SUNRPC: Fix a deadlock in rpc_client_register()
[cascardo/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 typedef struct {
49         /* given values */
50         int n;
51         int m1, m2;
52         int p1, p2;
53         /* derived values */
54         int     dot;
55         int     vco;
56         int     m;
57         int     p;
58 } intel_clock_t;
59
60 typedef struct {
61         int     min, max;
62 } intel_range_t;
63
64 typedef struct {
65         int     dot_limit;
66         int     p2_slow, p2_fast;
67 } intel_p2_t;
68
69 #define INTEL_P2_NUM                  2
70 typedef struct intel_limit intel_limit_t;
71 struct intel_limit {
72         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
73         intel_p2_t          p2;
74         /**
75          * find_pll() - Find the best values for the PLL
76          * @limit: limits for the PLL
77          * @crtc: current CRTC
78          * @target: target frequency in kHz
79          * @refclk: reference clock frequency in kHz
80          * @match_clock: if provided, @best_clock P divider must
81          *               match the P divider from @match_clock
82          *               used for LVDS downclocking
83          * @best_clock: best PLL values found
84          *
85          * Returns true on success, false on failure.
86          */
87         bool (*find_pll)(const intel_limit_t *limit,
88                          struct drm_crtc *crtc,
89                          int target, int refclk,
90                          intel_clock_t *match_clock,
91                          intel_clock_t *best_clock);
92 };
93
94 /* FDI */
95 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
96
97 int
98 intel_pch_rawclk(struct drm_device *dev)
99 {
100         struct drm_i915_private *dev_priv = dev->dev_private;
101
102         WARN_ON(!HAS_PCH_SPLIT(dev));
103
104         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
105 }
106
107 static bool
108 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
109                     int target, int refclk, intel_clock_t *match_clock,
110                     intel_clock_t *best_clock);
111 static bool
112 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
113                         int target, int refclk, intel_clock_t *match_clock,
114                         intel_clock_t *best_clock);
115
116 static bool
117 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
118                       int target, int refclk, intel_clock_t *match_clock,
119                       intel_clock_t *best_clock);
120 static bool
121 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
122                            int target, int refclk, intel_clock_t *match_clock,
123                            intel_clock_t *best_clock);
124
125 static bool
126 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
127                         int target, int refclk, intel_clock_t *match_clock,
128                         intel_clock_t *best_clock);
129
130 static inline u32 /* units of 100MHz */
131 intel_fdi_link_freq(struct drm_device *dev)
132 {
133         if (IS_GEN5(dev)) {
134                 struct drm_i915_private *dev_priv = dev->dev_private;
135                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
136         } else
137                 return 27;
138 }
139
140 static const intel_limit_t intel_limits_i8xx_dvo = {
141         .dot = { .min = 25000, .max = 350000 },
142         .vco = { .min = 930000, .max = 1400000 },
143         .n = { .min = 3, .max = 16 },
144         .m = { .min = 96, .max = 140 },
145         .m1 = { .min = 18, .max = 26 },
146         .m2 = { .min = 6, .max = 16 },
147         .p = { .min = 4, .max = 128 },
148         .p1 = { .min = 2, .max = 33 },
149         .p2 = { .dot_limit = 165000,
150                 .p2_slow = 4, .p2_fast = 2 },
151         .find_pll = intel_find_best_PLL,
152 };
153
154 static const intel_limit_t intel_limits_i8xx_lvds = {
155         .dot = { .min = 25000, .max = 350000 },
156         .vco = { .min = 930000, .max = 1400000 },
157         .n = { .min = 3, .max = 16 },
158         .m = { .min = 96, .max = 140 },
159         .m1 = { .min = 18, .max = 26 },
160         .m2 = { .min = 6, .max = 16 },
161         .p = { .min = 4, .max = 128 },
162         .p1 = { .min = 1, .max = 6 },
163         .p2 = { .dot_limit = 165000,
164                 .p2_slow = 14, .p2_fast = 7 },
165         .find_pll = intel_find_best_PLL,
166 };
167
168 static const intel_limit_t intel_limits_i9xx_sdvo = {
169         .dot = { .min = 20000, .max = 400000 },
170         .vco = { .min = 1400000, .max = 2800000 },
171         .n = { .min = 1, .max = 6 },
172         .m = { .min = 70, .max = 120 },
173         .m1 = { .min = 8, .max = 18 },
174         .m2 = { .min = 3, .max = 7 },
175         .p = { .min = 5, .max = 80 },
176         .p1 = { .min = 1, .max = 8 },
177         .p2 = { .dot_limit = 200000,
178                 .p2_slow = 10, .p2_fast = 5 },
179         .find_pll = intel_find_best_PLL,
180 };
181
182 static const intel_limit_t intel_limits_i9xx_lvds = {
183         .dot = { .min = 20000, .max = 400000 },
184         .vco = { .min = 1400000, .max = 2800000 },
185         .n = { .min = 1, .max = 6 },
186         .m = { .min = 70, .max = 120 },
187         .m1 = { .min = 8, .max = 18 },
188         .m2 = { .min = 3, .max = 7 },
189         .p = { .min = 7, .max = 98 },
190         .p1 = { .min = 1, .max = 8 },
191         .p2 = { .dot_limit = 112000,
192                 .p2_slow = 14, .p2_fast = 7 },
193         .find_pll = intel_find_best_PLL,
194 };
195
196
197 static const intel_limit_t intel_limits_g4x_sdvo = {
198         .dot = { .min = 25000, .max = 270000 },
199         .vco = { .min = 1750000, .max = 3500000},
200         .n = { .min = 1, .max = 4 },
201         .m = { .min = 104, .max = 138 },
202         .m1 = { .min = 17, .max = 23 },
203         .m2 = { .min = 5, .max = 11 },
204         .p = { .min = 10, .max = 30 },
205         .p1 = { .min = 1, .max = 3},
206         .p2 = { .dot_limit = 270000,
207                 .p2_slow = 10,
208                 .p2_fast = 10
209         },
210         .find_pll = intel_g4x_find_best_PLL,
211 };
212
213 static const intel_limit_t intel_limits_g4x_hdmi = {
214         .dot = { .min = 22000, .max = 400000 },
215         .vco = { .min = 1750000, .max = 3500000},
216         .n = { .min = 1, .max = 4 },
217         .m = { .min = 104, .max = 138 },
218         .m1 = { .min = 16, .max = 23 },
219         .m2 = { .min = 5, .max = 11 },
220         .p = { .min = 5, .max = 80 },
221         .p1 = { .min = 1, .max = 8},
222         .p2 = { .dot_limit = 165000,
223                 .p2_slow = 10, .p2_fast = 5 },
224         .find_pll = intel_g4x_find_best_PLL,
225 };
226
227 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
228         .dot = { .min = 20000, .max = 115000 },
229         .vco = { .min = 1750000, .max = 3500000 },
230         .n = { .min = 1, .max = 3 },
231         .m = { .min = 104, .max = 138 },
232         .m1 = { .min = 17, .max = 23 },
233         .m2 = { .min = 5, .max = 11 },
234         .p = { .min = 28, .max = 112 },
235         .p1 = { .min = 2, .max = 8 },
236         .p2 = { .dot_limit = 0,
237                 .p2_slow = 14, .p2_fast = 14
238         },
239         .find_pll = intel_g4x_find_best_PLL,
240 };
241
242 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
243         .dot = { .min = 80000, .max = 224000 },
244         .vco = { .min = 1750000, .max = 3500000 },
245         .n = { .min = 1, .max = 3 },
246         .m = { .min = 104, .max = 138 },
247         .m1 = { .min = 17, .max = 23 },
248         .m2 = { .min = 5, .max = 11 },
249         .p = { .min = 14, .max = 42 },
250         .p1 = { .min = 2, .max = 6 },
251         .p2 = { .dot_limit = 0,
252                 .p2_slow = 7, .p2_fast = 7
253         },
254         .find_pll = intel_g4x_find_best_PLL,
255 };
256
257 static const intel_limit_t intel_limits_g4x_display_port = {
258         .dot = { .min = 161670, .max = 227000 },
259         .vco = { .min = 1750000, .max = 3500000},
260         .n = { .min = 1, .max = 2 },
261         .m = { .min = 97, .max = 108 },
262         .m1 = { .min = 0x10, .max = 0x12 },
263         .m2 = { .min = 0x05, .max = 0x06 },
264         .p = { .min = 10, .max = 20 },
265         .p1 = { .min = 1, .max = 2},
266         .p2 = { .dot_limit = 0,
267                 .p2_slow = 10, .p2_fast = 10 },
268         .find_pll = intel_find_pll_g4x_dp,
269 };
270
271 static const intel_limit_t intel_limits_pineview_sdvo = {
272         .dot = { .min = 20000, .max = 400000},
273         .vco = { .min = 1700000, .max = 3500000 },
274         /* Pineview's Ncounter is a ring counter */
275         .n = { .min = 3, .max = 6 },
276         .m = { .min = 2, .max = 256 },
277         /* Pineview only has one combined m divider, which we treat as m2. */
278         .m1 = { .min = 0, .max = 0 },
279         .m2 = { .min = 0, .max = 254 },
280         .p = { .min = 5, .max = 80 },
281         .p1 = { .min = 1, .max = 8 },
282         .p2 = { .dot_limit = 200000,
283                 .p2_slow = 10, .p2_fast = 5 },
284         .find_pll = intel_find_best_PLL,
285 };
286
287 static const intel_limit_t intel_limits_pineview_lvds = {
288         .dot = { .min = 20000, .max = 400000 },
289         .vco = { .min = 1700000, .max = 3500000 },
290         .n = { .min = 3, .max = 6 },
291         .m = { .min = 2, .max = 256 },
292         .m1 = { .min = 0, .max = 0 },
293         .m2 = { .min = 0, .max = 254 },
294         .p = { .min = 7, .max = 112 },
295         .p1 = { .min = 1, .max = 8 },
296         .p2 = { .dot_limit = 112000,
297                 .p2_slow = 14, .p2_fast = 14 },
298         .find_pll = intel_find_best_PLL,
299 };
300
301 /* Ironlake / Sandybridge
302  *
303  * We calculate clock using (register_value + 2) for N/M1/M2, so here
304  * the range value for them is (actual_value - 2).
305  */
306 static const intel_limit_t intel_limits_ironlake_dac = {
307         .dot = { .min = 25000, .max = 350000 },
308         .vco = { .min = 1760000, .max = 3510000 },
309         .n = { .min = 1, .max = 5 },
310         .m = { .min = 79, .max = 127 },
311         .m1 = { .min = 12, .max = 22 },
312         .m2 = { .min = 5, .max = 9 },
313         .p = { .min = 5, .max = 80 },
314         .p1 = { .min = 1, .max = 8 },
315         .p2 = { .dot_limit = 225000,
316                 .p2_slow = 10, .p2_fast = 5 },
317         .find_pll = intel_g4x_find_best_PLL,
318 };
319
320 static const intel_limit_t intel_limits_ironlake_single_lvds = {
321         .dot = { .min = 25000, .max = 350000 },
322         .vco = { .min = 1760000, .max = 3510000 },
323         .n = { .min = 1, .max = 3 },
324         .m = { .min = 79, .max = 118 },
325         .m1 = { .min = 12, .max = 22 },
326         .m2 = { .min = 5, .max = 9 },
327         .p = { .min = 28, .max = 112 },
328         .p1 = { .min = 2, .max = 8 },
329         .p2 = { .dot_limit = 225000,
330                 .p2_slow = 14, .p2_fast = 14 },
331         .find_pll = intel_g4x_find_best_PLL,
332 };
333
334 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
335         .dot = { .min = 25000, .max = 350000 },
336         .vco = { .min = 1760000, .max = 3510000 },
337         .n = { .min = 1, .max = 3 },
338         .m = { .min = 79, .max = 127 },
339         .m1 = { .min = 12, .max = 22 },
340         .m2 = { .min = 5, .max = 9 },
341         .p = { .min = 14, .max = 56 },
342         .p1 = { .min = 2, .max = 8 },
343         .p2 = { .dot_limit = 225000,
344                 .p2_slow = 7, .p2_fast = 7 },
345         .find_pll = intel_g4x_find_best_PLL,
346 };
347
348 /* LVDS 100mhz refclk limits. */
349 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
350         .dot = { .min = 25000, .max = 350000 },
351         .vco = { .min = 1760000, .max = 3510000 },
352         .n = { .min = 1, .max = 2 },
353         .m = { .min = 79, .max = 126 },
354         .m1 = { .min = 12, .max = 22 },
355         .m2 = { .min = 5, .max = 9 },
356         .p = { .min = 28, .max = 112 },
357         .p1 = { .min = 2, .max = 8 },
358         .p2 = { .dot_limit = 225000,
359                 .p2_slow = 14, .p2_fast = 14 },
360         .find_pll = intel_g4x_find_best_PLL,
361 };
362
363 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
364         .dot = { .min = 25000, .max = 350000 },
365         .vco = { .min = 1760000, .max = 3510000 },
366         .n = { .min = 1, .max = 3 },
367         .m = { .min = 79, .max = 126 },
368         .m1 = { .min = 12, .max = 22 },
369         .m2 = { .min = 5, .max = 9 },
370         .p = { .min = 14, .max = 42 },
371         .p1 = { .min = 2, .max = 6 },
372         .p2 = { .dot_limit = 225000,
373                 .p2_slow = 7, .p2_fast = 7 },
374         .find_pll = intel_g4x_find_best_PLL,
375 };
376
377 static const intel_limit_t intel_limits_ironlake_display_port = {
378         .dot = { .min = 25000, .max = 350000 },
379         .vco = { .min = 1760000, .max = 3510000},
380         .n = { .min = 1, .max = 2 },
381         .m = { .min = 81, .max = 90 },
382         .m1 = { .min = 12, .max = 22 },
383         .m2 = { .min = 5, .max = 9 },
384         .p = { .min = 10, .max = 20 },
385         .p1 = { .min = 1, .max = 2},
386         .p2 = { .dot_limit = 0,
387                 .p2_slow = 10, .p2_fast = 10 },
388         .find_pll = intel_find_pll_ironlake_dp,
389 };
390
391 static const intel_limit_t intel_limits_vlv_dac = {
392         .dot = { .min = 25000, .max = 270000 },
393         .vco = { .min = 4000000, .max = 6000000 },
394         .n = { .min = 1, .max = 7 },
395         .m = { .min = 22, .max = 450 }, /* guess */
396         .m1 = { .min = 2, .max = 3 },
397         .m2 = { .min = 11, .max = 156 },
398         .p = { .min = 10, .max = 30 },
399         .p1 = { .min = 2, .max = 3 },
400         .p2 = { .dot_limit = 270000,
401                 .p2_slow = 2, .p2_fast = 20 },
402         .find_pll = intel_vlv_find_best_pll,
403 };
404
405 static const intel_limit_t intel_limits_vlv_hdmi = {
406         .dot = { .min = 20000, .max = 165000 },
407         .vco = { .min = 4000000, .max = 5994000},
408         .n = { .min = 1, .max = 7 },
409         .m = { .min = 60, .max = 300 }, /* guess */
410         .m1 = { .min = 2, .max = 3 },
411         .m2 = { .min = 11, .max = 156 },
412         .p = { .min = 10, .max = 30 },
413         .p1 = { .min = 2, .max = 3 },
414         .p2 = { .dot_limit = 270000,
415                 .p2_slow = 2, .p2_fast = 20 },
416         .find_pll = intel_vlv_find_best_pll,
417 };
418
419 static const intel_limit_t intel_limits_vlv_dp = {
420         .dot = { .min = 25000, .max = 270000 },
421         .vco = { .min = 4000000, .max = 6000000 },
422         .n = { .min = 1, .max = 7 },
423         .m = { .min = 22, .max = 450 },
424         .m1 = { .min = 2, .max = 3 },
425         .m2 = { .min = 11, .max = 156 },
426         .p = { .min = 10, .max = 30 },
427         .p1 = { .min = 2, .max = 3 },
428         .p2 = { .dot_limit = 270000,
429                 .p2_slow = 2, .p2_fast = 20 },
430         .find_pll = intel_vlv_find_best_pll,
431 };
432
433 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
434 {
435         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
436
437         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
438                 DRM_ERROR("DPIO idle wait timed out\n");
439                 return 0;
440         }
441
442         I915_WRITE(DPIO_REG, reg);
443         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
444                    DPIO_BYTE);
445         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
446                 DRM_ERROR("DPIO read wait timed out\n");
447                 return 0;
448         }
449
450         return I915_READ(DPIO_DATA);
451 }
452
453 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
454                              u32 val)
455 {
456         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
457
458         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
459                 DRM_ERROR("DPIO idle wait timed out\n");
460                 return;
461         }
462
463         I915_WRITE(DPIO_DATA, val);
464         I915_WRITE(DPIO_REG, reg);
465         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
466                    DPIO_BYTE);
467         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
468                 DRM_ERROR("DPIO write wait timed out\n");
469 }
470
471 static void vlv_init_dpio(struct drm_device *dev)
472 {
473         struct drm_i915_private *dev_priv = dev->dev_private;
474
475         /* Reset the DPIO config */
476         I915_WRITE(DPIO_CTL, 0);
477         POSTING_READ(DPIO_CTL);
478         I915_WRITE(DPIO_CTL, 1);
479         POSTING_READ(DPIO_CTL);
480 }
481
482 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
483                                                 int refclk)
484 {
485         struct drm_device *dev = crtc->dev;
486         const intel_limit_t *limit;
487
488         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
489                 if (intel_is_dual_link_lvds(dev)) {
490                         if (refclk == 100000)
491                                 limit = &intel_limits_ironlake_dual_lvds_100m;
492                         else
493                                 limit = &intel_limits_ironlake_dual_lvds;
494                 } else {
495                         if (refclk == 100000)
496                                 limit = &intel_limits_ironlake_single_lvds_100m;
497                         else
498                                 limit = &intel_limits_ironlake_single_lvds;
499                 }
500         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
501                    intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
502                 limit = &intel_limits_ironlake_display_port;
503         else
504                 limit = &intel_limits_ironlake_dac;
505
506         return limit;
507 }
508
509 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
510 {
511         struct drm_device *dev = crtc->dev;
512         const intel_limit_t *limit;
513
514         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
515                 if (intel_is_dual_link_lvds(dev))
516                         limit = &intel_limits_g4x_dual_channel_lvds;
517                 else
518                         limit = &intel_limits_g4x_single_channel_lvds;
519         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
520                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
521                 limit = &intel_limits_g4x_hdmi;
522         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
523                 limit = &intel_limits_g4x_sdvo;
524         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
525                 limit = &intel_limits_g4x_display_port;
526         } else /* The option is for other outputs */
527                 limit = &intel_limits_i9xx_sdvo;
528
529         return limit;
530 }
531
532 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
533 {
534         struct drm_device *dev = crtc->dev;
535         const intel_limit_t *limit;
536
537         if (HAS_PCH_SPLIT(dev))
538                 limit = intel_ironlake_limit(crtc, refclk);
539         else if (IS_G4X(dev)) {
540                 limit = intel_g4x_limit(crtc);
541         } else if (IS_PINEVIEW(dev)) {
542                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
543                         limit = &intel_limits_pineview_lvds;
544                 else
545                         limit = &intel_limits_pineview_sdvo;
546         } else if (IS_VALLEYVIEW(dev)) {
547                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
548                         limit = &intel_limits_vlv_dac;
549                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
550                         limit = &intel_limits_vlv_hdmi;
551                 else
552                         limit = &intel_limits_vlv_dp;
553         } else if (!IS_GEN2(dev)) {
554                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
555                         limit = &intel_limits_i9xx_lvds;
556                 else
557                         limit = &intel_limits_i9xx_sdvo;
558         } else {
559                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
560                         limit = &intel_limits_i8xx_lvds;
561                 else
562                         limit = &intel_limits_i8xx_dvo;
563         }
564         return limit;
565 }
566
567 /* m1 is reserved as 0 in Pineview, n is a ring counter */
568 static void pineview_clock(int refclk, intel_clock_t *clock)
569 {
570         clock->m = clock->m2 + 2;
571         clock->p = clock->p1 * clock->p2;
572         clock->vco = refclk * clock->m / clock->n;
573         clock->dot = clock->vco / clock->p;
574 }
575
576 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
577 {
578         if (IS_PINEVIEW(dev)) {
579                 pineview_clock(refclk, clock);
580                 return;
581         }
582         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
583         clock->p = clock->p1 * clock->p2;
584         clock->vco = refclk * clock->m / (clock->n + 2);
585         clock->dot = clock->vco / clock->p;
586 }
587
588 /**
589  * Returns whether any output on the specified pipe is of the specified type
590  */
591 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
592 {
593         struct drm_device *dev = crtc->dev;
594         struct intel_encoder *encoder;
595
596         for_each_encoder_on_crtc(dev, crtc, encoder)
597                 if (encoder->type == type)
598                         return true;
599
600         return false;
601 }
602
603 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
604 /**
605  * Returns whether the given set of divisors are valid for a given refclk with
606  * the given connectors.
607  */
608
609 static bool intel_PLL_is_valid(struct drm_device *dev,
610                                const intel_limit_t *limit,
611                                const intel_clock_t *clock)
612 {
613         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
614                 INTELPllInvalid("p1 out of range\n");
615         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
616                 INTELPllInvalid("p out of range\n");
617         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
618                 INTELPllInvalid("m2 out of range\n");
619         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
620                 INTELPllInvalid("m1 out of range\n");
621         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
622                 INTELPllInvalid("m1 <= m2\n");
623         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
624                 INTELPllInvalid("m out of range\n");
625         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
626                 INTELPllInvalid("n out of range\n");
627         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
628                 INTELPllInvalid("vco out of range\n");
629         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
630          * connector, etc., rather than just a single range.
631          */
632         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
633                 INTELPllInvalid("dot out of range\n");
634
635         return true;
636 }
637
638 static bool
639 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
640                     int target, int refclk, intel_clock_t *match_clock,
641                     intel_clock_t *best_clock)
642
643 {
644         struct drm_device *dev = crtc->dev;
645         intel_clock_t clock;
646         int err = target;
647
648         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
649                 /*
650                  * For LVDS just rely on its current settings for dual-channel.
651                  * We haven't figured out how to reliably set up different
652                  * single/dual channel state, if we even can.
