @dev_priv: i915 device instance
4547  *
4548  * This function initializes all the irq support including work items, timers
4549  * and all the vtables. It does not setup the interrupt itself though.
4550  */
4551 void intel_irq_init(struct drm_i915_private *dev_priv)
4552 {
4553         struct drm_device *dev = dev_priv->dev;
4554
4555         intel_hpd_init_work(dev_priv);
4556
4557         INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4558         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4559
4560         /* Let's track the enabled rps events */
4561         if (IS_VALLEYVIEW(dev_priv))
4562                 /* WaGsvRC0ResidencyMethod:vlv */
4563                 dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4564         else
4565                 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4566
4567         INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4568                           i915_hangcheck_elapsed);
4569
4570         pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4571
4572         if (IS_GEN2(dev_priv)) {
4573                 dev->max_vblank_count = 0;
4574                 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4575         } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4576                 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4577                 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4578         } else {
4579                 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4580                 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4581         }
4582
4583         /*
4584          * Opt out of the vblank disable timer on everything except gen2.
4585          * Gen2 doesn't have a hardware frame counter and so depends on
4586          * vblank interrupts to produce sane vblank seuquence numbers.
4587          */
4588         if (!IS_GEN2(dev_priv))
4589                 dev->vblank_disable_immediate = true;
4590
4591         dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4592         dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4593
4594         if (IS_CHERRYVIEW(dev_priv)) {
4595                 dev->driver->irq_handler = cherryview_irq_handler;
4596                 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4597                 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4598                 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4599                 dev->driver->enable_vblank = valleyview_enable_vblank;
4600                 dev->driver->disable_vblank = valleyview_disable_vblank;
4601                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4602         } else if (IS_VALLEYVIEW(dev_priv)) {
4603                 dev->driver->irq_handler = valleyview_irq_handler;
4604                 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4605                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4606                 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4607                 dev->driver->enable_vblank = valleyview_enable_vblank;
4608                 dev->driver->disable_vblank = valleyview_disable_vblank;
4609                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4610         } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4611                 dev->driver->irq_handler = gen8_irq_handler;
4612                 dev->driver->irq_preinstall = gen8_irq_reset;
4613                 dev->driver->irq_postinstall = gen8_irq_postinstall;
4614                 dev->driver->irq_uninstall = gen8_irq_uninstall;
4615                 dev->driver->enable_vblank = gen8_enable_vblank;
4616                 dev->driver->disable_vblank = gen8_disable_vblank;
4617                 if (IS_BROXTON(dev))
4618                         dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4619                 else if (HAS_PCH_SPT(dev))
4620                         dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4621                 else
4622                         dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4623         } else if (HAS_PCH_SPLIT(dev)) {
4624                 dev->driver->irq_handler = ironlake_irq_handler;
4625                 dev->driver->irq_preinstall = ironlake_irq_reset;
4626                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4627                 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4628                 dev->driver->enable_vblank = ironlake_enable_vblank;
4629                 dev->driver->disable_vblank = ironlake_disable_vblank;
4630                 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4631         } else {
4632                 if (INTEL_INFO(dev_priv)->gen == 2) {
4633                         dev->driver->irq_preinstall = i8xx_irq_preinstall;
4634                         dev->driver->irq_postinstall = i8xx_irq_postinstall;
4635                         dev->driver->irq_handler = i8xx_irq_handler;
4636                         dev->driver->irq_uninstall = i8xx_irq_uninstall;
4637                 } else if (INTEL_INFO(dev_priv)->gen == 3) {
4638                         dev->driver->irq_preinstall = i915_irq_preinstall;
4639                         dev->driver->irq_postinstall = i915_irq_postinstall;
4640                         dev->driver->irq_uninstall = i915_irq_uninstall;
4641                         dev->driver->irq_handler = i915_irq_handler;
4642                 } else {
4643                         dev->driver->irq_preinstall = i965_irq_preinstall;
4644                         dev->driver->irq_postinstall = i965_irq_postinstall;
4645                         dev->driver->irq_uninstall = i965_irq_uninstall;
4646                         dev->driver->irq_handler = i965_irq_handler;
4647                 }
4648                 if (I915_HAS_HOTPLUG(dev_priv))
4649                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4650                 dev->driver->enable_vblank = i915_enable_vblank;
4651                 dev->driver->disable_vblank = i915_disable_vblank;
4652         }
4653 }
4654
4655 /**
4656  * intel_irq_install - enables the hardware interrupt
4657  * @dev_priv: i915 device instance
4658  *
4659  * This function enables the hardware interrupt handling, but leaves the hotplug
4660  * handling still disabled. It is called after intel_irq_init().
4661  *
4662  * In the driver load and resume code we need working interrupts in a few places
4663  * but don't want to deal with the hassle of concurrent probe and hotplug
4664  * workers. Hence the split into this two-stage approach.
4665  */
4666 int intel_irq_install(struct drm_i915_private *dev_priv)
4667 {
4668         /*
4669          * We enable some interrupt sources in our postinstall hooks, so mark
4670          * interrupts as enabled _before_ actually enabling them to avoid
4671          * special cases in our ordering checks.
4672          */
4673         dev_priv->pm.irqs_enabled = true;
4674
4675         return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4676 }
4677
4678 /**
4679  * intel_irq_uninstall - finilizes all irq handling
4680  * @dev_priv: i915 device instance
4681  *
4682  * This stops interrupt and hotplug handling and unregisters and frees all
4683  * resources acquired in the init functions.
4684  */
4685 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4686 {
4687         drm_irq_uninstall(dev_priv->dev);
4688         intel_hpd_cancel_work(dev_priv);
4689         dev_priv->pm.irqs_enabled = false;
4690 }
4691
4692 /**
4693  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4694  * @dev_priv: i915 device instance
4695  *
4696  * This function is used to disable interrupts at runtime, both in the runtime
4697  * pm and the system suspend/resume code.
4698  */
4699 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4700 {
4701         dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4702         dev_priv->pm.irqs_enabled = false;
4703         synchronize_irq(dev_priv->dev->irq);
4704 }
4705
4706 /**
4707  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4708  * @dev_priv: i915 device instance
4709  *
4710  * This function is used to enable interrupts at runtime, both in the runtime
4711  * pm and the system suspend/resume code.
4712  */
4713 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4714 {
4715         dev_priv->pm.irqs_enabled = true;
4716         dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4717         dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4718 }