653                  */
654                 if (intel_is_dual_link_lvds(dev))
655                         clock.p2 = limit->p2.p2_fast;
656                 else
657                         clock.p2 = limit->p2.p2_slow;
658         } else {
659                 if (target < limit->p2.dot_limit)
660                         clock.p2 = limit->p2.p2_slow;
661                 else
662                         clock.p2 = limit->p2.p2_fast;
663         }
664
665         memset(best_clock, 0, sizeof(*best_clock));
666
667         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
668              clock.m1++) {
669                 for (clock.m2 = limit->m2.min;
670                      clock.m2 <= limit->m2.max; clock.m2++) {
671                         /* m1 is always 0 in Pineview */
672                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
673                                 break;
674                         for (clock.n = limit->n.min;
675                              clock.n <= limit->n.max; clock.n++) {
676                                 for (clock.p1 = limit->p1.min;
677                                         clock.p1 <= limit->p1.max; clock.p1++) {
678                                         int this_err;
679
680                                         intel_clock(dev, refclk, &clock);
681                                         if (!intel_PLL_is_valid(dev, limit,
682                                                                 &clock))
683                                                 continue;
684                                         if (match_clock &&
685                                             clock.p != match_clock->p)
686                                                 continue;
687
688                                         this_err = abs(clock.dot - target);
689                                         if (this_err < err) {
690                                                 *best_clock = clock;
691                                                 err = this_err;
692                                         }
693                                 }
694                         }
695                 }
696         }
697
698         return (err != target);
699 }
700
701 static bool
702 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
703                         int target, int refclk, intel_clock_t *match_clock,
704                         intel_clock_t *best_clock)
705 {
706         struct drm_device *dev = crtc->dev;
707         intel_clock_t clock;
708         int max_n;
709         bool found;
710         /* approximately equals target * 0.00585 */
711         int err_most = (target >> 8) + (target >> 9);
712         found = false;
713
714         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
715                 int lvds_reg;
716
717                 if (HAS_PCH_SPLIT(dev))
718                         lvds_reg = PCH_LVDS;
719                 else
720                         lvds_reg = LVDS;
721                 if (intel_is_dual_link_lvds(dev))
722                         clock.p2 = limit->p2.p2_fast;
723                 else
724                         clock.p2 = limit->p2.p2_slow;
725         } else {
726                 if (target < limit->p2.dot_limit)
727                         clock.p2 = limit->p2.p2_slow;
728                 else
729                         clock.p2 = limit->p2.p2_fast;
730         }
731
732         memset(best_clock, 0, sizeof(*best_clock));
733         max_n = limit->n.max;
734         /* based on hardware requirement, prefer smaller n to precision */
735         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
736                 /* based on hardware requirement, prefere larger m1,m2 */
737                 for (clock.m1 = limit->m1.max;
738                      clock.m1 >= limit->m1.min; clock.m1--) {
739                         for (clock.m2 = limit->m2.max;
740                              clock.m2 >= limit->m2.min; clock.m2--) {
741                                 for (clock.p1 = limit->p1.max;
742                                      clock.p1 >= limit->p1.min; clock.p1--) {
743                                         int this_err;
744
745                                         intel_clock(dev, refclk, &clock);
746                                         if (!intel_PLL_is_valid(dev, limit,
747                                                                 &clock))
748                                                 continue;
749                                         if (match_clock &&
750                                             clock.p != match_clock->p)
751                                                 continue;
752
753                                         this_err = abs(clock.dot - target);
754                                         if (this_err < err_most) {
755                                                 *best_clock = clock;
756                                                 err_most = this_err;
757                                                 max_n = clock.n;
758                                                 found = true;
759                                         }
760                                 }
761                         }
762                 }
763         }
764         return found;
765 }
766
767 static bool
768 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
769                            int target, int refclk, intel_clock_t *match_clock,
770                            intel_clock_t *best_clock)
771 {
772         struct drm_device *dev = crtc->dev;
773         intel_clock_t clock;
774
775         if (target < 200000) {
776                 clock.n = 1;
777                 clock.p1 = 2;
778                 clock.p2 = 10;
779                 clock.m1 = 12;
780                 clock.m2 = 9;
781         } else {
782                 clock.n = 2;
783                 clock.p1 = 1;
784                 clock.p2 = 10;
785                 clock.m1 = 14;
786                 clock.m2 = 8;
787         }
788         intel_clock(dev, refclk, &clock);
789         memcpy(best_clock, &clock, sizeof(intel_clock_t));
790         return true;
791 }
792
793 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
794 static bool
795 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
796                       int target, int refclk, intel_clock_t *match_clock,
797                       intel_clock_t *best_clock)
798 {
799         intel_clock_t clock;
800         if (target < 200000) {
801                 clock.p1 = 2;
802                 clock.p2 = 10;
803                 clock.n = 2;
804                 clock.m1 = 23;
805                 clock.m2 = 8;
806         } else {
807                 clock.p1 = 1;
808                 clock.p2 = 10;
809                 clock.n = 1;
810                 clock.m1 = 14;
811                 clock.m2 = 2;
812         }
813         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
814         clock.p = (clock.p1 * clock.p2);
815         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
816         clock.vco = 0;
817         memcpy(best_clock, &clock, sizeof(intel_clock_t));
818         return true;
819 }
820 static bool
821 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
822                         int target, int refclk, intel_clock_t *match_clock,
823                         intel_clock_t *best_clock)
824 {
825         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
826         u32 m, n, fastclk;
827         u32 updrate, minupdate, fracbits, p;
828         unsigned long bestppm, ppm, absppm;
829         int dotclk, flag;
830
831         flag = 0;
832         dotclk = target * 1000;
833         bestppm = 1000000;
834         ppm = absppm = 0;
835         fastclk = dotclk / (2*100);
836         updrate = 0;
837         minupdate = 19200;
838         fracbits = 1;
839         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
840         bestm1 = bestm2 = bestp1 = bestp2 = 0;
841
842         /* based on hardware requirement, prefer smaller n to precision */
843         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
844                 updrate = refclk / n;
845                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
846                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
847                                 if (p2 > 10)
848                                         p2 = p2 - 1;
849                                 p = p1 * p2;
850                                 /* based on hardware requirement, prefer bigger m1,m2 values */
851                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
852                                         m2 = (((2*(fastclk * p * n / m1 )) +
853                                                refclk) / (2*refclk));
854                                         m = m1 * m2;
855                                         vco = updrate * m;
856                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
857                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
858                                                 absppm = (ppm > 0) ? ppm : (-ppm);
859                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
860                                                         bestppm = 0;
861                                                         flag = 1;
862                                                 }
863                                                 if (absppm < bestppm - 10) {
864                                                         bestppm = absppm;
865                                                         flag = 1;
866                                                 }
867                                                 if (flag) {
868                                                         bestn = n;
869                                                         bestm1 = m1;
870                                                         bestm2 = m2;
871                                                         bestp1 = p1;
872                                                         bestp2 = p2;
873                                                         flag = 0;
874                                                 }
875                                         }
876                                 }
877                         }
878                 }
879         }
880         best_clock->n = bestn;
881         best_clock->m1 = bestm1;
882         best_clock->m2 = bestm2;
883         best_clock->p1 = bestp1;
884         best_clock->p2 = bestp2;
885
886         return true;
887 }
888
889 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
890                                              enum pipe pipe)
891 {
892         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
893         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
894
895         return intel_crtc->config.cpu_transcoder;
896 }
897
898 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
899 {
900         struct drm_i915_private *dev_priv = dev->dev_private;
901         u32 frame, frame_reg = PIPEFRAME(pipe);
902
903         frame = I915_READ(frame_reg);
904
905         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
906                 DRM_DEBUG_KMS("vblank wait timed out\n");
907 }
908
909 /**
910  * intel_wait_for_vblank - wait for vblank on a given pipe
911  * @dev: drm device
912  * @pipe: pipe to wait for
913  *
914  * Wait for vblank to occur on a given pipe.  Needed for various bits of
915  * mode setting code.
916  */
917 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
918 {
919         struct drm_i915_private *dev_priv = dev->dev_private;
920         int pipestat_reg = PIPESTAT(pipe);
921
922         if (INTEL_INFO(dev)->gen >= 5) {
923                 ironlake_wait_for_vblank(dev, pipe);
924                 return;
925         }
926
927         /* Clear existing vblank status. Note this will clear any other
928          * sticky status fields as well.
929          *
930          * This races with i915_driver_irq_handler() with the result
931          * that either function could miss a vblank event.  Here it is not
932          * fatal, as we will either wait upon the next vblank interrupt or
933          * timeout.  Generally speaking intel_wait_for_vblank() is only
934          * called during modeset at which time the GPU should be idle and
935          * should *not* be performing page flips and thus not waiting on
936          * vblanks...
937          * Currently, the result of us stealing a vblank from the irq
938          * handler is that a single frame will be skipped during swapbuffers.
939          */
940         I915_WRITE(pipestat_reg,
941                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
942
943         /* Wait for vblank interrupt bit to set */
944         if (wait_for(I915_READ(pipestat_reg) &
945                      PIPE_VBLANK_INTERRUPT_STATUS,
946                      50))
947                 DRM_DEBUG_KMS("vblank wait timed out\n");
948 }
949
950 /*
951  * intel_wait_for_pipe_off - wait for pipe to turn off
952  * @dev: drm device
953  * @pipe: pipe to wait for
954  *
955  * After disabling a pipe, we can't wait for vblank in the usual way,
956  * spinning on the vblank interrupt status bit, since we won't actually
957  * see an interrupt when the pipe is disabled.
958  *
959  * On Gen4 and above:
960  *   wait for the pipe register state bit to turn off
961  *
962  * Otherwise:
963  *   wait for the display line value to settle (it usually
964  *   ends up stopping at the start of the next frame).
965  *
966  */
967 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
968 {
969         struct drm_i915_private *dev_priv = dev->dev_private;
970         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
971                                                                       pipe);
972
973         if (INTEL_INFO(dev)->gen >= 4) {
974                 int reg = PIPECONF(cpu_transcoder);
975
976                 /* Wait for the Pipe State to go off */
977                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
978                              100))
979                         WARN(1, "pipe_off wait timed out\n");
980         } else {
981                 u32 last_line, line_mask;
982                 int reg = PIPEDSL(pipe);
983                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
984
985                 if (IS_GEN2(dev))
986                         line_mask = DSL_LINEMASK_GEN2;
987                 else
988                         line_mask = DSL_LINEMASK_GEN3;
989
990                 /* Wait for the display line to settle */
991                 do {
992                         last_line = I915_READ(reg) & line_mask;
993                         mdelay(5);
994                 } while (((I915_READ(reg) & line_mask) != last_line) &&
995                          time_after(timeout, jiffies));
996                 if (time_after(jiffies, timeout))
997                         WARN(1, "pipe_off wait timed out\n");
998         }
999 }
1000
1001 /*
1002  * ibx_digital_port_connected - is the specified port connected?
1003  * @dev_priv: i915 private structure
1004  * @port: the port to test
1005  *
1006  * Returns true if @port is connected, false otherwise.
1007  */
1008 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1009                                 struct intel_digital_port *port)
1010 {
1011         u32 bit;
1012
1013         if (HAS_PCH_IBX(dev_priv->dev)) {
1014                 switch(port->port) {
1015                 case PORT_B:
1016                         bit = SDE_PORTB_HOTPLUG;
1017                         break;
1018                 case PORT_C:
1019                         bit = SDE_PORTC_HOTPLUG;
1020                         break;
1021                 case PORT_D:
1022                         bit = SDE_PORTD_HOTPLUG;
1023                         break;
1024                 default:
1025                         return true;
1026                 }
1027         } else {
1028                 switch(port->port) {
1029                 case PORT_B:
1030                         bit = SDE_PORTB_HOTPLUG_CPT;
1031                         break;
1032                 case PORT_C:
1033                         bit = SDE_PORTC_HOTPLUG_CPT;
1034                         break;
1035                 case PORT_D:
1036                         bit = SDE_PORTD_HOTPLUG_CPT;
1037                         break;
1038                 default:
1039                         return true;
1040                 }
1041         }
1042
1043         return I915_READ(SDEISR) & bit;
1044 }
1045
1046 static const char *state_string(bool enabled)
1047 {
1048         return enabled ? "on" : "off";
1049 }
1050
1051 /* Only for pre-ILK configs */
1052 static void assert_pll(struct drm_i915_private *dev_priv,
1053                        enum pipe pipe, bool state)
1054 {
1055         int reg;
1056         u32 val;
1057         bool cur_state;
1058
1059         reg = DPLL(pipe);
1060         val = I915_READ(reg);
1061         cur_state = !!(val & DPLL_VCO_ENABLE);
1062         WARN(cur_state != state,
1063              "PLL state assertion failure (expected %s, current %s)\n",
1064              state_string(state), state_string(cur_state));
1065 }
1066 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1067 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1068
1069 /* For ILK+ */
1070 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1071                            struct intel_pch_pll *pll,
1072                            struct intel_crtc *crtc,
1073                            bool state)
1074 {
1075         u32 val;
1076         bool cur_state;
1077
1078         if (HAS_PCH_LPT(dev_priv->dev)) {
1079                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1080                 return;
1081         }
1082
1083         if (WARN (!pll,
1084                   "asserting PCH PLL %s with no PLL\n", state_string(state)))
1085                 return;
1086
1087         val = I915_READ(pll->pll_reg);
1088         cur_state = !!(val & DPLL_VCO_ENABLE);
1089         WARN(cur_state != state,
1090              "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1091              pll->pll_reg, state_string(state), state_string(cur_state), val);
1092
1093         /* Make sure the selected PLL is correctly attached to the transcoder */
1094         if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1095                 u32 pch_dpll;
1096
1097                 pch_dpll = I915_READ(PCH_DPLL_SEL);
1098                 cur_state = pll->pll_reg == _PCH_DPLL_B;
1099                 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1100                           "PLL[%d] not attached to this transcoder %d: %08x\n",
1101                           cur_state, crtc->pipe, pch_dpll)) {
1102                         cur_state = !!(val >> (4*crtc->pipe + 3));
1103                         WARN(cur_state != state,
1104                              "PLL[%d] not %s on this transcoder %d: %08x\n",
1105                              pll->pll_reg == _PCH_DPLL_B,
1106                              state_string(state),
1107                              crtc->pipe,
1108                              val);
1109                 }
1110         }
1111 }
1112 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1113 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1114
1115 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1116                           enum pipe pipe, bool state)
1117 {
1118         int reg;
1119         u32 val;
1120         bool cur_state;
1121         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1122                                                                       pipe);
1123
1124         if (HAS_DDI(dev_priv->dev)) {
1125                 /* DDI does not have a specific FDI_TX register */
1126                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1127                 val = I915_READ(reg);
1128                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1129         } else {
1130                 reg = FDI_TX_CTL(pipe);
1131                 val = I915_READ(reg);
1132                 cur_state = !!(val & FDI_TX_ENABLE);
1133         }
1134         WARN(cur_state != state,
1135              "FDI TX state assertion failure (expected %s, current %s)\n",
1136              state_string(state), state_string(cur_state));
1137 }
1138 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1139 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1140
1141 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1142                           enum pipe pipe, bool state)
1143 {
1144         int reg;
1145         u32 val;
1146         bool cur_state;
1147
1148         reg = FDI_RX_CTL(pipe);
1149         val = I915_READ(reg);
1150         cur_state = !!(val & FDI_RX_ENABLE);
1151         WARN(cur_state != state,
1152              "FDI RX state assertion failure (expected %s, current %s)\n",
1153              state_string(state), state_string(cur_state));
1154 }
1155 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1156 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1157
1158 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1159                                       enum pipe pipe)
1160 {
1161         int reg;
1162         u32 val;
1163
1164         /* ILK FDI PLL is always enabled */
1165         if (dev_priv->info->gen == 5)
1166                 return;
1167
1168         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1169         if (HAS_DDI(dev_priv->dev))
1170                 return;
1171
1172         reg = FDI_TX_CTL(pipe);
1173         val = I915_READ(reg);
1174         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1175 }
1176
1177 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1178                                       enum pipe pipe)
1179 {
1180         int reg;
1181         u32 val;
1182
1183         reg = FDI_RX_CTL(pipe);
1184         val = I915_READ(reg);
1185         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1186 }
1187
1188 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1189                                   enum pipe pipe)
1190 {
1191         int pp_reg, lvds_reg;
1192         u32 val;
1193         enum pipe panel_pipe = PIPE_A;
1194         bool locked = true;
1195
1196         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1197                 pp_reg = PCH_PP_CONTROL;
1198                 lvds_reg = PCH_LVDS;
1199         } else {
1200                 pp_reg = PP_CONTROL;
1201                 lvds_reg = LVDS;
1202         }
1203
1204         val = I915_READ(pp_reg);
1205         if (!(val & PANEL_POWER_ON) ||
1206             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1207                 locked = false;
1208
1209         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1210                 panel_pipe = PIPE_B;
1211
1212         WARN(panel_pipe == pipe && locked,
1213              "panel assertion failure, pipe %c regs locked\n",
1214              pipe_name(pipe));
1215 }
1216
1217 void assert_pipe(struct drm_i915_private *dev_priv,
1218                  enum pipe pipe, bool state)
1219 {
1220         int reg;
1221         u32 val;
1222         bool cur_state;
1223         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1224                                                                       pipe);
1225
1226         /* if we need the pipe A quirk it must be always on */
1227         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1228                 state = true;
1229
1230         if (!intel_using_power_well(dev_priv->dev) &&
1231             cpu_transcoder != TRANSCODER_EDP) {
1232                 cur_state = false;
1233         } else {
1234                 reg = PIPECONF(cpu_transcoder);
1235                 val = I915_READ(reg);
1236                 cur_state = !!(val & PIPECONF_ENABLE);
1237         }
1238
1239         WARN(cur_state != state,
1240              "pipe %c assertion failure (expected %s, current %s)\n",
1241              pipe_name(pipe), state_string(state), state_string(cur_state));
1242 }
1243
1244 static void assert_plane(struct drm_i915_private *dev_priv,
1245                          enum plane plane, bool state)
1246 {
1247         int reg;
1248         u32 val;
1249         bool cur_state;
1250
1251         reg = DSPCNTR(plane);
1252         val = I915_READ(reg);
1253         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1254         WARN(cur_state != state,
1255              "plane %c assertion failure (expected %s, current %s)\n",
1256              plane_name(plane), state_string(state), state_string(cur_state));
1257 }
1258
1259 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1260 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1261
1262 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1263                                    enum pipe pipe)
1264 {
1265         int reg, i;
1266         u32 val;
1267         int cur_pipe;
1268
1269         /* Planes are fixed to pipes on ILK+ */
1270         if (HAS_PCH_SPLIT(dev_priv->dev) || IS_VALLEYVIEW(dev_priv->dev)) {
1271                 reg = DSPCNTR(pipe);
1272                 val = I915_READ(reg);
1273                 WARN((val & DISPLAY_PLANE_ENABLE),
1274                      "plane %c assertion failure, should be disabled but not\n",
1275                      plane_name(pipe));
1276                 return;
1277         }
1278
1279         /* Need to check both planes against the pipe */
1280         for (i = 0; i < 2; i++) {
1281                 reg = DSPCNTR(i);
1282                 val = I915_READ(reg);
1283                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1284                         DISPPLANE_SEL_PIPE_SHIFT;
1285                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1286                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1287                      plane_name(i), pipe_name(pipe));
1288         }
1289 }
1290
1291 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1292                                     enum pipe pipe)
1293 {
1294         int reg, i;
1295         u32 val;
1296
1297         if (!IS_VALLEYVIEW(dev_priv->dev))
1298                 return;
1299
1300         /* Need to check both planes against the pipe */
1301         for (i = 0; i < dev_priv->num_plane; i++) {
1302                 reg = SPCNTR(pipe, i);
1303                 val = I915_READ(reg);
1304                 WARN((val & SP_ENABLE),
1305                      "sprite %d assertion failure, should be off on pipe %c but is still active\n",
1306                      pipe * 2 + i, pipe_name(pipe));
1307         }
1308 }
1309
1310 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1311 {
1312         u32 val;
1313         bool enabled;
1314
1315         if (HAS_PCH_LPT(dev_priv->dev)) {
1316                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1317                 return;
1318         }
1319
1320         val = I915_READ(PCH_DREF_CONTROL);
1321         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1322                             DREF_SUPERSPREAD_SOURCE_MASK));
1323         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1324 }
1325
1326 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1327                                        enum pipe pipe)
1328 {
1329         int reg;
1330         u32 val;
1331         bool enabled;
1332
1333         reg = TRANSCONF(pipe);
1334         val = I915_READ(reg);
1335         enabled = !!(val & TRANS_ENABLE);
1336         WARN(enabled,
1337              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1338              pipe_name(pipe));
1339 }
1340
1341 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1342                             enum pipe pipe, u32 port_sel, u32 val)
1343 {
1344         if ((val & DP_PORT_EN) == 0)
1345                 return false;
1346
1347         if (HAS_PCH_CPT(dev_priv->dev)) {
1348                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1349                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1350                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1351                         return false;
1352         } else {
1353                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1354                         return false;
1355         }
1356         return true;
1357 }
1358
1359 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1360                               enum pipe pipe, u32 val)
1361 {
1362         if ((val & SDVO_ENABLE) == 0)
1363                 return false;
1364
1365         if (HAS_PCH_CPT(dev_priv->dev)) {
1366                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1367                         return false;
1368         } else {
1369                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1370                         return false;
1371         }
1372         return true;
1373 }
1374
1375 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1376                               enum pipe pipe, u32 val)
1377 {
1378         if ((val & LVDS_PORT_EN) == 0)
1379                 return false;
1380
1381         if (HAS_PCH_CPT(dev_priv->dev)) {
1382                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1383                         return false;
1384         } else {
1385                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1386                         return false;
1387         }
1388         return true;
1389 }
1390
1391 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1392                               enum pipe pipe, u32 val)
1393 {
1394         if ((val & ADPA_DAC_ENABLE) == 0)
1395                 return false;
1396         if (HAS_PCH_CPT(dev_priv->dev)) {
1397                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1398                         return false;
1399         } else {
1400                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1401                         return false;
1402         }
1403         return true;
1404 }
1405
1406 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1407                                    enum pipe pipe, int reg, u32 port_sel)
1408 {
1409         u32 val = I915_READ(reg);
1410         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1411              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1412              reg, pipe_name(pipe));
1413
1414         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1415              && (val & DP_PIPEB_SELECT),
1416              "IBX PCH dp port still using transcoder B\n");
1417 }
1418
1419 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1420                                      enum pipe pipe, int reg)
1421 {
1422         u32 val = I915_READ(reg);
1423         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1424              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1425              reg, pipe_name(pipe));
1426
1427         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1428              && (val & SDVO_PIPE_B_SELECT),
1429              "IBX PCH hdmi port still using transcoder B\n");
1430 }
1431
1432 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1433                                       enum pipe pipe)
1434 {
1435         int reg;
1436         u32 val;
1437
1438         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1439         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1440         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1441
1442         reg = PCH_ADPA;
1443         val = I915_READ(reg);
1444         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1445              "PCH VGA enabled on transcoder %c, should be disabled\n",
1446              pipe_name(pipe));
1447
1448         reg = PCH_LVDS;
1449         val = I915_READ(reg);
1450         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1451              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1452              pipe_name(pipe));
1453
1454         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1455         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1456         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1457 }
1458
1459 /**
1460  * intel_enable_pll - enable a PLL
1461  * @dev_priv: i915 private structure
1462  * @pipe: pipe PLL to enable
1463  *
1464  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1465  * make sure the PLL reg is writable first though, since the panel write
1466  * protect mechanism may be enabled.
1467  *
1468  * Note!  This is for pre-ILK only.
1469  *
1470  * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1471  */
1472 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1473 {
1474         int reg;
1475         u32 val;
1476
1477         /* No really, not for ILK+ */
1478         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1479
1480         /* PLL is protected by panel, make sure we can write it */
1481         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1482                 assert_panel_unlocked(dev_priv, pipe);
1483
1484         reg = DPLL(pipe);
1485         val = I915_READ(reg);
1486         val |= DPLL_VCO_ENABLE;
1487
1488         /* We do this three times for luck */
1489         I915_WRITE(reg, val);
1490         POSTING_READ(reg);
1491         udelay(150); /* wait for warmup */
1492         I915_WRITE(reg, val);
1493         POSTING_READ(reg);
1494         udelay(150); /* wait for warmup */
1495         I915_WRITE(reg, val);
1496         POSTING_READ(reg);
1497         udelay(150); /* wait for warmup */
1498 }
1499
1500 /**
1501  * intel_disable_pll - disable a PLL
1502  * @dev_priv: i915 private structure
1503  * @pipe: pipe PLL to disable
1504  *
1505  * Disable the PLL for @pipe, making sure the pipe is off first.
1506  *
1507  * Note!  This is for pre-ILK only.
1508  */
1509 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1510 {
1511         int reg;
1512         u32 val;
1513
1514         /* Don't disable pipe A or pipe A PLLs if needed */
1515         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1516                 return;
1517
1518         /* Make sure the pipe isn't still relying on us */
1519         assert_pipe_disabled(dev_priv, pipe);
1520
1521         reg = DPLL(pipe);
1522         val = I915_READ(reg);
1523         val &= ~DPLL_VCO_ENABLE;
1524         I915_WRITE(reg, val);
1525         POSTING_READ(reg);
1526 }
1527
1528 /* SBI access */
1529 static void
1530 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
1531                 enum intel_sbi_destination destination)
1532 {
1533         u32 tmp;
1534
1535         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
1536
1537         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1538                                 100)) {
1539                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1540                 return;
1541         }
1542
1543         I915_WRITE(SBI_ADDR, (reg << 16));
1544         I915_WRITE(SBI_DATA, value);
1545
1546         if (destination == SBI_ICLK)
1547                 tmp = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRWR;
1548         else
1549                 tmp = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IOWR;
1550         I915_WRITE(SBI_CTL_STAT, SBI_BUSY | tmp);
1551
1552         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1553                                 100)) {
1554                 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1555                 return;
1556         }
1557 }
1558
1559 static u32
1560 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
1561                enum intel_sbi_destination destination)
1562 {
1563         u32 value = 0;
1564         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
1565
1566         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1567                                 100)) {
1568                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1569                 return 0;
1570         }
1571
1572         I915_WRITE(SBI_ADDR, (reg << 16));
1573
1574         if (destination == SBI_ICLK)
1575                 value = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRRD;
1576         else
1577                 value = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IORD;
1578         I915_WRITE(SBI_CTL_STAT, value | SBI_BUSY);
1579
1580         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1581                                 100)) {
1582                 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1583                 return 0;
1584         }
1585
1586         return I915_READ(SBI_DATA);
1587 }
1588
1589 /**
1590  * ironlake_enable_pch_pll - enable PCH PLL
1591  * @dev_priv: i915 private structure
1592  * @pipe: pipe PLL to enable
1593  *
1594  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1595  * drives the transcoder clock.
1596  */
1597 static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
1598 {
1599         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1600         struct intel_pch_pll *pll;
1601         int reg;
1602         u32 val;
1603
1604         /* PCH PLLs only available on ILK, SNB and IVB */
1605         BUG_ON(dev_priv->info->gen < 5);
1606         pll = intel_crtc->pch_pll;
1607         if (pll == NULL)
1608                 return;
1609
1610         if (WARN_ON(pll->refcount == 0))
1611                 return;
1612
1613         DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1614                       pll->pll_reg, pll->active, pll->on,
1615                       intel_crtc->base.base.id);
1616
1617         /* PCH refclock must be enabled first */
1618         assert_pch_refclk_enabled(dev_priv);
1619
1620         if (pll->active++ && pll->on) {
1621                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1622                 return;
1623         }
1624
1625         DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1626
1627         reg = pll->pll_reg;
1628         val = I915_READ(reg);
1629         val |= DPLL_VCO_ENABLE;
1630         I915_WRITE(reg, val);
1631         POSTING_READ(reg);
1632         udelay(200);
1633
1634         pll->on = true;
1635 }
1636
1637 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1638 {
1639         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1640         struct intel_pch_pll *pll = intel_crtc->pch_pll;
1641         int reg;
1642         u32 val;
1643
1644         /* PCH only available on ILK+ */
1645         BUG_ON(dev_priv->info->gen < 5);
1646         if (pll == NULL)
1647                return;
1648
1649         if (WARN_ON(pll->refcount == 0))
1650                 return;
1651
1652         DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1653                       pll->pll_reg, pll->active, pll->on,
1654                       intel_crtc->base.base.id);
1655
1656         if (WARN_ON(pll->active == 0)) {
1657                 assert_pch_pll_disabled(dev_priv, pll, NULL);
1658                 return;
1659         }
1660
1661         if (--pll->active) {
1662                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1663                 return;
1664         }
1665
1666         DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1667
1668         /* Make sure transcoder isn't still depending on us */
1669         assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1670
1671         reg = pll->pll_reg;
1672         val = I915_READ(reg);
1673         val &= ~DPLL_VCO_ENABLE;
1674         I915_WRITE(reg, val);
1675         POSTING_READ(reg);
1676         udelay(200);
1677
1678         pll->on = false;
1679 }
1680
1681 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1682                                            enum pipe pipe)
1683 {
1684         struct drm_device *dev = dev_priv->dev;
1685         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1686         uint32_t reg, val, pipeconf_val;
1687
1688         /* PCH only available on ILK+ */
1689         BUG_ON(dev_priv->info->gen < 5);
1690
1691         /* Make sure PCH DPLL is enabled */
1692         assert_pch_pll_enabled(dev_priv,
1693                                to_intel_crtc(crtc)->pch_pll,
1694                                to_intel_crtc(crtc));
1695
1696         /* FDI must be feeding us bits for PCH ports */
1697         assert_fdi_tx_enabled(dev_priv, pipe);
1698         assert_fdi_rx_enabled(dev_priv, pipe);
1699
1700         if (HAS_PCH_CPT(dev)) {
1701                 /* Workaround: Set the timing override bit before enabling the
1702                  * pch transcoder. */
1703                 reg = TRANS_CHICKEN2(pipe);
1704                 val = I915_READ(reg);
1705                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1706                 I915_WRITE(reg, val);
1707         }
1708
1709         reg = TRANSCONF(pipe);
1710         val = I915_READ(reg);
1711         pipeconf_val = I915_READ(PIPECONF(pipe));
1712
1713         if (HAS_PCH_IBX(dev_priv->dev)) {
1714                 /*
1715                  * make the BPC in transcoder be consistent with
1716                  * that in pipeconf reg.
1717                  */
1718                 val &= ~PIPECONF_BPC_MASK;
1719                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1720         }
1721
1722         val &= ~TRANS_INTERLACE_MASK;
1723         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1724                 if (HAS_PCH_IBX(dev_priv->dev) &&
1725                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1726                         val |= TRANS_LEGACY_INTERLACED_ILK;
1727                 else
1728                         val |= TRANS_INTERLACED;
1729         else
1730                 val |= TRANS_PROGRESSIVE;
1731
1732         I915_WRITE(reg, val | TRANS_ENABLE);
1733         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1734                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1735 }
1736
1737 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1738                                       enum transcoder cpu_transcoder)
1739 {
1740         u32 val, pipeconf_val;
1741
1742         /* PCH only available on ILK+ */
1743         BUG_ON(dev_priv->info->gen < 5);
1744
1745         /* FDI must be feeding us bits for PCH ports */
1746         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1747         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1748
1749         /* Workaround: set timing override bit. */
1750         val = I915_READ(_TRANSA_CHICKEN2);
1751         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1752         I915_WRITE(_TRANSA_CHICKEN2, val);
1753
1754         val = TRANS_ENABLE;
1755         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1756
1757         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1758             PIPECONF_INTERLACED_ILK)
1759                 val |= TRANS_INTERLACED;
1760         else
1761                 val |= TRANS_PROGRESSIVE;
1762
1763         I915_WRITE(TRANSCONF(TRANSCODER_A), val);
1764         if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100))
1765                 DRM_ERROR("Failed to enable PCH transcoder\n");
1766 }
1767
1768 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1769                                             enum pipe pipe)
1770 {
1771         struct drm_device *dev = dev_priv->dev;
1772         uint32_t reg, val;
1773
1774         /* FDI relies on the transcoder */
1775         assert_fdi_tx_disabled(dev_priv, pipe);
1776         assert_fdi_rx_disabled(dev_priv, pipe);
1777
1778         /* Ports must be off as well */
1779         assert_pch_ports_disabled(dev_priv, pipe);
1780
1781         reg = TRANSCONF(pipe);
1782         val = I915_READ(reg);
1783         val &= ~TRANS_ENABLE;
1784         I915_WRITE(reg, val);
1785         /* wait for PCH transcoder off, transcoder state */
1786         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1787                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1788
1789         if (!HAS_PCH_IBX(dev)) {
1790                 /* Workaround: Clear the timing override chicken bit again. */
1791                 reg = TRANS_CHICKEN2(pipe);
1792                 val = I915_READ(reg);
1793                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1794                 I915_WRITE(reg, val);
1795         }
1796 }
1797
1798 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1799 {
1800         u32 val;
1801
1802         val = I915_READ(_TRANSACONF);
1803         val &= ~TRANS_ENABLE;
1804         I915_WRITE(_TRANSACONF, val);
1805         /* wait for PCH transcoder off, transcoder state */
1806         if (wait_for((I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE) == 0, 50))
1807                 DRM_ERROR("Failed to disable PCH transcoder\n");
1808
1809         /* Workaround: clear timing override bit. */
1810         val = I915_READ(_TRANSA_CHICKEN2);
1811         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1812         I915_WRITE(_TRANSA_CHICKEN2, val);
1813 }
1814
1815 /**
1816  * intel_enable_pipe - enable a pipe, asserting requirements
1817  * @dev_priv: i915 private structure
1818  * @pipe: pipe to enable
1819  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1820  *
1821  * Enable @pipe, making sure that various hardware specific requirements
1822  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1823  *
1824  * @pipe should be %PIPE_A or %PIPE_B.
1825  *
1826  * Will wait until the pipe is actually running (i.e. first vblank) before
1827  * returning.
1828  */
1829 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1830                               bool pch_port)
1831 {
1832         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1833                                                                       pipe);
1834         enum pipe pch_transcoder;
1835         int reg;
1836         u32 val;
1837
1838         if (HAS_PCH_LPT(dev_priv->dev))
1839                 pch_transcoder = TRANSCODER_A;
1840         else
1841                 pch_transcoder = pipe;
1842
1843         /*
1844          * A pipe without a PLL won't actually be able to drive bits from
1845          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1846          * need the check.
1847          */
1848         if (!HAS_PCH_SPLIT(dev_priv->dev))
1849                 assert_pll_enabled(dev_priv, pipe);
1850         else {
1851                 if (pch_port) {
1852                         /* if driving the PCH, we need FDI enabled */
1853                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1854                         assert_fdi_tx_pll_enabled(dev_priv,
1855                                                   (enum pipe) cpu_transcoder);
1856                 }
1857                 /* FIXME: assert CPU port conditions for SNB+ */
1858         }
1859
1860         reg = PIPECONF(cpu_transcoder);
1861         val = I915_READ(reg);
1862         if (val & PIPECONF_ENABLE)
1863                 return;
1864
1865         I915_WRITE(reg, val | PIPECONF_ENABLE);
1866         intel_wait_for_vblank(dev_priv->dev, pipe);
1867 }
1868
1869 /**
1870  * intel_disable_pipe - disable a pipe, asserting requirements
1871  * @dev_priv: i915 private structure
1872  * @pipe: pipe to disable
1873  *
1874  * Disable @pipe, making sure that various hardware specific requirements
1875  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1876  *
1877  * @pipe should be %PIPE_A or %PIPE_B.
1878  *
1879  * Will wait until the pipe has shut down before returning.
1880  */
1881 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1882                                enum pipe pipe)
1883 {
1884         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1885                                                                       pipe);
1886         int reg;
1887         u32 val;
1888
1889         /*
1890          * Make sure planes won't keep trying to pump pixels to us,
1891          * or we might hang the display.
1892          */
1893         assert_planes_disabled(dev_priv, pipe);
1894         assert_sprites_disabled(dev_priv, pipe);
1895
1896         /* Don't disable pipe A or pipe A PLLs if needed */
1897         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1898                 return;
1899
1900         reg = PIPECONF(cpu_transcoder);
1901         val = I915_READ(reg);
1902         if ((val & PIPECONF_ENABLE) == 0)
1903                 return;
1904
1905         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1906         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1907 }
1908
1909 /*
1910  * Plane regs are double buffered, going from enabled->disabled needs a
1911  * trigger in order to latch.  The display address reg provides this.
1912  */
1913 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1914                                       enum plane plane)
1915 {
1916         if (dev_priv->info->gen >= 4)
1917                 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1918         else
1919                 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1920 }
1921
1922 /**
1923  * intel_enable_plane - enable a display plane on a given pipe
1924  * @dev_priv: i915 private structure
1925  * @plane: plane to enable
1926  * @pipe: pipe being fed
1927  *
1928  * Enable @plane on @pipe, making sure that @pipe is running first.
1929  */
1930 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1931                                enum plane plane, enum pipe pipe)
1932 {
1933         int reg;
1934         u32 val;
1935
1936         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1937         assert_pipe_enabled(dev_priv, pipe);
1938
1939         reg = DSPCNTR(plane);
1940         val = I915_READ(reg);
1941         if (val & DISPLAY_PLANE_ENABLE)
1942                 return;
1943
1944         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1945         intel_flush_display_plane(dev_priv, plane);
1946         intel_wait_for_vblank(dev_priv->dev, pipe);
1947 }
1948
1949 /**
1950  * intel_disable_plane - disable a display plane
1951  * @dev_priv: i915 private structure
1952  * @plane: plane to disable
1953  * @pipe: pipe consuming the data
1954  *
1955  * Disable @plane; should be an independent operation.
1956  */
1957 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1958                                 enum plane plane, enum pipe pipe)
1959 {
1960         int reg;
1961         u32 val;
1962
1963         reg = DSPCNTR(plane);
1964         val = I915_READ(reg);
1965         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1966                 return;
1967
1968         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1969         intel_flush_display_plane(dev_priv, plane);
1970         intel_wait_for_vblank(dev_priv->dev, pipe);
1971 }
1972
1973 static bool need_vtd_wa(struct drm_device *dev)
1974 {
1975 #ifdef CONFIG_INTEL_IOMMU
1976         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1977                 return true;
1978 #endif
1979         return false;
1980 }
1981
1982 int
1983 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1984                            struct drm_i915_gem_object *obj,
1985                            struct intel_ring_buffer *pipelined)
1986 {
1987         struct drm_i915_private *dev_priv = dev->dev_private;
1988         u32 alignment;
1989         int ret;
1990
1991         switch (obj->tiling_mode) {
1992         case I915_TILING_NONE:
1993                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1994                         alignment = 128 * 1024;
1995                 else if (INTEL_INFO(dev)->gen >= 4)
1996                         alignment = 4 * 1024;
1997                 else
1998                         alignment = 64 * 1024;
1999                 break;
2000         case I915_TILING_X:
2001                 /* pin() will align the object as required by fence */
2002                 alignment = 0;
2003                 break;
2004         case I915_TILING_Y:
2005                 /* Despite that we check this in framebuffer_init userspace can
2006                  * screw us over and change the tiling after the fact. Only
2007                  * pinned buffers can't change their tiling. */
2008                 DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
2009                 return -EINVAL;
2010         default:
2011                 BUG();
2012         }
2013
2014         /* Note that the w/a also requires 64 PTE of padding following the
2015          * bo. We currently fill all unused PTE with the shadow page and so
2016          * we should always have valid PTE following the scanout preventing
2017          * the VT-d warning.
2018          */
2019         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2020                 alignment = 256 * 1024;
2021
2022         dev_priv->mm.interruptible = false;
2023         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2024         if (ret)
2025                 goto err_interruptible;
2026
2027         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2028          * fence, whereas 965+ only requires a fence if using
2029          * framebuffer compression.  For simplicity, we always install
2030          * a fence as the cost is not that onerous.
2031          */
2032         ret = i915_gem_object_get_fence(obj);
2033         if (ret)
2034                 goto err_unpin;
2035
2036         i915_gem_object_pin_fence(obj);
2037
2038         dev_priv->mm.interruptible = true;
2039         return 0;
2040
2041 err_unpin:
2042         i915_gem_object_unpin(obj);
2043 err_interruptible:
2044         dev_priv->mm.interruptible = true;
2045         return ret;
2046 }
2047
2048 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2049 {
2050         i915_gem_object_unpin_fence(obj);
2051         i915_gem_object_unpin(obj);
2052 }
2053
2054 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2055  * is assumed to be a power-of-two. */
2056 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2057                                              unsigned int tiling_mode,
2058                                              unsigned int cpp,
2059                                              unsigned int pitch)
2060 {
2061         if (tiling_mode != I915_TILING_NONE) {
2062                 unsigned int tile_rows, tiles;
2063
2064                 tile_rows = *y / 8;
2065                 *y %= 8;
2066
2067                 tiles = *x / (512/cpp);
2068                 *x %= 512/cpp;
2069
2070                 return tile_rows * pitch * 8 + tiles * 4096;
2071         } else {
2072                 unsigned int offset;
2073
2074                 offset = *y * pitch + *x * cpp;
2075                 *y = 0;
2076                 *x = (offset & 4095) / cpp;
2077                 return offset & -4096;
2078         }
2079 }
2080
2081 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2082                              int x, int y)
2083 {
2084         struct drm_device *dev = crtc->dev;
2085         struct drm_i915_private *dev_priv = dev->dev_private;
2086         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2087         struct intel_framebuffer *intel_fb;
2088         struct drm_i915_gem_object *obj;
2089         int plane = intel_crtc->plane;
2090         unsigned long linear_offset;
2091         u32 dspcntr;
2092         u32 reg;
2093
2094         switch (plane) {
2095         case 0:
2096         case 1:
2097                 break;
2098         default:
2099                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2100                 return -EINVAL;
2101         }
2102
2103         intel_fb = to_intel_framebuffer(fb);
2104         obj = intel_fb->obj;
2105
2106         reg = DSPCNTR(plane);
2107         dspcntr = I915_READ(reg);
2108         /* Mask out pixel format bits in case we change it */
2109         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2110         switch (fb->pixel_format) {
2111         case DRM_FORMAT_C8:
2112                 dspcntr |= DISPPLANE_8BPP;
2113                 break;
2114         case DRM_FORMAT_XRGB1555:
2115         case DRM_FORMAT_ARGB1555:
2116                 dspcntr |= DISPPLANE_BGRX555;
2117                 break;
2118         case DRM_FORMAT_RGB565:
2119                 dspcntr |= DISPPLANE_BGRX565;
2120                 break;
2121         case DRM_FORMAT_XRGB8888:
2122         case DRM_FORMAT_ARGB8888:
2123                 dspcntr |= DISPPLANE_BGRX888;
2124                 break;
2125         case DRM_FORMAT_XBGR8888:
2126         case DRM_FORMAT_ABGR8888:
2127                 dspcntr |= DISPPLANE_RGBX888;
2128                 break;
2129         case DRM_FORMAT_XRGB2101010:
2130         case DRM_FORMAT_ARGB2101010:
2131                 dspcntr |= DISPPLANE_BGRX101010;
2132                 break;
2133         case DRM_FORMAT_XBGR2101010:
2134         case DRM_FORMAT_ABGR2101010:
2135                 dspcntr |= DISPPLANE_RGBX101010;
2136                 break;
2137         default:
2138                 BUG();
2139         }
2140
2141         if (INTEL_INFO(dev)->gen >= 4) {
2142                 if (obj->tiling_mode != I915_TILING_NONE)
2143                         dspcntr |= DISPPLANE_TILED;
2144                 else
2145                         dspcntr &= ~DISPPLANE_TILED;
2146         }
2147
2148         I915_WRITE(reg, dspcntr);
2149
2150         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2151
2152         if (INTEL_INFO(dev)->gen >= 4) {
2153                 intel_crtc->dspaddr_offset =
2154                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2155                                                        fb->bits_per_pixel / 8,
2156                                                        fb->pitches[0]);
2157                 linear_offset -= intel_crtc->dspaddr_offset;
2158         } else {
2159                 intel_crtc->dspaddr_offset = linear_offset;
2160         }
2161
2162         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2163                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2164         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2165         if (INTEL_INFO(dev)->gen >= 4) {
2166                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2167                                      obj->gtt_offset + intel_crtc->dspaddr_offset);
2168                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2169                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2170         } else
2171                 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2172         POSTING_READ(reg);
2173
2174         return 0;
2175 }
2176
2177 static int ironlake_update_plane(struct drm_crtc *crtc,
2178                                  struct drm_framebuffer *fb, int x, int y)
2179 {
2180         struct drm_device *dev = crtc->dev;
2181         struct drm_i915_private *dev_priv = dev->dev_private;
2182         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2183         struct intel_framebuffer *intel_fb;
2184         struct drm_i915_gem_object *obj;
2185         int plane = intel_crtc->plane;
2186         unsigned long linear_offset;
2187         u32 dspcntr;
2188         u32 reg;
2189
2190         switch (plane) {
2191         case 0:
2192         case 1:
2193         case 2:
2194                 break;
2195         default:
2196                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2197                 return -EINVAL;
2198         }
2199
2200         intel_fb = to_intel_framebuffer(fb);
2201         obj = intel_fb->obj;
2202
2203         reg = DSPCNTR(plane);
2204         dspcntr = I915_READ(reg);
2205         /* Mask out pixel format bits in case we change it */
2206         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2207         switch (fb->pixel_format) {
2208         case DRM_FORMAT_C8:
2209                 dspcntr |= DISPPLANE_8BPP;
2210                 break;
2211         case DRM_FORMAT_RGB565:
2212                 dspcntr |= DISPPLANE_BGRX565;
2213                 break;
2214         case DRM_FORMAT_XRGB8888:
2215         case DRM_FORMAT_ARGB8888:
2216                 dspcntr |= DISPPLANE_BGRX888;
2217                 break;
2218         case DRM_FORMAT_XBGR8888:
2219         case DRM_FORMAT_ABGR8888:
2220                 dspcntr |= DISPPLANE_RGBX888;
2221                 break;
2222         case DRM_FORMAT_XRGB2101010:
2223         case DRM_FORMAT_ARGB2101010:
2224                 dspcntr |= DISPPLANE_BGRX101010;
2225                 break;
2226         case DRM_FORMAT_XBGR2101010:
2227         case DRM_FORMAT_ABGR2101010:
2228                 dspcntr |= DISPPLANE_RGBX101010;
2229                 break;
2230         default:
2231                 BUG();
2232         }
2233
2234         if (obj->tiling_mode != I915_TILING_NONE)
2235                 dspcntr |= DISPPLANE_TILED;
2236         else
2237                 dspcntr &= ~DISPPLANE_TILED;
2238
2239         /* must disable */
2240         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2241
2242         I915_WRITE(reg, dspcntr);
2243
2244         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2245         intel_crtc->dspaddr_offset =
2246                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2247                                                fb->bits_per_pixel / 8,
2248                                                fb->pitches[0]);
2249         linear_offset -= intel_crtc->dspaddr_offset;
2250
2251         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2252                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2253         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2254         I915_MODIFY_DISPBASE(DSPSURF(plane),
2255                              obj->gtt_offset + intel_crtc->dspaddr_offset);
2256         if (IS_HASWELL(dev)) {
2257                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2258         } else {
2259                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2260                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2261         }
2262         POSTING_READ(reg);
2263
2264         return 0;
2265 }
2266
2267 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2268 static int
2269 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2270                            int x, int y, enum mode_set_atomic state)
2271 {
2272         struct drm_device *dev = crtc->dev;
2273         struct drm_i915_private *dev_priv = dev->dev_private;
2274
2275         if (dev_priv->display.disable_fbc)
2276                 dev_priv->display.disable_fbc(dev);
2277         intel_increase_pllclock(crtc);
2278
2279         return dev_priv->display.update_plane(crtc, fb, x, y);
2280 }
2281
2282 void intel_display_handle_reset(struct drm_device *dev)
2283 {
2284         struct drm_i915_private *dev_priv = dev->dev_private;
2285         struct drm_crtc *crtc;
2286
2287         /*
2288          * Flips in the rings have been nuked by the reset,
2289          * so complete all pending flips so that user space
2290          * will get its events and not get stuck.
2291          *
2292          * Also update the base address of all primary
2293          * planes to the the last fb to make sure we're
2294          * showing the correct fb after a reset.
2295          *
2296          * Need to make two loops over the crtcs so that we
2297          * don't try to grab a crtc mutex before the
2298          * pending_flip_queue really got woken up.
2299          */
2300
2301         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2302                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2303                 enum plane plane = intel_crtc->plane;
2304
2305                 intel_prepare_page_flip(dev, plane);
2306                 intel_finish_page_flip_plane(dev, plane);
2307         }
2308
2309         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2310                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2311
2312                 mutex_lock(&crtc->mutex);
2313                 if (intel_crtc->active)
2314                         dev_priv->display.update_plane(crtc, crtc->fb,
2315                                                        crtc->x, crtc->y);
2316                 mutex_unlock(&crtc->mutex);
2317         }
2318 }
2319
2320 static int
2321 intel_finish_fb(struct drm_framebuffer *old_fb)
2322 {
2323         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2324         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2325         bool was_interruptible = dev_priv->mm.interruptible;
2326         int ret;
2327
2328         /* Big Hammer, we also need to ensure that any pending
2329          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2330          * current scanout is retired before unpinning the old
2331          * framebuffer.
2332          *
2333          * This should only fail upon a hung GPU, in which case we
2334          * can safely continue.
2335          */
2336         dev_priv->mm.interruptible = false;
2337         ret = i915_gem_object_finish_gpu(obj);
2338         dev_priv->mm.interruptible = was_interruptible;
2339
2340         return ret;
2341 }
2342
2343 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2344 {
2345         struct drm_device *dev = crtc->dev;
2346         struct drm_i915_master_private *master_priv;
2347         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2348
2349         if (!dev->primary->master)
2350                 return;
2351
2352         master_priv = dev->primary->master->driver_priv;
2353         if (!master_priv->sarea_priv)
2354                 return;
2355
2356         switch (intel_crtc->pipe) {
2357         case 0:
2358                 master_priv->sarea_priv->pipeA_x = x;
2359                 master_priv->sarea_priv->pipeA_y = y;
2360                 break;
2361         case 1:
2362                 master_priv->sarea_priv->pipeB_x = x;
2363                 master_priv->sarea_priv->pipeB_y = y;
2364                 break;
2365         default:
2366                 break;
2367         }
2368 }
2369
2370 static int
2371 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2372                     struct drm_framebuffer *fb)
2373 {
2374         struct drm_device *dev = crtc->dev;
2375         struct drm_i915_private *dev_priv = dev->dev_private;
2376         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2377         struct drm_framebuffer *old_fb;
2378         int ret;
2379
2380         /* no fb bound */
2381         if (!fb) {
2382                 DRM_ERROR("No FB bound\n");
2383                 return 0;
2384         }
2385
2386         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2387                 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2388                                 intel_crtc->plane,
2389                                 INTEL_INFO(dev)->num_pipes);
2390                 return -EINVAL;
2391         }
2392
2393         mutex_lock(&dev->struct_mutex);
2394         ret = intel_pin_and_fence_fb_obj(dev,
2395                                          to_intel_framebuffer(fb)->obj,
2396                                          NULL);
2397         if (ret != 0) {
2398                 mutex_unlock(&dev->struct_mutex);
2399                 DRM_ERROR("pin & fence failed\n");
2400                 return ret;
2401         }
2402
2403         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2404         if (ret) {
2405                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2406                 mutex_unlock(&dev->struct_mutex);
2407                 DRM_ERROR("failed to update base address\n");
2408                 return ret;
2409         }
2410
2411         old_fb = crtc->fb;
2412         crtc->fb = fb;
2413         crtc->x = x;
2414         crtc->y = y;
2415
2416         if (old_fb) {
2417                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2418                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2419         }
2420
2421         intel_update_fbc(dev);
2422         mutex_unlock(&dev->struct_mutex);
2423
2424         intel_crtc_update_sarea_pos(crtc, x, y);
2425
2426         return 0;
2427 }
2428
2429 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2430 {
2431         struct drm_device *dev = crtc->dev;
2432         struct drm_i915_private *dev_priv = dev->dev_private;
2433         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2434         int pipe = intel_crtc->pipe;
2435         u32 reg, temp;
2436
2437         /* enable normal train */
2438         reg = FDI_TX_CTL(pipe);
2439         temp = I915_READ(reg);
2440         if (IS_IVYBRIDGE(dev)) {
2441                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2442                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2443         } else {
2444                 temp &= ~FDI_LINK_TRAIN_NONE;
2445                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2446         }
2447         I915_WRITE(reg, temp);
2448
2449         reg = FDI_RX_CTL(pipe);
2450         temp = I915_READ(reg);
2451         if (HAS_PCH_CPT(dev)) {
2452                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2453                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2454         } else {
2455                 temp &= ~FDI_LINK_TRAIN_NONE;
2456                 temp |= FDI_LINK_TRAIN_NONE;
2457         }
2458         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2459
2460         /* wait one idle pattern time */
2461         POSTING_READ(reg);
2462         udelay(1000);
2463
2464         /* IVB wants error correction enabled */
2465         if (IS_IVYBRIDGE(dev))
2466                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2467                            FDI_FE_ERRC_ENABLE);
2468 }
2469
2470 static void ivb_modeset_global_resources(struct drm_device *dev)
2471 {
2472         struct drm_i915_private *dev_priv = dev->dev_private;
2473         struct intel_crtc *pipe_B_crtc =
2474                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2475         struct intel_crtc *pipe_C_crtc =
2476                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2477         uint32_t temp;
2478
2479         /* When everything is off disable fdi C so that we could enable fdi B
2480          * with all lanes. XXX: This misses the case where a pipe is not using
2481          * any pch resources and so doesn't need any fdi lanes. */
2482         if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
2483                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2484                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2485
2486                 temp = I915_READ(SOUTH_CHICKEN1);
2487                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2488                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2489                 I915_WRITE(SOUTH_CHICKEN1, temp);
2490         }
2491 }
2492
2493 /* The FDI link training functions for ILK/Ibexpeak. */
2494 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2495 {
2496         struct drm_device *dev = crtc->dev;
2497         struct drm_i915_private *dev_priv = dev->dev_private;
2498         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2499         int pipe = intel_crtc->pipe;
2500         int plane = intel_crtc->plane;
2501         u32 reg, temp, tries;
2502
2503         /* FDI needs bits from pipe & plane first */
2504         assert_pipe_enabled(dev_priv, pipe);
2505         assert_plane_enabled(dev_priv, plane);
2506
2507         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2508            for train result */
2509         reg = FDI_RX_IMR(pipe);
2510         temp = I915_READ(reg);
2511         temp &= ~FDI_RX_SYMBOL_LOCK;
2512         temp &= ~FDI_RX_BIT_LOCK;
2513         I915_WRITE(reg, temp);
2514         I915_READ(reg);
2515         udelay(150);
2516
2517         /* enable CPU FDI TX and PCH FDI RX */
2518         reg = FDI_TX_CTL(pipe);
2519         temp = I915_READ(reg);
2520         temp &= ~(7 << 19);
2521         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2522         temp &= ~FDI_LINK_TRAIN_NONE;
2523         temp |= FDI_LINK_TRAIN_PATTERN_1;
2524         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2525
2526         reg = FDI_RX_CTL(pipe);
2527         temp = I915_READ(reg);
2528         temp &= ~FDI_LINK_TRAIN_NONE;
2529         temp |= FDI_LINK_TRAIN_PATTERN_1;
2530         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2531
2532         POSTING_READ(reg);
2533         udelay(150);
2534
2535         /* Ironlake workaround, enable clock pointer after FDI enable*/
2536         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2537         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2538                    FDI_RX_PHASE_SYNC_POINTER_EN);
2539
2540         reg = FDI_RX_IIR(pipe);
2541         for (tries = 0; tries < 5; tries++) {
2542                 temp = I915_READ(reg);
2543                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2544
2545                 if ((temp & FDI_RX_BIT_LOCK)) {
2546                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2547                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2548                         break;
2549                 }
2550         }
2551         if (tries == 5)
2552                 DRM_ERROR("FDI train 1 fail!\n");
2553
2554         /* Train 2 */
2555         reg = FDI_TX_CTL(pipe);
2556         temp = I915_READ(reg);
2557         temp &= ~FDI_LINK_TRAIN_NONE;
2558         temp |= FDI_LINK_TRAIN_PATTERN_2;
2559         I915_WRITE(reg, temp);
2560
2561         reg = FDI_RX_CTL(pipe);
2562         temp = I915_READ(reg);
2563         temp &= ~FDI_LINK_TRAIN_NONE;
2564         temp |= FDI_LINK_TRAIN_PATTERN_2;
2565         I915_WRITE(reg, temp);
2566
2567         POSTING_READ(reg);
2568         udelay(150);
2569
2570         reg = FDI_RX_IIR(pipe);
2571         for (tries = 0; tries < 5; tries++) {
2572                 temp = I915_READ(reg);
2573                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2574
2575                 if (temp & FDI_RX_SYMBOL_LOCK) {
2576                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2577                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2578                         break;
2579                 }
2580         }
2581         if (tries == 5)
2582                 DRM_ERROR("FDI train 2 fail!\n");
2583
2584         DRM_DEBUG_KMS("FDI train done\n");
2585
2586 }
2587
2588 static const int snb_b_fdi_train_param[] = {
2589         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2590         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2591         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2592         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2593 };
2594
2595 /* The FDI link training functions for SNB/Cougarpoint. */
2596 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2597 {
2598         struct drm_device *dev = crtc->dev;
2599         struct drm_i915_private *dev_priv = dev->dev_private;
2600         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2601         int pipe = intel_crtc->pipe;
2602         u32 reg, temp, i, retry;
2603
2604         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2605            for train result */
2606         reg = FDI_RX_IMR(pipe);
2607         temp = I915_READ(reg);
2608         temp &= ~FDI_RX_SYMBOL_LOCK;
2609         temp &= ~FDI_RX_BIT_LOCK;
2610         I915_WRITE(reg, temp);
2611
2612         POSTING_READ(reg);
2613         udelay(150);
2614
2615         /* enable CPU FDI TX and PCH FDI RX */
2616         reg = FDI_TX_CTL(pipe);
2617         temp = I915_READ(reg);
2618         temp &= ~(7 << 19);
2619         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2620         temp &= ~FDI_LINK_TRAIN_NONE;
2621         temp |= FDI_LINK_TRAIN_PATTERN_1;
2622         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2623         /* SNB-B */
2624         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2625         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2626
2627         I915_WRITE(FDI_RX_MISC(pipe),
2628                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2629
2630         reg = FDI_RX_CTL(pipe);
2631         temp = I915_READ(reg);
2632         if (HAS_PCH_CPT(dev)) {
2633                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2634                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2635         } else {
2636                 temp &= ~FDI_LINK_TRAIN_NONE;
2637                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2638         }
2639         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2640
2641         POSTING_READ(reg);
2642         udelay(150);
2643
2644         for (i = 0; i < 4; i++) {
2645                 reg = FDI_TX_CTL(pipe);
2646                 temp = I915_READ(reg);
2647                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2648                 temp |= snb_b_fdi_train_param[i];
2649                 I915_WRITE(reg, temp);
2650
2651                 POSTING_READ(reg);
2652                 udelay(500);
2653
2654                 for (retry = 0; retry < 5; retry++) {
2655                         reg = FDI_RX_IIR(pipe);
2656                         temp = I915_READ(reg);
2657                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2658                         if (temp & FDI_RX_BIT_LOCK) {
2659                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2660                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2661                                 break;
2662                         }
2663                         udelay(50);
2664                 }
2665                 if (retry < 5)
2666                         break;
2667         }
2668         if (i == 4)
2669                 DRM_ERROR("FDI train 1 fail!\n");
2670
2671         /* Train 2 */
2672         reg = FDI_TX_CTL(pipe);
2673         temp = I915_READ(reg);
2674         temp &= ~FDI_LINK_TRAIN_NONE;
2675         temp |= FDI_LINK_TRAIN_PATTERN_2;
2676         if (IS_GEN6(dev)) {
2677                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2678                 /* SNB-B */
2679                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2680         }
2681         I915_WRITE(reg, temp);
2682
2683         reg = FDI_RX_CTL(pipe);
2684         temp = I915_READ(reg);
2685         if (HAS_PCH_CPT(dev)) {
2686                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2687                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2688         } else {
2689                 temp &= ~FDI_LINK_TRAIN_NONE;
2690                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2691         }
2692         I915_WRITE(reg, temp);
2693
2694         POSTING_READ(reg);
2695         udelay(150);
2696
2697         for (i = 0; i < 4; i++) {
2698                 reg = FDI_TX_CTL(pipe);
2699                 temp = I915_READ(reg);
2700                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2701                 temp |= snb_b_fdi_train_param[i];
2702                 I915_WRITE(reg, temp);
2703
2704                 POSTING_READ(reg);
2705                 udelay(500);
2706
2707                 for (retry = 0; retry < 5; retry++) {
2708                         reg = FDI_RX_IIR(pipe);
2709                         temp = I915_READ(reg);
2710                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2711                         if (temp & FDI_RX_SYMBOL_LOCK) {
2712                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2713                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2714                                 break;
2715                         }
2716                         udelay(50);
2717                 }
2718                 if (retry < 5)
2719                         break;
2720         }
2721         if (i == 4)
2722                 DRM_ERROR("FDI train 2 fail!\n");
2723
2724         DRM_DEBUG_KMS("FDI train done.\n");
2725 }
2726
2727 /* Manual link training for Ivy Bridge A0 parts */
2728 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2729 {
2730         struct drm_device *dev = crtc->dev;
2731         struct drm_i915_private *dev_priv = dev->dev_private;
2732         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2733         int pipe = intel_crtc->pipe;
2734         u32 reg, temp, i;
2735
2736         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2737            for train result */
2738         reg = FDI_RX_IMR(pipe);
2739         temp = I915_READ(reg);
2740         temp &= ~FDI_RX_SYMBOL_LOCK;
2741         temp &= ~FDI_RX_BIT_LOCK;
2742         I915_WRITE(reg, temp);
2743
2744         POSTING_READ(reg);
2745         udelay(150);
2746
2747         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2748                       I915_READ(FDI_RX_IIR(pipe)));
2749
2750         /* enable CPU FDI TX and PCH FDI RX */
2751         reg = FDI_TX_CTL(pipe);
2752         temp = I915_READ(reg);
2753         temp &= ~(7 << 19);
2754         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2755         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2756         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2757         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2758         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2759         temp |= FDI_COMPOSITE_SYNC;
2760         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2761
2762         I915_WRITE(FDI_RX_MISC(pipe),
2763                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2764
2765         reg = FDI_RX_CTL(pipe);
2766         temp = I915_READ(reg);
2767         temp &= ~FDI_LINK_TRAIN_AUTO;
2768         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2769         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2770         temp |= FDI_COMPOSITE_SYNC;
2771         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2772
2773         POSTING_READ(reg);
2774         udelay(150);
2775
2776         for (i = 0; i < 4; i++) {
2777                 reg = FDI_TX_CTL(pipe);
2778                 temp = I915_READ(reg);
2779                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2780                 temp |= snb_b_fdi_train_param[i];
2781                 I915_WRITE(reg, temp);
2782
2783                 POSTING_READ(reg);
2784                 udelay(500);
2785
2786                 reg = FDI_RX_IIR(pipe);
2787                 temp = I915_READ(reg);
2788                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2789
2790                 if (temp & FDI_RX_BIT_LOCK ||
2791                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2792                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2793                         DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2794                         break;
2795                 }
2796         }
2797         if (i == 4)
2798                 DRM_ERROR("FDI train 1 fail!\n");
2799
2800         /* Train 2 */
2801         reg = FDI_TX_CTL(pipe);
2802         temp = I915_READ(reg);
2803         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2804         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2805         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2806         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2807         I915_WRITE(reg, temp);
2808
2809         reg = FDI_RX_CTL(pipe);
2810         temp = I915_READ(reg);
2811         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2812         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2813         I915_WRITE(reg, temp);
2814
2815         POSTING_READ(reg);
2816         udelay(150);
2817
2818         for (i = 0; i < 4; i++) {
2819                 reg = FDI_TX_CTL(pipe);
2820                 temp = I915_READ(reg);
2821                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2822                 temp |= snb_b_fdi_train_param[i];
2823                 I915_WRITE(reg, temp);
2824
2825                 POSTING_READ(reg);
2826                 udelay(500);
2827
2828                 reg = FDI_RX_IIR(pipe);
2829                 temp = I915_READ(reg);
2830                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2831
2832                 if (temp & FDI_RX_SYMBOL_LOCK) {
2833                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2834                         DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2835                         break;
2836                 }
2837         }
2838         if (i == 4)
2839                 DRM_ERROR("FDI train 2 fail!\n");
2840
2841         DRM_DEBUG_KMS("FDI train done.\n");
2842 }
2843
2844 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2845 {
2846         struct drm_device *dev = intel_crtc->base.dev;
2847         struct drm_i915_private *dev_priv = dev->dev_private;
2848         int pipe = intel_crtc->pipe;
2849         u32 reg, temp;
2850
2851
2852         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2853         reg = FDI_RX_CTL(pipe);
2854         temp = I915_READ(reg);
2855         temp &= ~((0x7 << 19) | (0x7 << 16));
2856         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2857         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2858         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2859
2860         POSTING_READ(reg);
2861         udelay(200);
2862
2863         /* Switch from Rawclk to PCDclk */
2864         temp = I915_READ(reg);
2865         I915_WRITE(reg, temp | FDI_PCDCLK);
2866
2867         POSTING_READ(reg);
2868         udelay(200);
2869
2870         /* Enable CPU FDI TX PLL, always on for Ironlake */
2871         reg = FDI_TX_CTL(pipe);
2872         temp = I915_READ(reg);
2873         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2874                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2875
2876                 POSTING_READ(reg);
2877                 udelay(100);
2878         }
2879 }
2880
2881 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2882 {
2883         struct drm_device *dev = intel_crtc->base.dev;
2884         struct drm_i915_private *dev_priv = dev->dev_private;
2885         int pipe = intel_crtc->pipe;
2886         u32 reg, temp;
2887
2888         /* Switch from PCDclk to Rawclk */
2889         reg = FDI_RX_CTL(pipe);
2890         temp = I915_READ(reg);
2891         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2892
2893         /* Disable CPU FDI TX PLL */
2894         reg = FDI_TX_CTL(pipe);
2895         temp = I915_READ(reg);
2896         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2897
2898         POSTING_READ(reg);
2899         udelay(100);
2900
2901         reg = FDI_RX_CTL(pipe);
2902         temp = I915_READ(reg);
2903         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2904
2905         /* Wait for the clocks to turn off. */
2906         POSTING_READ(reg);
2907         udelay(100);
2908 }
2909
2910 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2911 {
2912         struct drm_device *dev = crtc->dev;
2913         struct drm_i915_private *dev_priv = dev->dev_private;
2914         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2915         int pipe = intel_crtc->pipe;
2916         u32 reg, temp;
2917
2918         /* disable CPU FDI tx and PCH FDI rx */
2919         reg = FDI_TX_CTL(pipe);
2920         temp = I915_READ(reg);
2921         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2922         POSTING_READ(reg);
2923
2924         reg = FDI_RX_CTL(pipe);
2925         temp = I915_READ(reg);
2926         temp &= ~(0x7 << 16);
2927         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2928         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2929
2930         POSTING_READ(reg);
2931         udelay(100);
2932
2933         /* Ironlake workaround, disable clock pointer after downing FDI */
2934         if (HAS_PCH_IBX(dev)) {
2935                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2936         }
2937
2938         /* still set train pattern 1 */
2939         reg = FDI_TX_CTL(pipe);
2940         temp = I915_READ(reg);
2941         temp &= ~FDI_LINK_TRAIN_NONE;
2942         temp |= FDI_LINK_TRAIN_PATTERN_1;
2943         I915_WRITE(reg, temp);
2944
2945         reg = FDI_RX_CTL(pipe);
2946         temp = I915_READ(reg);
2947         if (HAS_PCH_CPT(dev)) {
2948                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2949                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2950         } else {
2951                 temp &= ~FDI_LINK_TRAIN_NONE;
2952                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2953         }
2954         /* BPC in FDI rx is consistent with that in PIPECONF */
2955         temp &= ~(0x07 << 16);
2956         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2957         I915_WRITE(reg, temp);
2958
2959         POSTING_READ(reg);
2960         udelay(100);
2961 }
2962
2963 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2964 {
2965         struct drm_device *dev = crtc->dev;
2966         struct drm_i915_private *dev_priv = dev->dev_private;
2967         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2968         unsigned long flags;
2969         bool pending;
2970
2971         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2972             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2973                 return false;
2974
2975         spin_lock_irqsave(&dev->event_lock, flags);
2976         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2977         spin_unlock_irqrestore(&dev->event_lock, flags);
2978
2979         return pending;
2980 }
2981
2982 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2983 {
2984         struct drm_device *dev = crtc->dev;
2985         struct drm_i915_private *dev_priv = dev->dev_private;
2986
2987         if (crtc->fb == NULL)
2988                 return;
2989
2990         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2991
2992         wait_event(dev_priv->pending_flip_queue,
2993                    !intel_crtc_has_pending_flip(crtc));
2994
2995         mutex_lock(&dev->struct_mutex);
2996         intel_finish_fb(crtc->fb);
2997         mutex_unlock(&dev->struct_mutex);
2998 }
2999
3000 /* Program iCLKIP clock to the desired frequency */
3001 static void lpt_program_iclkip(struct drm_crtc *crtc)
3002 {
3003         struct drm_device *dev = crtc->dev;
3004         struct drm_i915_private *dev_priv = dev->dev_private;
3005         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3006         u32 temp;
3007
3008         mutex_lock(&dev_priv->dpio_lock);
3009
3010         /* It is necessary to ungate the pixclk gate prior to programming
3011          * the divisors, and gate it back when it is done.
3012          */
3013         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3014
3015         /* Disable SSCCTL */
3016         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3017                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3018                                 SBI_SSCCTL_DISABLE,
3019                         SBI_ICLK);
3020
3021         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3022         if (crtc->mode.clock == 20000) {
3023                 auxdiv = 1;
3024                 divsel = 0x41;
3025                 phaseinc = 0x20;
3026         } else {
3027                 /* The iCLK virtual clock root frequency is in MHz,
3028                  * but the crtc->mode.clock in in KHz. To get the divisors,
3029                  * it is necessary to divide one by another, so we
3030                  * convert the virtual clock precision to KHz here for higher
3031                  * precision.
3032                  */
3033                 u32 iclk_virtual_root_freq = 172800 * 1000;
3034                 u32 iclk_pi_range = 64;
3035                 u32 desired_divisor, msb_divisor_value, pi_value;
3036
3037                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
3038                 msb_divisor_value = desired_divisor / iclk_pi_range;
3039                 pi_value = desired_divisor % iclk_pi_range;
3040
3041                 auxdiv = 0;
3042                 divsel = msb_divisor_value - 2;
3043                 phaseinc = pi_value;
3044         }
3045
3046         /* This should not happen with any sane values */
3047         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3048                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3049         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3050                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3051
3052         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3053                         crtc->mode.clock,
3054                         auxdiv,
3055                         divsel,
3056                         phasedir,
3057                         phaseinc);
3058
3059         /* Program SSCDIVINTPHASE6 */
3060         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3061         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3062         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3063         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3064         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3065         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3066         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3067         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3068
3069         /* Program SSCAUXDIV */
3070         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3071         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3072         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3073         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3074
3075         /* Enable modulator and associated divider */
3076         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3077         temp &= ~SBI_SSCCTL_DISABLE;
3078         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3079
3080         /* Wait for initialization time */
3081         udelay(24);
3082
3083         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3084
3085         mutex_unlock(&dev_priv->dpio_lock);
3086 }
3087
3088 /*
3089  * Enable PCH resources required for PCH ports:
3090  *   - PCH PLLs
3091  *   - FDI training & RX/TX
3092  *   - update transcoder timings
3093  *   - DP transcoding bits
3094  *   - transcoder
3095  */
3096 static void ironlake_pch_enable(struct drm_crtc *crtc)
3097 {
3098         struct drm_device *dev = crtc->dev;
3099         struct drm_i915_private *dev_priv = dev->dev_private;
3100         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3101         int pipe = intel_crtc->pipe;
3102         u32 reg, temp;
3103
3104         assert_transcoder_disabled(dev_priv, pipe);
3105
3106         /* Write the TU size bits before fdi link training, so that error
3107          * detection works. */
3108         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3109                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3110
3111         /* For PCH output, training FDI link */
3112         dev_priv->display.fdi_link_train(crtc);
3113
3114         /* XXX: pch pll's can be enabled any time before we enable the PCH
3115          * transcoder, and we actually should do this to not upset any PCH
3116          * transcoder that already use the clock when we share it.
3117          *
3118          * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3119          * unconditionally resets the pll - we need that to have the right LVDS
3120          * enable sequence. */
3121         ironlake_enable_pch_pll(intel_crtc);
3122
3123         if (HAS_PCH_CPT(dev)) {
3124                 u32 sel;
3125
3126                 temp = I915_READ(PCH_DPLL_SEL);
3127                 switch (pipe) {
3128                 default:
3129                 case 0:
3130                         temp |= TRANSA_DPLL_ENABLE;
3131                         sel = TRANSA_DPLLB_SEL;
3132                         break;
3133                 case 1:
3134                         temp |= TRANSB_DPLL_ENABLE;
3135                         sel = TRANSB_DPLLB_SEL;
3136                         break;
3137                 case 2:
3138                         temp |= TRANSC_DPLL_ENABLE;
3139                         sel = TRANSC_DPLLB_SEL;
3140                         break;
3141                 }
3142                 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3143                         temp |= sel;
3144                 else
3145                         temp &= ~sel;
3146                 I915_WRITE(PCH_DPLL_SEL, temp);
3147         }
3148
3149         /* set transcoder timing, panel must allow it */
3150         assert_panel_unlocked(dev_priv, pipe);
3151         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3152         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3153         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
3154
3155         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3156         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3157         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
3158         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
3159
3160         intel_fdi_normal_train(crtc);
3161
3162         /* For PCH DP, enable TRANS_DP_CTL */
3163         if (HAS_PCH_CPT(dev) &&
3164             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3165              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3166                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3167                 reg = TRANS_DP_CTL(pipe);
3168                 temp = I915_READ(reg);
3169                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3170                           TRANS_DP_SYNC_MASK |
3171                           TRANS_DP_BPC_MASK);
3172                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3173                          TRANS_DP_ENH_FRAMING);
3174                 temp |= bpc << 9; /* same format but at 11:9 */
3175
3176                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3177                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3178                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3179                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3180
3181                 switch (intel_trans_dp_port_sel(crtc)) {
3182                 case PCH_DP_B:
3183                         temp |= TRANS_DP_PORT_SEL_B;
3184                         break;
3185                 case PCH_DP_C:
3186                         temp |= TRANS_DP_PORT_SEL_C;
3187                         break;
3188                 case PCH_DP_D:
3189                         temp |= TRANS_DP_PORT_SEL_D;
3190                         break;
3191                 default:
3192                         BUG();
3193                 }
3194
3195                 I915_WRITE(reg, temp);
3196         }
3197
3198         ironlake_enable_pch_transcoder(dev_priv, pipe);
3199 }
3200
3201 static void lpt_pch_enable(struct drm_crtc *crtc)
3202 {
3203         struct drm_device *dev = crtc->dev;
3204         struct drm_i915_private *dev_priv = dev->dev_private;
3205         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3206         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3207
3208         assert_transcoder_disabled(dev_priv, TRANSCODER_A);
3209
3210         lpt_program_iclkip(crtc);
3211
3212         /* Set transcoder timing. */
3213         I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
3214         I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
3215         I915_WRITE(_TRANS_HSYNC_A,  I915_READ(HSYNC(cpu_transcoder)));
3216
3217         I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
3218         I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
3219         I915_WRITE(_TRANS_VSYNC_A,  I915_READ(VSYNC(cpu_transcoder)));
3220         I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
3221
3222         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3223 }
3224
3225 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3226 {
3227         struct intel_pch_pll *pll = intel_crtc->pch_pll;
3228
3229         if (pll == NULL)
3230                 return;
3231
3232         if (pll->refcount == 0) {
3233                 WARN(1, "bad PCH PLL refcount\n");
3234                 return;
3235         }
3236
3237         --pll->refcount;
3238         intel_crtc->pch_pll = NULL;
3239 }
3240
3241 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3242 {
3243         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3244         struct intel_pch_pll *pll;
3245         int i;
3246
3247         pll = intel_crtc->pch_pll;
3248         if (pll) {
3249                 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3250                               intel_crtc->base.base.id, pll->pll_reg);
3251                 goto prepare;
3252         }
3253
3254         if (HAS_PCH_IBX(dev_priv->dev)) {
3255                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3256                 i = intel_crtc->pipe;
3257                 pll = &dev_priv->pch_plls[i];
3258
3259                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3260                               intel_crtc->base.base.id, pll->pll_reg);
3261
3262                 goto found;
3263         }
3264
3265         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3266                 pll = &dev_priv->pch_plls[i];
3267
3268                 /* Only want to check enabled timings first */
3269                 if (pll->refcount == 0)
3270                         continue;
3271
3272                 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3273                     fp == I915_READ(pll->fp0_reg)) {
3274                         DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3275                                       intel_crtc->base.base.id,
3276                                       pll->pll_reg, pll->refcount, pll->active);
3277
3278                         goto found;
3279                 }
3280         }
3281
3282         /* Ok no matching timings, maybe there's a free one? */
3283         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3284                 pll = &dev_priv->pch_plls[i];
3285                 if (pll->refcount == 0) {
3286                         DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3287                                       intel_crtc->base.base.id, pll->pll_reg);
3288                         goto found;
3289                 }
3290         }
3291
3292         return NULL;
3293
3294 found:
3295         intel_crtc->pch_pll = pll;
3296         pll->refcount++;
3297         DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3298 prepare: /* separate function? */
3299         DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3300
3301         /* Wait for the clocks to stabilize before rewriting the regs */
3302         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3303         POSTING_READ(pll->pll_reg);
3304         udelay(150);
3305
3306         I915_WRITE(pll->fp0_reg, fp);
3307         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3308         pll->on = false;
3309         return pll;
3310 }
3311
3312 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3313 {
3314         struct drm_i915_private *dev_priv = dev->dev_private;
3315         int dslreg = PIPEDSL(pipe);
3316         u32 temp;
3317
3318         temp = I915_READ(dslreg);
3319         udelay(500);
3320         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3321                 if (wait_for(I915_READ(dslreg) != temp, 5))
3322                         DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3323         }
3324 }
3325
3326 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3327 {
3328         struct drm_device *dev = crtc->dev;
3329         struct drm_i915_private *dev_priv = dev->dev_private;
3330         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3331         struct intel_encoder *encoder;
3332         int pipe = intel_crtc->pipe;
3333         int plane = intel_crtc->plane;
3334         u32 temp;
3335
3336         WARN_ON(!crtc->enabled);
3337
3338         if (intel_crtc->active)
3339                 return;
3340
3341         intel_crtc->active = true;
3342         intel_update_watermarks(dev);
3343
3344         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3345                 temp = I915_READ(PCH_LVDS);
3346                 if ((temp & LVDS_PORT_EN) == 0)
3347                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3348         }
3349
3350
3351         if (intel_crtc->config.has_pch_encoder) {
3352                 /* Note: FDI PLL enabling _must_ be done before we enable the
3353                  * cpu pipes, hence this is separate from all the other fdi/pch
3354                  * enabling. */
3355                 ironlake_fdi_pll_enable(intel_crtc);
3356         } else {
3357                 assert_fdi_tx_disabled(dev_priv, pipe);
3358                 assert_fdi_rx_disabled(dev_priv, pipe);
3359         }
3360
3361         for_each_encoder_on_crtc(dev, crtc, encoder)
3362                 if (encoder->pre_enable)
3363                         encoder->pre_enable(encoder);
3364
3365         /* Enable panel fitting for LVDS */
3366         if (dev_priv->pch_pf_size &&
3367             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3368              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3369                 /* Force use of hard-coded filter coefficients
3370                  * as some pre-programmed values are broken,
3371                  * e.g. x201.
3372                  */
3373                 if (IS_IVYBRIDGE(dev))
3374                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3375                                                  PF_PIPE_SEL_IVB(pipe));
3376                 else
3377                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3378                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3379                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3380         }
3381
3382         /*
3383          * On ILK+ LUT must be loaded before the pipe is running but with
3384          * clocks enabled
3385          */
3386         intel_crtc_load_lut(crtc);
3387
3388         intel_enable_pipe(dev_priv, pipe,
3389                           intel_crtc->config.has_pch_encoder);
3390         intel_enable_plane(dev_priv, plane, pipe);
3391
3392         if (intel_crtc->config.has_pch_encoder)
3393                 ironlake_pch_enable(crtc);
3394
3395         mutex_lock(&dev->struct_mutex);
3396         intel_update_fbc(dev);
3397         mutex_unlock(&dev->struct_mutex);
3398
3399         intel_crtc_update_cursor(crtc, true);
3400
3401         for_each_encoder_on_crtc(dev, crtc, encoder)
3402                 encoder->enable(encoder);
3403
3404         if (HAS_PCH_CPT(dev))
3405                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3406
3407         /*
3408          * There seems to be a race in PCH platform hw (at least on some
3409          * outputs) where an enabled pipe still completes any pageflip right
3410          * away (as if the pipe is off) instead of waiting for vblank. As soon
3411          * as the first vblank happend, everything works as expected. Hence just
3412          * wait for one vblank before returning to avoid strange things
3413          * happening.
3414          */
3415         intel_wait_for_vblank(dev, intel_crtc->pipe);
3416 }
3417
3418 static void haswell_crtc_enable(struct drm_crtc *crtc)
3419 {
3420         struct drm_device *dev = crtc->dev;
3421         struct drm_i915_private *dev_priv = dev->dev_private;
3422         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3423         struct intel_encoder *encoder;
3424         int pipe = intel_crtc->pipe;
3425         int plane = intel_crtc->plane;
3426
3427         WARN_ON(!crtc->enabled);
3428
3429         if (intel_crtc->active)
3430                 return;
3431
3432         intel_crtc->active = true;
3433         intel_update_watermarks(dev);
3434
3435         if (intel_crtc->config.has_pch_encoder)
3436                 dev_priv->display.fdi_link_train(crtc);
3437
3438         for_each_encoder_on_crtc(dev, crtc, encoder)
3439                 if (encoder->pre_enable)
3440                         encoder->pre_enable(encoder);
3441
3442         intel_ddi_enable_pipe_clock(intel_crtc);
3443
3444         /* Enable panel fitting for eDP */
3445         if (dev_priv->pch_pf_size &&
3446             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
3447                 /* Force use of hard-coded filter coefficients
3448                  * as some pre-programmed values are broken,
3449                  * e.g. x201.
3450                  */
3451                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3452                                          PF_PIPE_SEL_IVB(pipe));
3453                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3454                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3455         }
3456
3457         /*
3458          * On ILK+ LUT must be loaded before the pipe is running but with
3459          * clocks enabled
3460          */
3461         intel_crtc_load_lut(crtc);
3462
3463         intel_ddi_set_pipe_settings(crtc);
3464         intel_ddi_enable_transcoder_func(crtc);
3465
3466         intel_enable_pipe(dev_priv, pipe,
3467                           intel_crtc->config.has_pch_encoder);
3468         intel_enable_plane(dev_priv, plane, pipe);
3469
3470         if (intel_crtc->config.has_pch_encoder)
3471                 lpt_pch_enable(crtc);
3472
3473         mutex_lock(&dev->struct_mutex);
3474         intel_update_fbc(dev);
3475         mutex_unlock(&dev->struct_mutex);
3476
3477         intel_crtc_update_cursor(crtc, true);
3478
3479         for_each_encoder_on_crtc(dev, crtc, encoder)
3480                 encoder->enable(encoder);
3481
3482         /*
3483          * There seems to be a race in PCH platform hw (at least on some
3484          * outputs) where an enabled pipe still completes any pageflip right
3485          * away (as if the pipe is off) instead of waiting for vblank. As soon
3486          * as the first vblank happend, everything works as expected. Hence just
3487          * wait for one vblank before returning to avoid strange things
3488          * happening.
3489          */
3490         intel_wait_for_vblank(dev, intel_crtc->pipe);
3491 }
3492
3493 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3494 {
3495         struct drm_device *dev = crtc->dev;
3496         struct drm_i915_private *dev_priv = dev->dev_private;
3497         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3498         struct intel_encoder *encoder;
3499         int pipe = intel_crtc->pipe;
3500         int plane = intel_crtc->plane;
3501         u32 reg, temp;
3502
3503
3504         if (!intel_crtc->active)
3505                 return;
3506
3507         for_each_encoder_on_crtc(dev, crtc, encoder)
3508                 encoder->disable(encoder);
3509
3510         intel_crtc_wait_for_pending_flips(crtc);
3511         drm_vblank_off(dev, pipe);
3512         intel_crtc_update_cursor(crtc, false);
3513
3514         intel_disable_plane(dev_priv, plane, pipe);
3515
3516         if (dev_priv->cfb_plane == plane)
3517                 intel_disable_fbc(dev);
3518
3519         intel_disable_pipe(dev_priv, pipe);
3520
3521         /* Disable PF */
3522         I915_WRITE(PF_CTL(pipe), 0);
3523         I915_WRITE(PF_WIN_SZ(pipe), 0);
3524
3525         for_each_encoder_on_crtc(dev, crtc, encoder)
3526                 if (encoder->post_disable)
3527                         encoder->post_disable(encoder);
3528
3529         ironlake_fdi_disable(crtc);
3530
3531         ironlake_disable_pch_transcoder(dev_priv, pipe);
3532
3533         if (HAS_PCH_CPT(dev)) {
3534                 /* disable TRANS_DP_CTL */
3535                 reg = TRANS_DP_CTL(pipe);
3536                 temp = I915_READ(reg);
3537                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3538                 temp |= TRANS_DP_PORT_SEL_NONE;
3539                 I915_WRITE(reg, temp);
3540
3541                 /* disable DPLL_SEL */
3542                 temp = I915_READ(PCH_DPLL_SEL);
3543                 switch (pipe) {
3544                 case 0:
3545                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3546                         break;
3547                 case 1:
3548                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3549                         break;
3550                 case 2:
3551                         /* C shares PLL A or B */
3552                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3553                         break;
3554                 default:
3555                         BUG(); /* wtf */
3556                 }
3557                 I915_WRITE(PCH_DPLL_SEL, temp);
3558         }
3559
3560         /* disable PCH DPLL */
3561         intel_disable_pch_pll(intel_crtc);
3562
3563         ironlake_fdi_pll_disable(intel_crtc);
3564
3565         intel_crtc->active = false;
3566         intel_update_watermarks(dev);
3567
3568         mutex_lock(&dev->struct_mutex);
3569         intel_update_fbc(dev);
3570         mutex_unlock(&dev->struct_mutex);
3571 }
3572
3573 static void haswell_crtc_disable(struct drm_crtc *crtc)
3574 {
3575         struct drm_device *dev = crtc->dev;
3576         struct drm_i915_private *dev_priv = dev->dev_private;
3577         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3578         struct intel_encoder *encoder;
3579         int pipe = intel_crtc->pipe;
3580         int plane = intel_crtc->plane;
3581         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3582
3583         if (!intel_crtc->active)
3584                 return;
3585
3586         for_each_encoder_on_crtc(dev, crtc, encoder)
3587                 encoder->disable(encoder);
3588
3589         intel_crtc_wait_for_pending_flips(crtc);
3590         drm_vblank_off(dev, pipe);
3591         intel_crtc_update_cursor(crtc, false);
3592
3593         intel_disable_plane(dev_priv, plane, pipe);
3594
3595         if (dev_priv->cfb_plane == plane)
3596                 intel_disable_fbc(dev);
3597
3598         intel_disable_pipe(dev_priv, pipe);
3599
3600         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3601
3602         /* XXX: Once we have proper panel fitter state tracking implemented with
3603          * hardware state read/check support we should switch to only disable
3604          * the panel fitter when we know it's used. */
3605         if (intel_using_power_well(dev)) {
3606                 I915_WRITE(PF_CTL(pipe), 0);
3607                 I915_WRITE(PF_WIN_SZ(pipe), 0);
3608         }
3609
3610         intel_ddi_disable_pipe_clock(intel_crtc);
3611
3612         for_each_encoder_on_crtc(dev, crtc, encoder)
3613                 if (encoder->post_disable)
3614                         encoder->post_disable(encoder);
3615
3616         if (intel_crtc->config.has_pch_encoder) {
3617                 lpt_disable_pch_transcoder(dev_priv);
3618                 intel_ddi_fdi_disable(crtc);
3619         }
3620
3621         intel_crtc->active = false;
3622         intel_update_watermarks(dev);
3623
3624         mutex_lock(&dev->struct_mutex);
3625         intel_update_fbc(dev);
3626         mutex_unlock(&dev->struct_mutex);
3627 }
3628
3629 static void ironlake_crtc_off(struct drm_crtc *crtc)
3630 {
3631         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3632         intel_put_pch_pll(intel_crtc);
3633 }
3634
3635 static void haswell_crtc_off(struct drm_crtc *crtc)
3636 {
3637         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3638
3639         /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3640          * start using it. */
3641         intel_crtc->config.cpu_transcoder = (enum transcoder) intel_crtc->pipe;
3642
3643         intel_ddi_put_crtc_pll(crtc);
3644 }
3645
3646 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3647 {
3648         if (!enable && intel_crtc->overlay) {
3649                 struct drm_device *dev = intel_crtc->base.dev;
3650                 struct drm_i915_private *dev_priv = dev->dev_private;
3651
3652                 mutex_lock(&dev->struct_mutex);
3653                 dev_priv->mm.interruptible = false;
3654                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3655                 dev_priv->mm.interruptible = true;
3656                 mutex_unlock(&dev->struct_mutex);
3657         }
3658
3659         /* Let userspace switch the overlay on again. In most cases userspace
3660          * has to recompute where to put it anyway.
3661          */
3662 }
3663
3664 /**
3665  * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3666  * cursor plane briefly if not already running after enabling the display
3667  * plane.
3668  * This workaround avoids occasional blank screens when self refresh is
3669  * enabled.
3670  */
3671 static void
3672 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3673 {
3674         u32 cntl = I915_READ(CURCNTR(pipe));
3675
3676         if ((cntl & CURSOR_MODE) == 0) {
3677                 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3678
3679                 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3680                 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3681                 intel_wait_for_vblank(dev_priv->dev, pipe);
3682                 I915_WRITE(CURCNTR(pipe), cntl);
3683                 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3684                 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3685         }
3686 }
3687
3688 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3689 {
3690         struct drm_device *dev = crtc->dev;
3691         struct drm_i915_private *dev_priv = dev->dev_private;
3692         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3693         struct intel_encoder *encoder;
3694         int pipe = intel_crtc->pipe;
3695         int plane = intel_crtc->plane;
3696
3697         WARN_ON(!crtc->enabled);
3698
3699         if (intel_crtc->active)
3700                 return;
3701
3702         intel_crtc->active = true;
3703         intel_update_watermarks(dev);
3704
3705         intel_enable_pll(dev_priv, pipe);
3706
3707         for_each_encoder_on_crtc(dev, crtc, encoder)
3708                 if (encoder->pre_enable)
3709                         encoder->pre_enable(encoder);
3710
3711         intel_enable_pipe(dev_priv, pipe, false);
3712         intel_enable_plane(dev_priv, plane, pipe);
3713         if (IS_G4X(dev))
3714                 g4x_fixup_plane(dev_priv, pipe);
3715
3716         intel_crtc_load_lut(crtc);
3717         intel_update_fbc(dev);
3718
3719         /* Give the overlay scaler a chance to enable if it's on this pipe */
3720         intel_crtc_dpms_overlay(intel_crtc, true);
3721         intel_crtc_update_cursor(crtc, true);
3722
3723         for_each_encoder_on_crtc(dev, crtc, encoder)
3724                 encoder->enable(encoder);
3725 }
3726
3727 static void i9xx_pfit_disable(struct intel_crtc *crtc)
3728 {
3729         struct drm_device *dev = crtc->base.dev;
3730         struct drm_i915_private *dev_priv = dev->dev_private;
3731         enum pipe pipe;
3732         uint32_t pctl = I915_READ(PFIT_CONTROL);
3733
3734         assert_pipe_disabled(dev_priv, crtc->pipe);
3735
3736         if (INTEL_INFO(dev)->gen >= 4)
3737                 pipe = (pctl & PFIT_PIPE_MASK) >> PFIT_PIPE_SHIFT;
3738         else
3739                 pipe = PIPE_B;
3740
3741         if (pipe == crtc->pipe) {
3742                 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n", pctl);
3743                 I915_WRITE(PFIT_CONTROL, 0);
3744         }
3745 }
3746
3747 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3748 {
3749         struct drm_device *dev = crtc->dev;
3750         struct drm_i915_private *dev_priv = dev->dev_private;
3751         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3752         struct intel_encoder *encoder;
3753         int pipe = intel_crtc->pipe;
3754         int plane = intel_crtc->plane;
3755
3756         if (!intel_crtc->active)
3757                 return;
3758
3759         for_each_encoder_on_crtc(dev, crtc, encoder)
3760                 encoder->disable(encoder);
3761
3762         /* Give the overlay scaler a chance to disable if it's on this pipe */
3763         intel_crtc_wait_for_pending_flips(crtc);
3764         drm_vblank_off(dev, pipe);
3765         intel_crtc_dpms_overlay(intel_crtc, false);
3766         intel_crtc_update_cursor(crtc, false);
3767
3768         if (dev_priv->cfb_plane == plane)
3769                 intel_disable_fbc(dev);
3770
3771         intel_disable_plane(dev_priv, plane, pipe);
3772         intel_disable_pipe(dev_priv, pipe);
3773
3774         i9xx_pfit_disable(intel_crtc);
3775
3776         intel_disable_pll(dev_priv, pipe);
3777
3778         intel_crtc->active = false;
3779         intel_update_fbc(dev);
3780         intel_update_watermarks(dev);
3781 }
3782
3783 static void i9xx_crtc_off(struct drm_crtc *crtc)
3784 {
3785 }
3786
3787 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3788                                     bool enabled)
3789 {
3790         struct drm_device *dev = crtc->dev;
3791         struct drm_i915_master_private *master_priv;
3792         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3793         int pipe = intel_crtc->pipe;
3794
3795         if (!dev->primary->master)
3796                 return;
3797
3798         master_priv = dev->primary->master->driver_priv;
3799         if (!master_priv->sarea_priv)
3800                 return;
3801
3802         switch (pipe) {
3803         case 0:
3804                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3805                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3806                 break;
3807         case 1:
3808                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3809                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3810                 break;
3811         default:
3812                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3813                 break;
3814         }
3815 }
3816
3817 /**
3818  * Sets the power management mode of the pipe and plane.
3819  */
3820 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3821 {
3822         struct drm_device *dev = crtc->dev;
3823         struct drm_i915_private *dev_priv = dev->dev_private;
3824         struct intel_encoder *intel_encoder;
3825         bool enable = false;
3826
3827         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3828                 enable |= intel_encoder->connectors_active;
3829
3830         if (enable)
3831                 dev_priv->display.crtc_enable(crtc);
3832         else
3833                 dev_priv->display.crtc_disable(crtc);
3834
3835         intel_crtc_update_sarea(crtc, enable);
3836 }
3837
3838 static void intel_crtc_disable(struct drm_crtc *crtc)
3839 {
3840         struct drm_device *dev = crtc->dev;
3841         struct drm_connector *connector;
3842         struct drm_i915_private *dev_priv = dev->dev_private;
3843         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3844
3845         /* crtc should still be enabled when we disable it. */
3846         WARN_ON(!crtc->enabled);
3847
3848         intel_crtc->eld_vld = false;
3849         dev_priv->display.crtc_disable(crtc);
3850         intel_crtc_update_sarea(crtc, false);
3851         dev_priv->display.off(crtc);
3852
3853         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3854         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3855
3856         if (crtc->fb) {
3857                 mutex_lock(&dev->struct_mutex);
3858                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3859                 mutex_unlock(&dev->struct_mutex);
3860                 crtc->fb = NULL;
3861         }
3862
3863         /* Update computed state. */
3864         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3865                 if (!connector->encoder || !connector->encoder->crtc)
3866                         continue;
3867
3868                 if (connector->encoder->crtc != crtc)
3869                         continue;
3870
3871                 connector->dpms = DRM_MODE_DPMS_OFF;
3872                 to_intel_encoder(connector->encoder)->connectors_active = false;
3873         }
3874 }
3875
3876 void intel_modeset_disable(struct drm_device *dev)
3877 {
3878         struct drm_crtc *crtc;
3879
3880         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3881                 if (crtc->enabled)
3882                         intel_crtc_disable(crtc);
3883         }
3884 }
3885
3886 void intel_encoder_destroy(struct drm_encoder *encoder)
3887 {
3888         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3889
3890         drm_encoder_cleanup(encoder);
3891         kfree(intel_encoder);
3892 }
3893
3894 /* Simple dpms helper for encodres with just one connector, no cloning and only
3895  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3896  * state of the entire output pipe. */
3897 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3898 {
3899         if (mode == DRM_MODE_DPMS_ON) {
3900                 encoder->connectors_active = true;
3901
3902                 intel_crtc_update_dpms(encoder->base.crtc);
3903         } else {
3904                 encoder->connectors_active = false;
3905
3906                 intel_crtc_update_dpms(encoder->base.crtc);
3907         }
3908 }
3909
3910 /* Cross check the actual hw state with our own modeset state tracking (and it's
3911  * internal consistency). */
3912 static void intel_connector_check_state(struct intel_connector *connector)
3913 {
3914         if (connector->get_hw_state(connector)) {
3915                 struct intel_encoder *encoder = connector->encoder;
3916                 struct drm_crtc *crtc;
3917                 bool encoder_enabled;
3918                 enum pipe pipe;
3919
3920                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3921                               connector->base.base.id,
3922                               drm_get_connector_name(&connector->base));
3923
3924                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3925                      "wrong connector dpms state\n");
3926                 WARN(connector->base.encoder != &encoder->base,
3927                      "active connector not linked to encoder\n");
3928                 WARN(!encoder->connectors_active,
3929                      "encoder->connectors_active not set\n");
3930
3931                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3932                 WARN(!encoder_enabled, "encoder not enabled\n");
3933                 if (WARN_ON(!encoder->base.crtc))
3934                         return;
3935
3936                 crtc = encoder->base.crtc;
3937
3938                 WARN(!crtc->enabled, "crtc not enabled\n");
3939                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3940                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3941                      "encoder active on the wrong pipe\n");
3942         }
3943 }
3944
3945 /* Even simpler default implementation, if there's really no special case to
3946  * consider. */
3947 void intel_connector_dpms(struct drm_connector *connector, int mode)
3948 {
3949         struct intel_encoder *encoder = intel_attached_encoder(connector);
3950
3951         /* All the simple cases only support two dpms states. */
3952         if (mode != DRM_MODE_DPMS_ON)
3953                 mode = DRM_MODE_DPMS_OFF;
3954
3955         if (mode == connector->dpms)
3956                 return;
3957
3958         connector->dpms = mode;
3959
3960         /* Only need to change hw state when actually enabled */
3961         if (encoder->base.crtc)
3962                 intel_encoder_dpms(encoder, mode);
3963         else
3964                 WARN_ON(encoder->connectors_active != false);
3965
3966         intel_modeset_check_state(connector->dev);
3967 }
3968
3969 /* Simple connector->get_hw_state implementation for encoders that support only
3970  * one connector and no cloning and hence the encoder state determines the state
3971  * of the connector. */
3972 bool intel_connector_get_hw_state(struct intel_connector *connector)
3973 {
3974         enum pipe pipe = 0;
3975         struct intel_encoder *encoder = connector->encoder;
3976
3977         return encoder->get_hw_state(encoder, &pipe);
3978 }
3979
3980 static bool intel_crtc_compute_config(struct drm_crtc *crtc,
3981                                       struct intel_crtc_config *pipe_config)
3982 {
3983         struct drm_device *dev = crtc->dev;
3984         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
3985
3986         if (HAS_PCH_SPLIT(dev)) {
3987                 /* FDI link clock is fixed at 2.7G */
3988                 if (pipe_config->requested_mode.clock * 3
3989                     > IRONLAKE_FDI_FREQ * 4)
3990                         return false;
3991         }
3992
3993         /* All interlaced capable intel hw wants timings in frames. Note though
3994          * that intel_lvds_mode_fixup does some funny tricks with the crtc
3995          * timings, so we need to be careful not to clobber these.*/
3996         if (!pipe_config->timings_set)
3997                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3998
3999         /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
4000          * with a hsync front porch of 0.
4001          */
4002         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4003                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4004                 return false;
4005
4006         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4007                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4008         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4009                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4010                  * for lvds. */
4011                 pipe_config->pipe_bpp = 8*3;
4012         }
4013
4014         return true;
4015 }
4016
4017 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4018 {
4019         return 400000; /* FIXME */
4020 }
4021
4022 static int i945_get_display_clock_speed(struct drm_device *dev)
4023 {
4024         return 400000;
4025 }
4026
4027 static int i915_get_display_clock_speed(struct drm_device *dev)
4028 {
4029         return 333000;
4030 }
4031
4032 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4033 {
4034         return 200000;
4035 }
4036
4037 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4038 {
4039         u16 gcfgc = 0;
4040
4041         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4042
4043         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4044                 return 133000;
4045         else {
4046                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4047                 case GC_DISPLAY_CLOCK_333_MHZ:
4048                         return 333000;
4049                 default:
4050                 case GC_DISPLAY_CLOCK_190_200_MHZ:
4051                         return 190000;
4052                 }
4053         }
4054 }
4055
4056 static int i865_get_display_clock_speed(struct drm_device *dev)
4057 {
4058         return 266000;
4059 }
4060
4061 static int i855_get_display_clock_speed(struct drm_device *dev)
4062 {
4063         u16 hpllcc = 0;
4064         /* Assume that the hardware is in the high speed state.  This
4065          * should be the default.
4066          */
4067         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4068         case GC_CLOCK_133_200:
4069         case GC_CLOCK_100_200:
4070                 return 200000;
4071         case GC_CLOCK_166_250:
4072                 return 250000;
4073         case GC_CLOCK_100_133:
4074                 return 133000;
4075         }
4076
4077         /* Shouldn't happen */
4078         return 0;
4079 }
4080
4081 static int i830_get_display_clock_speed(struct drm_device *dev)
4082 {
4083         return 133000;
4084 }
4085
4086 static void
4087 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
4088 {
4089         while (*num > DATA_LINK_M_N_MASK ||
4090                *den > DATA_LINK_M_N_MASK) {
4091                 *num >>= 1;
4092                 *den >>= 1;
4093         }
4094 }
4095
4096 static void compute_m_n(unsigned int m, unsigned int n,
4097                         uint32_t *ret_m, uint32_t *ret_n)
4098 {
4099         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4100         *ret_m = div_u64((uint64_t) m * *ret_n, n);
4101         intel_reduce_m_n_ratio(ret_m, ret_n);
4102 }
4103
4104 void
4105 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4106                        int pixel_clock, int link_clock,
4107                        struct intel_link_m_n *m_n)
4108 {
4109         m_n->tu = 64;
4110
4111         compute_m_n(bits_per_pixel * pixel_clock,
4112                     link_clock * nlanes * 8,
4113                     &m_n->gmch_m, &m_n->gmch_n);
4114
4115         compute_m_n(pixel_clock, link_clock,
4116                     &m_n->link_m, &m_n->link_n);
4117 }
4118
4119 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4120 {
4121         if (i915_panel_use_ssc >= 0)
4122                 return i915_panel_use_ssc != 0;
4123         return dev_priv->lvds_use_ssc
4124                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4125 }
4126
4127 static int vlv_get_refclk(struct drm_crtc *crtc)
4128 {
4129         struct drm_device *dev = crtc->dev;
4130         struct drm_i915_private *dev_priv = dev->dev_private;
4131         int refclk = 27000; /* for DP & HDMI */
4132
4133         return 100000; /* only one validated so far */
4134
4135         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4136                 refclk = 96000;
4137         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4138                 if (intel_panel_use_ssc(dev_priv))
4139                         refclk = 100000;
4140                 else
4141                         refclk = 96000;
4142         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4143                 refclk = 100000;
4144         }
4145
4146         return refclk;
4147 }
4148
4149 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4150 {
4151         struct drm_device *dev = crtc->dev;
4152         struct drm_i915_private *dev_priv = dev->dev_private;
4153         int refclk;
4154
4155         if (IS_VALLEYVIEW(dev)) {
4156                 refclk = vlv_get_refclk(crtc);
4157         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4158             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4159                 refclk = dev_priv->lvds_ssc_freq * 1000;
4160                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4161                               refclk / 1000);
4162         } else if (!IS_GEN2(dev)) {
4163                 refclk = 96000;
4164         } else {
4165                 refclk = 48000;
4166         }
4167
4168         return refclk;
4169 }
4170
4171 static void i9xx_adjust_sdvo_tv_clock(struct intel_crtc *crtc)
4172 {
4173         unsigned dotclock = crtc->config.adjusted_mode.clock;
4174         struct dpll *clock = &crtc->config.dpll;
4175
4176         /* SDVO TV has fixed PLL values depend on its clock range,
4177            this mirrors vbios setting. */
4178         if (dotclock >= 100000 && dotclock < 140500) {
4179                 clock->p1 = 2;
4180                 clock->p2 = 10;
4181                 clock->n = 3;
4182                 clock->m1 = 16;
4183                 clock->m2 = 8;
4184         } else if (dotclock >= 140500 && dotclock <= 200000) {
4185                 clock->p1 = 1;
4186                 clock->p2 = 10;
4187                 clock->n = 6;
4188                 clock->m1 = 12;
4189                 clock->m2 = 8;
4190         }
4191
4192         crtc->config.clock_set = true;
4193 }
4194
4195 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4196                                      intel_clock_t *reduced_clock)
4197 {
4198         struct drm_device *dev = crtc->base.dev;
4199         struct drm_i915_private *dev_priv = dev->dev_private;
4200         int pipe = crtc->pipe;
4201         u32 fp, fp2 = 0;
4202         struct dpll *clock = &crtc->config.dpll;
4203
4204         if (IS_PINEVIEW(dev)) {
4205                 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4206                 if (reduced_clock)
4207                         fp2 = (1 << reduced_clock->n) << 16 |
4208                                 reduced_clock->m1 << 8 | reduced_clock->m2;
4209         } else {
4210                 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4211                 if (reduced_clock)
4212                         fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4213                                 reduced_clock->m2;
4214         }
4215
4216         I915_WRITE(FP0(pipe), fp);
4217
4218         crtc->lowfreq_avail = false;
4219         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4220             reduced_clock && i915_powersave) {
4221                 I915_WRITE(FP1(pipe), fp2);
4222                 crtc->lowfreq_avail = true;
4223         } else {
4224                 I915_WRITE(FP1(pipe), fp);
4225         }
4226 }
4227
4228 static void intel_dp_set_m_n(struct intel_crtc *crtc)
4229 {
4230         if (crtc->config.has_pch_encoder)
4231                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4232         else
4233                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4234 }
4235
4236 static void vlv_update_pll(struct intel_crtc *crtc)
4237 {
4238         struct drm_device *dev = crtc->base.dev;
4239         struct drm_i915_private *dev_priv = dev->dev_private;
4240         int pipe = crtc->pipe;
4241         u32 dpll, mdiv, pdiv;
4242         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4243         bool is_sdvo;
4244         u32 temp;
4245
4246         mutex_lock(&dev_priv->dpio_lock);
4247
4248         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4249                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4250
4251         dpll = DPLL_VGA_MODE_DIS;
4252         dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4253         dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4254         dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4255
4256         I915_WRITE(DPLL(pipe), dpll);
4257         POSTING_READ(DPLL(pipe));
4258
4259         bestn = crtc->config.dpll.n;
4260         bestm1 = crtc->config.dpll.m1;
4261         bestm2 = crtc->config.dpll.m2;
4262         bestp1 = crtc->config.dpll.p1;
4263         bestp2 = crtc->config.dpll.p2;
4264
4265         /*
4266          * In Valleyview PLL and program lane counter registers are exposed
4267          * through DPIO interface
4268          */
4269         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4270         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4271         mdiv |= ((bestn << DPIO_N_SHIFT));
4272         mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4273         mdiv |= (1 << DPIO_K_SHIFT);
4274         mdiv |= DPIO_ENABLE_CALIBRATION;
4275         intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4276
4277         intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4278
4279         pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
4280                 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4281                 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4282                 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4283         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4284
4285         intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
4286
4287         dpll |= DPLL_VCO_ENABLE;
4288         I915_WRITE(DPLL(pipe), dpll);
4289         POSTING_READ(DPLL(pipe));
4290         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4291                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4292
4293         intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4294
4295         if (crtc->config.has_dp_encoder)
4296                 intel_dp_set_m_n(crtc);
4297
4298         I915_WRITE(DPLL(pipe), dpll);
4299
4300         /* Wait for the clocks to stabilize. */
4301         POSTING_READ(DPLL(pipe));
4302         udelay(150);
4303
4304         temp = 0;
4305         if (is_sdvo) {
4306                 temp = 0;
4307                 if (crtc->config.pixel_multiplier > 1) {
4308                         temp = (crtc->config.pixel_multiplier - 1)
4309                                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4310                 }
4311         }
4312         I915_WRITE(DPLL_MD(pipe), temp);
4313         POSTING_READ(DPLL_MD(pipe));
4314
4315         /* Now program lane control registers */
4316         if(intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)
4317            || intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) {
4318                 temp = 0x1000C4;
4319                 if(pipe == 1)
4320                         temp |= (1 << 21);
4321                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4322         }
4323
4324         if(intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP)) {
4325                 temp = 0x1000C4;
4326                 if(pipe == 1)
4327                         temp |= (1 << 21);
4328                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4329         }
4330
4331         mutex_unlock(&dev_priv->dpio_lock);
4332 }
4333
4334 static void i9xx_update_pll(struct intel_crtc *crtc,
4335                             intel_clock_t *reduced_clock,
4336                             int num_connectors)
4337 {
4338         struct drm_device *dev = crtc->base.dev;
4339         struct drm_i915_private *dev_priv = dev->dev_private;
4340         struct intel_encoder *encoder;
4341         int pipe = crtc->pipe;
4342         u32 dpll;
4343         bool is_sdvo;
4344         struct dpll *clock = &crtc->config.dpll;
4345
4346         i9xx_update_pll_dividers(crtc, reduced_clock);
4347
4348         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4349                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4350
4351         dpll = DPLL_VGA_MODE_DIS;
4352
4353         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
4354                 dpll |= DPLLB_MODE_LVDS;
4355         else
4356                 dpll |= DPLLB_MODE_DAC_SERIAL;
4357
4358         if (is_sdvo) {
4359                 if ((crtc->config.pixel_multiplier > 1) &&
4360                     (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))) {
4361                         dpll |= (crtc->config.pixel_multiplier - 1)
4362                                 << SDVO_MULTIPLIER_SHIFT_HIRES;
4363                 }
4364                 dpll |= DPLL_DVO_HIGH_SPEED;
4365         }
4366         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4367                 dpll |= DPLL_DVO_HIGH_SPEED;
4368
4369         /* compute bitmask from p1 value */
4370         if (IS_PINEVIEW(dev))
4371                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4372         else {
4373                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4374                 if (IS_G4X(dev) && reduced_clock)
4375                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4376         }
4377         switch (clock->p2) {
4378         case 5:
4379                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4380                 break;
4381         case 7:
4382                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4383                 break;
4384         case 10:
4385                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4386                 break;
4387         case 14:
4388                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4389                 break;
4390         }
4391         if (INTEL_INFO(dev)->gen >= 4)
4392                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4393
4394         if (is_sdvo && intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_TVOUT))
4395                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4396         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_TVOUT))
4397                 /* XXX: just matching BIOS for now */
4398                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4399                 dpll |= 3;
4400         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4401                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4402                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4403         else
4404                 dpll |= PLL_REF_INPUT_DREFCLK;
4405
4406         dpll |= DPLL_VCO_ENABLE;
4407         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4408         POSTING_READ(DPLL(pipe));
4409         udelay(150);
4410
4411         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
4412                 if (encoder->pre_pll_enable)
4413                         encoder->pre_pll_enable(encoder);
4414
4415         if (crtc->config.has_dp_encoder)
4416                 intel_dp_set_m_n(crtc);
4417
4418         I915_WRITE(DPLL(pipe), dpll);
4419
4420         /* Wait for the clocks to stabilize. */
4421         POSTING_READ(DPLL(pipe));
4422         udelay(150);
4423
4424         if (INTEL_INFO(dev)->gen >= 4) {
4425                 u32 temp = 0;
4426                 if (is_sdvo) {
4427                         temp = 0;
4428                         if (crtc->config.pixel_multiplier > 1) {
4429                                 temp = (crtc->config.pixel_multiplier - 1)
4430                                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4431                         }
4432                 }
4433                 I915_WRITE(DPLL_MD(pipe), temp);
4434         } else {
4435                 /* The pixel multiplier can only be updated once the
4436                  * DPLL is enabled and the clocks are stable.
4437                  *
4438                  * So write it again.
4439                  */
4440                 I915_WRITE(DPLL(pipe), dpll);
4441         }
4442 }
4443
4444 static void i8xx_update_pll(struct intel_crtc *crtc,
4445                             struct drm_display_mode *adjusted_mode,
4446                             intel_clock_t *reduced_clock,
4447                             int num_connectors)
4448 {
4449         struct drm_device *dev = crtc->base.dev;
4450         struct drm_i915_private *dev_priv = dev->dev_private;
4451         struct intel_encoder *encoder;
4452         int pipe = crtc->pipe;
4453         u32 dpll;
4454         struct dpll *clock = &crtc->config.dpll;
4455
4456         i9xx_update_pll_dividers(crtc, reduced_clock);
4457
4458         dpll = DPLL_VGA_MODE_DIS;
4459
4460         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
4461                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4462         } else {
4463                 if (clock->p1 == 2)
4464                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4465                 else
4466                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4467                 if (clock->p2 == 4)
4468                         dpll |= PLL_P2_DIVIDE_BY_4;
4469         }
4470
4471         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4472                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4473                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4474         else
4475                 dpll |= PLL_REF_INPUT_DREFCLK;
4476
4477         dpll |= DPLL_VCO_ENABLE;
4478         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4479         POSTING_READ(DPLL(pipe));
4480         udelay(150);
4481
4482         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
4483                 if (encoder->pre_pll_enable)
4484                         encoder->pre_pll_enable(encoder);
4485
4486         I915_WRITE(DPLL(pipe), dpll);
4487
4488         /* Wait for the clocks to stabilize. */
4489         POSTING_READ(DPLL(pipe));
4490         udelay(150);
4491
4492         /* The pixel multiplier can only be updated once the
4493          * DPLL is enabled and the clocks are stable.
4494          *
4495          * So write it again.
4496          */
4497         I915_WRITE(DPLL(pipe), dpll);
4498 }
4499
4500 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4501                                    struct drm_display_mode *mode,
4502                                    struct drm_display_mode *adjusted_mode)
4503 {
4504         struct drm_device *dev = intel_crtc->base.dev;
4505         struct drm_i915_private *dev_priv = dev->dev_private;
4506         enum pipe pipe = intel_crtc->pipe;
4507         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4508         uint32_t vsyncshift;
4509
4510         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4511                 /* the chip adds 2 halflines automatically */
4512                 adjusted_mode->crtc_vtotal -= 1;
4513                 adjusted_mode->crtc_vblank_end -= 1;
4514                 vsyncshift = adjusted_mode->crtc_hsync_start
4515                              - adjusted_mode->crtc_htotal / 2;
4516         } else {
4517                 vsyncshift = 0;
4518         }
4519
4520         if (INTEL_INFO(dev)->gen > 3)
4521                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4522
4523         I915_WRITE(HTOTAL(cpu_transcoder),
4524                    (adjusted_mode->crtc_hdisplay - 1) |
4525                    ((adjusted_mode->crtc_htotal - 1) << 16));
4526         I915_WRITE(HBLANK(cpu_transcoder),
4527                    (adjusted_mode->crtc_hblank_start - 1) |
4528                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4529         I915_WRITE(HSYNC(cpu_transcoder),
4530                    (adjusted_mode->crtc_hsync_start - 1) |
4531                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4532
4533         I915_WRITE(VTOTAL(cpu_transcoder),
4534                    (adjusted_mode->crtc_vdisplay - 1) |
4535                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4536         I915_WRITE(VBLANK(cpu_transcoder),
4537                    (adjusted_mode->crtc_vblank_start - 1) |
4538                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4539         I915_WRITE(VSYNC(cpu_transcoder),
4540                    (adjusted_mode->crtc_vsync_start - 1) |
4541                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4542
4543         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4544          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4545          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4546          * bits. */
4547         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4548             (pipe == PIPE_B || pipe == PIPE_C))
4549                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4550
4551         /* pipesrc controls the size that is scaled from, which should
4552          * always be the user's requested size.
4553          */
4554         I915_WRITE(PIPESRC(pipe),
4555                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4556 }
4557
4558 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
4559 {
4560         struct drm_device *dev = intel_crtc->base.dev;
4561         struct drm_i915_private *dev_priv = dev->dev_private;
4562         uint32_t pipeconf;
4563
4564         pipeconf = I915_READ(PIPECONF(intel_crtc->pipe));
4565
4566         if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4567                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4568                  * core speed.
4569                  *
4570                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4571                  * pipe == 0 check?
4572                  */
4573                 if (intel_crtc->config.requested_mode.clock >
4574                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4575                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4576                 else
4577                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4578         }
4579
4580         /* default to 8bpc */
4581         pipeconf &= ~(PIPECONF_BPC_MASK | PIPECONF_DITHER_EN);
4582         if (intel_crtc->config.has_dp_encoder) {
4583                 if (intel_crtc->config.dither) {
4584                         pipeconf |= PIPECONF_6BPC |
4585                                     PIPECONF_DITHER_EN |
4586                                     PIPECONF_DITHER_TYPE_SP;
4587                 }
4588         }
4589
4590         if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(&intel_crtc->base,
4591                                                       INTEL_OUTPUT_EDP)) {
4592                 if (intel_crtc->config.dither) {
4593                         pipeconf |= PIPECONF_6BPC |
4594                                         PIPECONF_ENABLE |
4595                                         I965_PIPECONF_ACTIVE;
4596                 }
4597         }
4598
4599         if (HAS_PIPE_CXSR(dev)) {
4600                 if (intel_crtc->lowfreq_avail) {
4601                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4602                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4603                 } else {
4604                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4605                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4606                 }
4607         }
4608
4609         pipeconf &= ~PIPECONF_INTERLACE_MASK;
4610         if (!IS_GEN2(dev) &&
4611             intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
4612                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4613         else
4614                 pipeconf |= PIPECONF_PROGRESSIVE;
4615
4616         if (IS_VALLEYVIEW(dev)) {
4617                 if (intel_crtc->config.limited_color_range)
4618                         pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
4619                 else
4620                         pipeconf &= ~PIPECONF_COLOR_RANGE_SELECT;
4621         }
4622
4623         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
4624         POSTING_READ(PIPECONF(intel_crtc->pipe));
4625 }
4626
4627 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4628                               int x, int y,
4629                               struct drm_framebuffer *fb)
4630 {
4631         struct drm_device *dev = crtc->dev;
4632         struct drm_i915_private *dev_priv = dev->dev_private;
4633         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4634         struct drm_display_mode *adjusted_mode =
4635                 &intel_crtc->config.adjusted_mode;
4636         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4637         int pipe = intel_crtc->pipe;
4638         int plane = intel_crtc->plane;
4639         int refclk, num_connectors = 0;
4640         intel_clock_t clock, reduced_clock;
4641         u32 dspcntr;
4642         bool ok, has_reduced_clock = false, is_sdvo = false;
4643         bool is_lvds = false, is_tv = false;
4644         struct intel_encoder *encoder;
4645         const intel_limit_t *limit;
4646         int ret;
4647
4648         for_each_encoder_on_crtc(dev, crtc, encoder) {
4649                 switch (encoder->type) {
4650                 case INTEL_OUTPUT_LVDS:
4651                         is_lvds = true;
4652                         break;
4653                 case INTEL_OUTPUT_SDVO:
4654                 case INTEL_OUTPUT_HDMI:
4655                         is_sdvo = true;
4656                         if (encoder->needs_tv_clock)
4657                                 is_tv = true;
4658                         break;
4659                 case INTEL_OUTPUT_TVOUT:
4660                         is_tv = true;
4661                         break;
4662                 }
4663
4664                 num_connectors++;
4665         }
4666
4667         refclk = i9xx_get_refclk(crtc, num_connectors);
4668
4669         /*
4670          * Returns a set of divisors for the desired target clock with the given
4671          * refclk, or FALSE.  The returned values represent the clock equation:
4672          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4673          */
4674         limit = intel_limit(crtc, refclk);
4675         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4676                              &clock);
4677         if (!ok) {
4678                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4679                 return -EINVAL;
4680         }
4681
4682         /* Ensure that the cursor is valid for the new mode before changing... */
4683         intel_crtc_update_cursor(crtc, true);
4684
4685         if (is_lvds && dev_priv->lvds_downclock_avail) {
4686                 /*
4687                  * Ensure we match the reduced clock's P to the target clock.
4688                  * If the clocks don't match, we can't switch the display clock
4689                  * by using the FP0/FP1. In such case we will disable the LVDS
4690                  * downclock feature.
4691                 */
4692                 has_reduced_clock = limit->find_pll(limit, crtc,
4693                                                     dev_priv->lvds_downclock,
4694                                                     refclk,
4695                                                     &clock,
4696                                                     &reduced_clock);
4697         }
4698         /* Compat-code for transition, will disappear. */
4699         if (!intel_crtc->config.clock_set) {
4700                 intel_crtc->config.dpll.n = clock.n;
4701                 intel_crtc->config.dpll.m1 = clock.m1;
4702                 intel_crtc->config.dpll.m2 = clock.m2;
4703                 intel_crtc->config.dpll.p1 = clock.p1;
4704                 intel_crtc->config.dpll.p2 = clock.p2;
4705         }
4706
4707         if (is_sdvo && is_tv)
4708                 i9xx_adjust_sdvo_tv_clock(intel_crtc);
4709
4710         if (IS_GEN2(dev))
4711                 i8xx_update_pll(intel_crtc, adjusted_mode,
4712                                 has_reduced_clock ? &reduced_clock : NULL,
4713                                 num_connectors);
4714         else if (IS_VALLEYVIEW(dev))
4715                 vlv_update_pll(intel_crtc);
4716         else
4717                 i9xx_update_pll(intel_crtc,
4718                                 has_reduced_clock ? &reduced_clock : NULL,
4719                                 num_connectors);
4720
4721         /* Set up the display plane register */
4722         dspcntr = DISPPLANE_GAMMA_ENABLE;
4723
4724         if (!IS_VALLEYVIEW(dev)) {
4725                 if (pipe == 0)
4726                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4727                 else
4728                         dspcntr |= DISPPLANE_SEL_PIPE_B;
4729         }
4730
4731         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4732         drm_mode_debug_printmodeline(mode);
4733
4734         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4735
4736         /* pipesrc and dspsize control the size that is scaled from,
4737          * which should always be the user's requested size.
4738          */
4739         I915_WRITE(DSPSIZE(plane),
4740                    ((mode->vdisplay - 1) << 16) |
4741                    (mode->hdisplay - 1));
4742         I915_WRITE(DSPPOS(plane), 0);
4743
4744         i9xx_set_pipeconf(intel_crtc);
4745
4746         intel_enable_pipe(dev_priv, pipe, false);
4747
4748         intel_wait_for_vblank(dev, pipe);
4749
4750         I915_WRITE(DSPCNTR(plane), dspcntr);
4751         POSTING_READ(DSPCNTR(plane));
4752
4753         ret = intel_pipe_set_base(crtc, x, y, fb);
4754
4755         intel_update_watermarks(dev);
4756
4757         return ret;
4758 }
4759
4760 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
4761                                  struct intel_crtc_config *pipe_config)
4762 {
4763         struct drm_device *dev = crtc->base.dev;
4764         struct drm_i915_private *dev_priv = dev->dev_private;
4765         uint32_t tmp;
4766
4767         tmp = I915_READ(PIPECONF(crtc->pipe));
4768         if (!(tmp & PIPECONF_ENABLE))
4769                 return false;
4770
4771         return true;
4772 }
4773
4774 static void ironlake_init_pch_refclk(struct drm_device *dev)
4775 {
4776         struct drm_i915_private *dev_priv = dev->dev_private;
4777         struct drm_mode_config *mode_config = &dev->mode_config;
4778         struct intel_encoder *encoder;
4779         u32 val, final;
4780         bool has_lvds = false;
4781         bool has_cpu_edp = false;
4782         bool has_pch_edp = false;
4783         bool has_panel = false;
4784         bool has_ck505 = false;
4785         bool can_ssc = false;
4786
4787         /* We need to take the global config into account */
4788         list_for_each_entry(encoder, &mode_config->encoder_list,
4789                             base.head) {
4790                 switch (encoder->type) {
4791                 case INTEL_OUTPUT_LVDS:
4792                         has_panel = true;
4793                         has_lvds = true;
4794                         break;
4795                 case INTEL_OUTPUT_EDP:
4796                         has_panel = true;
4797                         if (intel_encoder_is_pch_edp(&encoder->base))
4798                                 has_pch_edp = true;
4799                         else
4800                                 has_cpu_edp = true;
4801                         break;
4802                 }
4803         }
4804
4805         if (HAS_PCH_IBX(dev)) {
4806                 has_ck505 = dev_priv->display_clock_mode;
4807                 can_ssc = has_ck505;
4808         } else {
4809                 has_ck505 = false;
4810                 can_ssc = true;
4811         }
4812
4813         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4814                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4815                       has_ck505);
4816
4817         /* Ironlake: try to setup display ref clock before DPLL
4818          * enabling. This is only under driver's control after
4819          * PCH B stepping, previous chipset stepping should be
4820          * ignoring this setting.
4821          */
4822         val = I915_READ(PCH_DREF_CONTROL);
4823
4824         /* As we must carefully and slowly disable/enable each source in turn,
4825          * compute the final state we want first and check if we need to
4826          * make any changes at all.
4827          */
4828         final = val;
4829         final &= ~DREF_NONSPREAD_SOURCE_MASK;
4830         if (has_ck505)
4831                 final |= DREF_NONSPREAD_CK505_ENABLE;
4832         else
4833                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
4834
4835         final &= ~DREF_SSC_SOURCE_MASK;
4836         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4837         final &= ~DREF_SSC1_ENABLE;
4838
4839         if (has_panel) {
4840                 final |= DREF_SSC_SOURCE_ENABLE;
4841
4842                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
4843                         final |= DREF_SSC1_ENABLE;
4844
4845                 if (has_cpu_edp) {
4846                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
4847                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4848                         else
4849                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4850                 } else
4851                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4852         } else {
4853                 final |= DREF_SSC_SOURCE_DISABLE;
4854                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4855         }
4856
4857         if (final == val)
4858                 return;
4859
4860         /* Always enable nonspread source */
4861         val &= ~DREF_NONSPREAD_SOURCE_MASK;
4862
4863         if (has_ck505)
4864                 val |= DREF_NONSPREAD_CK505_ENABLE;
4865         else
4866                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
4867
4868         if (has_panel) {
4869                 val &= ~DREF_SSC_SOURCE_MASK;
4870                 val |= DREF_SSC_SOURCE_ENABLE;
4871
4872                 /* SSC must be turned on before enabling the CPU output  */
4873                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4874                         DRM_DEBUG_KMS("Using SSC on panel\n");
4875                         val |= DREF_SSC1_ENABLE;
4876                 } else
4877                         val &= ~DREF_SSC1_ENABLE;
4878
4879                 /* Get SSC going before enabling the outputs */
4880                 I915_WRITE(PCH_DREF_CONTROL, val);
4881                 POSTING_READ(PCH_DREF_CONTROL);
4882                 udelay(200);
4883
4884                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4885
4886                 /* Enable CPU source on CPU attached eDP */
4887                 if (has_cpu_edp) {
4888                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4889                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
4890                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4891                         }
4892                         else
4893                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4894                 } else
4895                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4896
4897                 I915_WRITE(PCH_DREF_CONTROL, val);
4898                 POSTING_READ(PCH_DREF_CONTROL);
4899                 udelay(200);
4900         } else {
4901                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4902
4903                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4904
4905                 /* Turn off CPU output */
4906                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4907
4908                 I915_WRITE(PCH_DREF_CONTROL, val);
4909                 POSTING_READ(PCH_DREF_CONTROL);
4910                 udelay(200);
4911
4912                 /* Turn off the SSC source */
4913                 val &= ~DREF_SSC_SOURCE_MASK;
4914                 val |= DREF_SSC_SOURCE_DISABLE;
4915
4916                 /* Turn off SSC1 */
4917                 val &= ~DREF_SSC1_ENABLE;
4918
4919                 I915_WRITE(PCH_DREF_CONTROL, val);
4920                 POSTING_READ(PCH_DREF_CONTROL);
4921                 udelay(200);
4922         }
4923
4924         BUG_ON(val != final);
4925 }
4926
4927 /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
4928 static void lpt_init_pch_refclk(struct drm_device *dev)
4929 {
4930         struct drm_i915_private *dev_priv = dev->dev_private;
4931         struct drm_mode_config *mode_config = &dev->mode_config;
4932         struct intel_encoder *encoder;
4933         bool has_vga = false;
4934         bool is_sdv = false;
4935         u32 tmp;
4936
4937         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4938                 switch (encoder->type) {
4939                 case INTEL_OUTPUT_ANALOG:
4940                         has_vga = true;
4941                         break;
4942                 }
4943         }
4944
4945         if (!has_vga)
4946                 return;
4947
4948         mutex_lock(&dev_priv->dpio_lock);
4949
4950         /* XXX: Rip out SDV support once Haswell ships for real. */
4951         if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
4952                 is_sdv = true;
4953
4954         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
4955         tmp &= ~SBI_SSCCTL_DISABLE;
4956         tmp |= SBI_SSCCTL_PATHALT;
4957         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
4958
4959         udelay(24);
4960
4961         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
4962         tmp &= ~SBI_SSCCTL_PATHALT;
4963         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
4964
4965         if (!is_sdv) {
4966                 tmp = I915_READ(SOUTH_CHICKEN2);
4967                 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
4968                 I915_WRITE(SOUTH_CHICKEN2, tmp);
4969
4970                 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
4971                                        FDI_MPHY_IOSFSB_RESET_STATUS, 100))
4972                         DRM_ERROR("FDI mPHY reset assert timeout\n");
4973
4974                 tmp = I915_READ(SOUTH_CHICKEN2);
4975                 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
4976                 I915_WRITE(SOUTH_CHICKEN2, tmp);
4977
4978                 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
4979                                         FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
4980                                        100))
4981                         DRM_ERROR("FDI mPHY reset de-assert timeout\n");
4982         }
4983
4984         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
4985         tmp &= ~(0xFF << 24);
4986         tmp |= (0x12 << 24);
4987         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
4988
4989         if (is_sdv) {
4990                 tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
4991                 tmp |= 0x7FFF;
4992                 intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
4993         }
4994
4995         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
4996         tmp |= (1 << 11);
4997         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
4998
4999         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5000         tmp |= (1 << 11);
5001         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5002
5003         if (is_sdv) {
5004                 tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
5005                 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
5006                 intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
5007
5008                 tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
5009                 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
5010                 intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
5011
5012                 tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
5013                 tmp |= (0x3F << 8);
5014                 intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
5015
5016                 tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
5017                 tmp |= (0x3F << 8);
5018                 intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
5019         }
5020
5021         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5022         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5023         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5024
5025         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5026         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5027         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5028
5029         if (!is_sdv) {
5030                 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5031                 tmp &= ~(7 << 13);
5032                 tmp |= (5 << 13);
5033                 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5034
5035                 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5036                 tmp &= ~(7 << 13);
5037                 tmp |= (5 << 13);
5038                 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5039         }
5040
5041         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5042         tmp &= ~0xFF;
5043         tmp |= 0x1C;
5044         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5045
5046         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5047         tmp &= ~0xFF;
5048         tmp |= 0x1C;
5049         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5050
5051         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5052         tmp &= ~(0xFF << 16);
5053         tmp |= (0x1C << 16);
5054         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5055
5056         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5057         tmp &= ~(0xFF << 16);
5058         tmp |= (0x1C << 16);
5059         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5060
5061         if (!is_sdv) {
5062                 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5063                 tmp |= (1 << 27);
5064                 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5065
5066                 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5067                 tmp |= (1 << 27);
5068                 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5069
5070                 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5071                 tmp &= ~(0xF << 28);
5072                 tmp |= (4 << 28);
5073                 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5074
5075                 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5076                 tmp &= ~(0xF << 28);
5077                 tmp |= (4 << 28);
5078                 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5079         }
5080
5081         /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
5082         tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
5083         tmp |= SBI_DBUFF0_ENABLE;
5084         intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
5085
5086         mutex_unlock(&dev_priv->dpio_lock);
5087 }
5088
5089 /*
5090  * Initialize reference clocks when the driver loads
5091  */
5092 void intel_init_pch_refclk(struct drm_device *dev)
5093 {
5094         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5095                 ironlake_init_pch_refclk(dev);
5096         else if (HAS_PCH_LPT(dev))
5097                 lpt_init_pch_refclk(dev);
5098 }
5099
5100 static int ironlake_get_refclk(struct drm_crtc *crtc)
5101 {
5102         struct drm_device *dev = crtc->dev;
5103         struct drm_i915_private *dev_priv = dev->dev_private;
5104         struct intel_encoder *encoder;
5105         struct intel_encoder *edp_encoder = NULL;
5106         int num_connectors = 0;
5107         bool is_lvds = false;
5108
5109         for_each_encoder_on_crtc(dev, crtc, encoder) {
5110                 switch (encoder->type) {
5111                 case INTEL_OUTPUT_LVDS:
5112                         is_lvds = true;
5113                         break;
5114                 case INTEL_OUTPUT_EDP:
5115                         edp_encoder = encoder;
5116                         break;
5117                 }
5118                 num_connectors++;
5119         }
5120
5121         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5122                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5123                               dev_priv->lvds_ssc_freq);
5124                 return dev_priv->lvds_ssc_freq * 1000;
5125         }
5126
5127         return 120000;
5128 }
5129
5130 static void ironlake_set_pipeconf(struct drm_crtc *crtc,
5131                                   struct drm_display_mode *adjusted_mode,
5132                                   bool dither)
5133 {
5134         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5135         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5136         int pipe = intel_crtc->pipe;
5137         uint32_t val;
5138
5139         val = I915_READ(PIPECONF(pipe));
5140
5141         val &= ~PIPECONF_BPC_MASK;
5142         switch (intel_crtc->config.pipe_bpp) {
5143         case 18:
5144                 val |= PIPECONF_6BPC;
5145                 break;
5146         case 24:
5147                 val |= PIPECONF_8BPC;
5148                 break;
5149         case 30:
5150                 val |= PIPECONF_10BPC;
5151                 break;
5152         case 36:
5153                 val |= PIPECONF_12BPC;
5154                 break;
5155         default:
5156                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5157                 BUG();
5158         }
5159
5160         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5161         if (dither)
5162                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5163
5164         val &= ~PIPECONF_INTERLACE_MASK;
5165         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5166                 val |= PIPECONF_INTERLACED_ILK;
5167         else
5168                 val |= PIPECONF_PROGRESSIVE;
5169
5170         if (intel_crtc->config.limited_color_range)
5171                 val |= PIPECONF_COLOR_RANGE_SELECT;
5172         else
5173                 val &= ~PIPECONF_COLOR_RANGE_SELECT;
5174
5175         I915_WRITE(PIPECONF(pipe), val);
5176         POSTING_READ(PIPECONF(pipe));
5177 }
5178
5179 /*
5180  * Set up the pipe CSC unit.
5181  *
5182  * Currently only full range RGB to limited range RGB conversion
5183  * is supported, but eventually this should handle various
5184  * RGB<->YCbCr scenarios as well.
5185  */
5186 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5187 {
5188         struct drm_device *dev = crtc->dev;
5189         struct drm_i915_private *dev_priv = dev->dev_private;
5190         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5191         int pipe = intel_crtc->pipe;
5192         uint16_t coeff = 0x7800; /* 1.0 */
5193
5194         /*
5195          * TODO: Check what kind of values actually come out of the pipe
5196          * with these coeff/postoff values and adjust to get the best
5197          * accuracy. Perhaps we even need to take the bpc value into
5198          * consideration.
5199          */
5200
5201         if (intel_crtc->config.limited_color_range)
5202                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5203
5204         /*
5205          * GY/GU and RY/RU should be the other way around according
5206          * to BSpec, but reality doesn't agree. Just set them up in
5207          * a way that results in the correct picture.
5208          */
5209         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5210         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5211
5212         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5213         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5214
5215         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5216         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5217
5218         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5219         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5220         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5221
5222         if (INTEL_INFO(dev)->gen > 6) {
5223                 uint16_t postoff = 0;
5224
5225                 if (intel_crtc->config.limited_color_range)
5226                         postoff = (16 * (1 << 13) / 255) & 0x1fff;
5227
5228                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5229                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5230                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5231
5232                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5233         } else {
5234                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5235
5236                 if (intel_crtc->config.limited_color_range)
5237                         mode |= CSC_BLACK_SCREEN_OFFSET;
5238
5239                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5240         }
5241 }
5242
5243 static void haswell_set_pipeconf(struct drm_crtc *crtc,
5244                                  struct drm_display_mode *adjusted_mode,
5245                                  bool dither)
5246 {
5247         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5248         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5249         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5250         uint32_t val;
5251
5252         val = I915_READ(PIPECONF(cpu_transcoder));
5253
5254         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5255         if (dither)
5256                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5257
5258         val &= ~PIPECONF_INTERLACE_MASK_HSW;
5259         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5260                 val |= PIPECONF_INTERLACED_ILK;
5261         else
5262                 val |= PIPECONF_PROGRESSIVE;
5263
5264         I915_WRITE(PIPECONF(cpu_transcoder), val);
5265         POSTING_READ(PIPECONF(cpu_transcoder));
5266 }
5267
5268 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5269                                     struct drm_display_mode *adjusted_mode,
5270                                     intel_clock_t *clock,
5271                                     bool *has_reduced_clock,
5272                                     intel_clock_t *reduced_clock)
5273 {
5274         struct drm_device *dev = crtc->dev;
5275         struct drm_i915_private *dev_priv = dev->dev_private;
5276         struct intel_encoder *intel_encoder;
5277         int refclk;
5278         const intel_limit_t *limit;
5279         bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
5280
5281         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5282                 switch (intel_encoder->type) {
5283                 case INTEL_OUTPUT_LVDS:
5284                         is_lvds = true;
5285                         break;
5286                 case INTEL_OUTPUT_SDVO:
5287                 case INTEL_OUTPUT_HDMI:
5288                         is_sdvo = true;
5289                         if (intel_encoder->needs_tv_clock)
5290                                 is_tv = true;
5291                         break;
5292                 case INTEL_OUTPUT_TVOUT:
5293                         is_tv = true;
5294                         break;
5295                 }
5296         }
5297
5298         refclk = ironlake_get_refclk(crtc);
5299
5300         /*
5301          * Returns a set of divisors for the desired target clock with the given
5302          * refclk, or FALSE.  The returned values represent the clock equation:
5303          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5304          */
5305         limit = intel_limit(crtc, refclk);
5306         ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5307                               clock);
5308         if (!ret)
5309                 return false;
5310
5311         if (is_lvds && dev_priv->lvds_downclock_avail) {
5312                 /*
5313                  * Ensure we match the reduced clock's P to the target clock.
5314                  * If the clocks don't match, we can't switch the display clock
5315                  * by using the FP0/FP1. In such case we will disable the LVDS
5316                  * downclock feature.
5317                 */
5318                 *has_reduced_clock = limit->find_pll(limit, crtc,
5319                                                      dev_priv->lvds_downclock,
5320                                                      refclk,
5321                                                      clock,
5322                                                      reduced_clock);
5323         }
5324
5325         if (is_sdvo && is_tv)
5326                 i9xx_adjust_sdvo_tv_clock(to_intel_crtc(crtc));
5327
5328         return true;
5329 }
5330
5331 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5332 {
5333         struct drm_i915_private *dev_priv = dev->dev_private;
5334         uint32_t temp;
5335
5336         temp = I915_READ(SOUTH_CHICKEN1);
5337         if (temp & FDI_BC_BIFURCATION_SELECT)
5338                 return;
5339
5340         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5341         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5342
5343         temp |= FDI_BC_BIFURCATION_SELECT;
5344         DRM_DEBUG_KMS("enabling fdi C rx\n");
5345         I915_WRITE(SOUTH_CHICKEN1, temp);
5346         POSTING_READ(SOUTH_CHICKEN1);
5347 }
5348
5349 static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
5350 {
5351         struct drm_device *dev = intel_crtc->base.dev;
5352         struct drm_i915_private *dev_priv = dev->dev_private;
5353         struct intel_crtc *pipe_B_crtc =
5354                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5355
5356         DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
5357                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5358         if (intel_crtc->fdi_lanes > 4) {
5359                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
5360                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5361                 /* Clamp lanes to avoid programming the hw with bogus values. */
5362                 intel_crtc->fdi_lanes = 4;
5363
5364                 return false;
5365         }
5366
5367         if (INTEL_INFO(dev)->num_pipes == 2)
5368                 return true;
5369
5370         switch (intel_crtc->pipe) {
5371         case PIPE_A:
5372                 return true;
5373         case PIPE_B:
5374                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5375                     intel_crtc->fdi_lanes > 2) {
5376                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5377                                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5378                         /* Clamp lanes to avoid programming the hw with bogus values. */
5379                         intel_crtc->fdi_lanes = 2;
5380
5381                         return false;
5382                 }
5383
5384                 if (intel_crtc->fdi_lanes > 2)
5385                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5386                 else
5387                         cpt_enable_fdi_bc_bifurcation(dev);
5388
5389                 return true;
5390         case PIPE_C:
5391                 if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
5392                         if (intel_crtc->fdi_lanes > 2) {
5393                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5394                                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5395                                 /* Clamp lanes to avoid programming the hw with bogus values. */
5396                                 intel_crtc->fdi_lanes = 2;
5397
5398                                 return false;
5399                         }
5400                 } else {
5401                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5402                         return false;
5403                 }
5404
5405                 cpt_enable_fdi_bc_bifurcation(dev);
5406
5407                 return true;
5408         default:
5409                 BUG();
5410         }
5411 }
5412
5413 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5414 {
5415         /*
5416          * Account for spread spectrum to avoid
5417          * oversubscribing the link. Max center spread
5418          * is 2.5%; use 5% for safety's sake.
5419          */
5420         u32 bps = target_clock * bpp * 21 / 20;
5421         return bps / (link_bw * 8) + 1;
5422 }
5423
5424 void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5425                                   struct intel_link_m_n *m_n)
5426 {
5427         struct drm_device *dev = crtc->base.dev;
5428         struct drm_i915_private *dev_priv = dev->dev_private;
5429         int pipe = crtc->pipe;
5430
5431         I915_WRITE(TRANSDATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5432         I915_WRITE(TRANSDATA_N1(pipe), m_n->gmch_n);
5433         I915_WRITE(TRANSDPLINK_M1(pipe), m_n->link_m);
5434         I915_WRITE(TRANSDPLINK_N1(pipe), m_n->link_n);
5435 }
5436
5437 void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5438                                   struct intel_link_m_n *m_n)
5439 {
5440         struct drm_device *dev = crtc->base.dev;
5441         struct drm_i915_private *dev_priv = dev->dev_private;
5442         int pipe = crtc->pipe;
5443         enum transcoder transcoder = crtc->config.cpu_transcoder;
5444
5445         if (INTEL_INFO(dev)->gen >= 5) {
5446                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5447                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5448                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5449                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5450         } else {
5451                 I915_WRITE(PIPE_GMCH_DATA_M(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5452                 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n->gmch_n);
5453                 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n->link_m);
5454                 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n->link_n);
5455         }
5456 }
5457
5458 static void ironlake_fdi_set_m_n(struct drm_crtc *crtc)
5459 {
5460         struct drm_device *dev = crtc->dev;
5461         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5462         struct drm_display_mode *adjusted_mode =
5463                 &intel_crtc->config.adjusted_mode;
5464         struct intel_link_m_n m_n = {0};
5465         int target_clock, lane, link_bw;
5466
5467         /* FDI is a binary signal running at ~2.7GHz, encoding
5468          * each output octet as 10 bits. The actual frequency
5469          * is stored as a divider into a 100MHz clock, and the
5470          * mode pixel clock is stored in units of 1KHz.
5471          * Hence the bw of each lane in terms of the mode signal
5472          * is:
5473          */
5474         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5475
5476         if (intel_crtc->config.pixel_target_clock)
5477                 target_clock = intel_crtc->config.pixel_target_clock;
5478         else
5479                 target_clock = adjusted_mode->clock;
5480
5481         lane = ironlake_get_lanes_required(target_clock, link_bw,
5482                                            intel_crtc->config.pipe_bpp);
5483
5484         intel_crtc->fdi_lanes = lane;
5485
5486         if (intel_crtc->config.pixel_multiplier > 1)
5487                 link_bw *= intel_crtc->config.pixel_multiplier;
5488         intel_link_compute_m_n(intel_crtc->config.pipe_bpp, lane, target_clock,
5489                                link_bw, &m_n);
5490
5491         intel_cpu_transcoder_set_m_n(intel_crtc, &m_n);
5492 }
5493
5494 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5495                                       intel_clock_t *clock, u32 *fp,
5496                                       intel_clock_t *reduced_clock, u32 *fp2)
5497 {
5498         struct drm_crtc *crtc = &intel_crtc->base;
5499         struct drm_device *dev = crtc->dev;
5500         struct drm_i915_private *dev_priv = dev->dev_private;
5501         struct intel_encoder *intel_encoder;
5502         uint32_t dpll;
5503         int factor, num_connectors = 0;
5504         bool is_lvds = false, is_sdvo = false, is_tv = false;
5505
5506         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5507                 switch (intel_encoder->type) {
5508                 case INTEL_OUTPUT_LVDS:
5509                         is_lvds = true;
5510                         break;
5511                 case INTEL_OUTPUT_SDVO:
5512                 case INTEL_OUTPUT_HDMI:
5513                         is_sdvo = true;
5514                         if (intel_encoder->needs_tv_clock)
5515                                 is_tv = true;
5516                         break;
5517                 case INTEL_OUTPUT_TVOUT:
5518                         is_tv = true;
5519                         break;
5520                 }
5521
5522                 num_connectors++;
5523         }
5524
5525         /* Enable autotuning of the PLL clock (if permissible) */
5526         factor = 21;
5527         if (is_lvds) {
5528                 if ((intel_panel_use_ssc(dev_priv) &&
5529                      dev_priv->lvds_ssc_freq == 100) ||
5530                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
5531                         factor = 25;
5532         } else if (is_sdvo && is_tv)
5533                 factor = 20;
5534
5535         if (clock->m < factor * clock->n)
5536                 *fp |= FP_CB_TUNE;
5537
5538         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
5539                 *fp2 |= FP_CB_TUNE;
5540
5541         dpll = 0;
5542
5543         if (is_lvds)
5544                 dpll |= DPLLB_MODE_LVDS;
5545         else
5546                 dpll |= DPLLB_MODE_DAC_SERIAL;
5547         if (is_sdvo) {
5548                 if (intel_crtc->config.pixel_multiplier > 1) {
5549                         dpll |= (intel_crtc->config.pixel_multiplier - 1)
5550                                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5551                 }
5552                 dpll |= DPLL_DVO_HIGH_SPEED;
5553         }
5554         if (intel_crtc->config.has_dp_encoder &&
5555             intel_crtc->config.has_pch_encoder)
5556                 dpll |= DPLL_DVO_HIGH_SPEED;
5557
5558         /* compute bitmask from p1 value */
5559         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5560         /* also FPA1 */
5561         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5562
5563         switch (clock->p2) {
5564         case 5:
5565                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5566                 break;
5567         case 7:
5568                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5569                 break;
5570         case 10:
5571                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5572                 break;
5573         case 14:
5574                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5575                 break;
5576         }
5577
5578         if (is_sdvo && is_tv)
5579                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5580         else if (is_tv)
5581                 /* XXX: just matching BIOS for now */
5582                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5583                 dpll |= 3;
5584         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5585                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5586         else
5587                 dpll |= PLL_REF_INPUT_DREFCLK;
5588
5589         return dpll;
5590 }
5591
5592 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5593                                   int x, int y,
5594                                   struct drm_framebuffer *fb)
5595 {
5596         struct drm_device *dev = crtc->dev;
5597         struct drm_i915_private *dev_priv = dev->dev_private;
5598         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5599         struct drm_display_mode *adjusted_mode =
5600                 &intel_crtc->config.adjusted_mode;
5601         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5602         int pipe = intel_crtc->pipe;
5603         int plane = intel_crtc->plane;
5604         int num_connectors = 0;
5605         intel_clock_t clock, reduced_clock;
5606         u32 dpll, fp = 0, fp2 = 0;
5607         bool ok, has_reduced_clock = false;
5608         bool is_lvds = false;
5609         struct intel_encoder *encoder;
5610         int ret;
5611         bool dither, fdi_config_ok;
5612
5613         for_each_encoder_on_crtc(dev, crtc, encoder) {
5614                 switch (encoder->type) {
5615                 case INTEL_OUTPUT_LVDS:
5616                         is_lvds = true;
5617                         break;
5618                 }
5619
5620                 num_connectors++;
5621         }
5622
5623         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5624              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5625
5626         intel_crtc->config.cpu_transcoder = pipe;
5627
5628         ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5629                                      &has_reduced_clock, &reduced_clock);
5630         if (!ok) {
5631                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5632                 return -EINVAL;
5633         }
5634         /* Compat-code for transition, will disappear. */
5635         if (!intel_crtc->config.clock_set) {
5636                 intel_crtc->config.dpll.n = clock.n;
5637                 intel_crtc->config.dpll.m1 = clock.m1;
5638                 intel_crtc->config.dpll.m2 = clock.m2;
5639                 intel_crtc->config.dpll.p1 = clock.p1;
5640                 intel_crtc->config.dpll.p2 = clock.p2;
5641         }
5642
5643         /* Ensure that the cursor is valid for the new mode before changing... */
5644         intel_crtc_update_cursor(crtc, true);
5645
5646         /* determine panel color depth */
5647         dither = intel_crtc->config.dither;
5648         if (is_lvds && dev_priv->lvds_dither)
5649                 dither = true;
5650
5651         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5652         if (has_reduced_clock)
5653                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5654                         reduced_clock.m2;
5655
5656         dpll = ironlake_compute_dpll(intel_crtc, &clock, &fp, &reduced_clock,
5657                                      has_reduced_clock ? &fp2 : NULL);
5658
5659         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5660         drm_mode_debug_printmodeline(mode);
5661
5662         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5663         if (intel_crtc->config.has_pch_encoder) {
5664                 struct intel_pch_pll *pll;
5665
5666                 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5667                 if (pll == NULL) {
5668                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5669                                          pipe);
5670                         return -EINVAL;
5671                 }
5672         } else
5673                 intel_put_pch_pll(intel_crtc);
5674
5675         if (intel_crtc->config.has_dp_encoder)
5676                 intel_dp_set_m_n(intel_crtc);
5677
5678         for_each_encoder_on_crtc(dev, crtc, encoder)
5679                 if (encoder->pre_pll_enable)
5680                         encoder->pre_pll_enable(encoder);
5681
5682         if (intel_crtc->pch_pll) {
5683                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5684
5685                 /* Wait for the clocks to stabilize. */
5686                 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5687                 udelay(150);
5688
5689                 /* The pixel multiplier can only be updated once the
5690                  * DPLL is enabled and the clocks are stable.
5691                  *
5692                  * So write it again.
5693                  */
5694                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5695         }
5696
5697         intel_crtc->lowfreq_avail = false;
5698         if (intel_crtc->pch_pll) {
5699                 if (is_lvds && has_reduced_clock && i915_powersave) {
5700                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5701                         intel_crtc->lowfreq_avail = true;
5702                 } else {
5703                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5704                 }
5705         }
5706
5707         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5708
5709         /* Note, this also computes intel_crtc->fdi_lanes which is used below in
5710          * ironlake_check_fdi_lanes. */
5711         intel_crtc->fdi_lanes = 0;
5712         if (intel_crtc->config.has_pch_encoder)
5713                 ironlake_fdi_set_m_n(crtc);
5714
5715         fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
5716
5717         ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5718
5719         intel_wait_for_vblank(dev, pipe);
5720
5721         /* Set up the display plane register */
5722         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5723         POSTING_READ(DSPCNTR(plane));
5724
5725         ret = intel_pipe_set_base(crtc, x, y, fb);
5726
5727         intel_update_watermarks(dev);
5728
5729         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5730
5731         return fdi_config_ok ? ret : -EINVAL;
5732 }
5733
5734 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5735                                      struct intel_crtc_config *pipe_config)
5736 {
5737         struct drm_device *dev = crtc->base.dev;
5738         struct drm_i915_private *dev_priv = dev->dev_private;
5739         uint32_t tmp;
5740
5741         tmp = I915_READ(PIPECONF(crtc->pipe));
5742         if (!(tmp & PIPECONF_ENABLE))
5743                 return false;
5744
5745         if (I915_READ(TRANSCONF(crtc->pipe)) & TRANS_ENABLE)
5746                 pipe_config->has_pch_encoder = true;
5747
5748         return true;
5749 }
5750
5751 static void haswell_modeset_global_resources(struct drm_device *dev)
5752 {
5753         struct drm_i915_private *dev_priv = dev->dev_private;
5754         bool enable = false;
5755         struct intel_crtc *crtc;
5756         struct intel_encoder *encoder;
5757
5758         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
5759                 if (crtc->pipe != PIPE_A && crtc->base.enabled)
5760                         enable = true;
5761                 /* XXX: Should check for edp transcoder here, but thanks to init
5762                  * sequence that's not yet available. Just in case desktop eDP
5763                  * on PORT D is possible on haswell, too. */
5764         }
5765
5766         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
5767                             base.head) {
5768                 if (encoder->type != INTEL_OUTPUT_EDP &&
5769                     encoder->connectors_active)
5770                         enable = true;
5771         }
5772
5773         /* Even the eDP panel fitter is outside the always-on well. */
5774         if (dev_priv->pch_pf_size)
5775                 enable = true;
5776
5777         intel_set_power_well(dev, enable);
5778 }
5779
5780 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5781                                  int x, int y,
5782                                  struct drm_framebuffer *fb)
5783 {
5784         struct drm_device *dev = crtc->dev;
5785         struct drm_i915_private *dev_priv = dev->dev_private;
5786         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5787         struct drm_display_mode *adjusted_mode =
5788                 &intel_crtc->config.adjusted_mode;
5789         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5790         int pipe = intel_crtc->pipe;
5791         int plane = intel_crtc->plane;
5792         int num_connectors = 0;
5793         bool is_cpu_edp = false;
5794         struct intel_encoder *encoder;
5795         int ret;
5796         bool dither;
5797
5798         for_each_encoder_on_crtc(dev, crtc, encoder) {
5799                 switch (encoder->type) {
5800                 case INTEL_OUTPUT_EDP:
5801                         if (!intel_encoder_is_pch_edp(&encoder->base))
5802                                 is_cpu_edp = true;
5803                         break;
5804                 }
5805
5806                 num_connectors++;
5807         }
5808
5809         if (is_cpu_edp)
5810                 intel_crtc->config.cpu_transcoder = TRANSCODER_EDP;
5811         else
5812                 intel_crtc->config.cpu_transcoder = pipe;
5813
5814         /* We are not sure yet this won't happen. */
5815         WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5816              INTEL_PCH_TYPE(dev));
5817
5818         WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5819              num_connectors, pipe_name(pipe));
5820
5821         WARN_ON(I915_READ(PIPECONF(intel_crtc->config.cpu_transcoder)) &
5822                 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5823
5824         WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5825
5826         if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5827                 return -EINVAL;
5828
5829         /* Ensure that the cursor is valid for the new mode before changing... */
5830         intel_crtc_update_cursor(crtc, true);
5831
5832         /* determine panel color depth */
5833         dither = intel_crtc->config.dither;
5834
5835         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5836         drm_mode_debug_printmodeline(mode);
5837
5838         if (intel_crtc->config.has_dp_encoder)
5839                 intel_dp_set_m_n(intel_crtc);
5840
5841         intel_crtc->lowfreq_avail = false;
5842
5843         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5844
5845         if (intel_crtc->config.has_pch_encoder)
5846                 ironlake_fdi_set_m_n(crtc);
5847
5848         haswell_set_pipeconf(crtc, adjusted_mode, dither);
5849
5850         intel_set_pipe_csc(crtc);
5851
5852         /* Set up the display plane register */
5853         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
5854         POSTING_READ(DSPCNTR(plane));
5855
5856         ret = intel_pipe_set_base(crtc, x, y, fb);
5857
5858         intel_update_watermarks(dev);
5859
5860         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5861
5862         return ret;
5863 }
5864
5865 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
5866                                     struct intel_crtc_config *pipe_config)
5867 {
5868         struct drm_device *dev = crtc->base.dev;
5869         struct drm_i915_private *dev_priv = dev->dev_private;
5870         uint32_t tmp;
5871
5872         tmp = I915_READ(PIPECONF(crtc->config.cpu_transcoder));
5873         if (!(tmp & PIPECONF_ENABLE))
5874                 return false;
5875
5876         /*
5877          * aswell has only FDI/PCH transcoder A. It is which is connected to
5878          * DDI E. So just check whether this pipe is wired to DDI E and whether
5879          * the PCH transcoder is on.
5880          */
5881         tmp = I915_READ(TRANS_DDI_FUNC_CTL(crtc->pipe));
5882         if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
5883             I915_READ(TRANSCONF(PIPE_A)) & TRANS_ENABLE)
5884                 pipe_config->has_pch_encoder = true;
5885
5886
5887         return true;
5888 }
5889
5890 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5891                                int x, int y,
5892                                struct drm_framebuffer *fb)
5893 {
5894         struct drm_device *dev = crtc->dev;
5895         struct drm_i915_private *dev_priv = dev->dev_private;
5896         struct drm_encoder_helper_funcs *encoder_funcs;
5897         struct intel_encoder *encoder;
5898         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5899         struct drm_display_mode *adjusted_mode =
5900                 &intel_crtc->config.adjusted_mode;
5901         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5902         int pipe = intel_crtc->pipe;
5903         int ret;
5904
5905         drm_vblank_pre_modeset(dev, pipe);
5906
5907         ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
5908
5909         drm_vblank_post_modeset(dev, pipe);
5910
5911         if (ret != 0)
5912                 return ret;
5913
5914         for_each_encoder_on_crtc(dev, crtc, encoder) {
5915                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
5916                         encoder->base.base.id,
5917                         drm_get_encoder_name(&encoder->base),
5918                         mode->base.id, mode->name);
5919                 if (encoder->mode_set) {
5920                         encoder->mode_set(encoder);
5921                 } else {
5922                         encoder_funcs = encoder->base.helper_private;
5923                         encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
5924                 }
5925         }
5926
5927         return 0;
5928 }
5929
5930 static bool intel_eld_uptodate(struct drm_connector *connector,
5931                                int reg_eldv, uint32_t bits_eldv,
5932                                int reg_elda, uint32_t bits_elda,
5933                                int reg_edid)
5934 {
5935         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5936         uint8_t *eld = connector->eld;
5937         uint32_t i;
5938
5939         i = I915_READ(reg_eldv);
5940         i &= bits_eldv;
5941
5942         if (!eld[0])
5943                 return !i;
5944
5945         if (!i)
5946                 return false;
5947
5948         i = I915_READ(reg_elda);
5949         i &= ~bits_elda;
5950         I915_WRITE(reg_elda, i);
5951
5952         for (i = 0; i < eld[2]; i++)
5953                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5954                         return false;
5955
5956         return true;
5957 }
5958
5959 static void g4x_write_eld(struct drm_connector *connector,
5960                           struct drm_crtc *crtc)
5961 {
5962         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5963         uint8_t *eld = connector->eld;
5964         uint32_t eldv;
5965         uint32_t len;
5966         uint32_t i;
5967
5968         i = I915_READ(G4X_AUD_VID_DID);
5969
5970         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5971                 eldv = G4X_ELDV_DEVCL_DEVBLC;
5972         else
5973                 eldv = G4X_ELDV_DEVCTG;
5974
5975         if (intel_eld_uptodate(connector,
5976                                G4X_AUD_CNTL_ST, eldv,
5977                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5978                                G4X_HDMIW_HDMIEDID))
5979                 return;
5980
5981         i = I915_READ(G4X_AUD_CNTL_ST);
5982         i &= ~(eldv | G4X_ELD_ADDR);
5983         len = (i >> 9) & 0x1f;          /* ELD buffer size */
5984         I915_WRITE(G4X_AUD_CNTL_ST, i);
5985
5986         if (!eld[0])
5987                 return;
5988
5989         len = min_t(uint8_t, eld[2], len);
5990         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5991         for (i = 0; i < len; i++)
5992                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5993
5994         i = I915_READ(G4X_AUD_CNTL_ST);
5995         i |= eldv;
5996         I915_WRITE(G4X_AUD_CNTL_ST, i);
5997 }
5998
5999 static void haswell_write_eld(struct drm_connector *connector,
6000                                      struct drm_crtc *crtc)
6001 {
6002         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6003         uint8_t *eld = connector->eld;
6004         struct drm_device *dev = crtc->dev;
6005         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6006         uint32_t eldv;
6007         uint32_t i;
6008         int len;
6009         int pipe = to_intel_crtc(crtc)->pipe;
6010         int tmp;
6011
6012         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
6013         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
6014         int aud_config = HSW_AUD_CFG(pipe);
6015         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
6016
6017
6018         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
6019
6020         /* Audio output enable */
6021         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
6022         tmp = I915_READ(aud_cntrl_st2);
6023         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
6024         I915_WRITE(aud_cntrl_st2, tmp);
6025
6026         /* Wait for 1 vertical blank */
6027         intel_wait_for_vblank(dev, pipe);
6028
6029         /* Set ELD valid state */
6030         tmp = I915_READ(aud_cntrl_st2);
6031         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
6032         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6033         I915_WRITE(aud_cntrl_st2, tmp);
6034         tmp = I915_READ(aud_cntrl_st2);
6035         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
6036
6037         /* Enable HDMI mode */
6038         tmp = I915_READ(aud_config);
6039         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
6040         /* clear N_programing_enable and N_value_index */
6041         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6042         I915_WRITE(aud_config, tmp);
6043
6044         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6045
6046         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
6047         intel_crtc->eld_vld = true;
6048
6049         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6050                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6051                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6052                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6053         } else
6054                 I915_WRITE(aud_config, 0);
6055
6056         if (intel_eld_uptodate(connector,
6057                                aud_cntrl_st2, eldv,
6058                                aud_cntl_st, IBX_ELD_ADDRESS,
6059                                hdmiw_hdmiedid))
6060                 return;
6061
6062         i = I915_READ(aud_cntrl_st2);
6063         i &= ~eldv;
6064         I915_WRITE(aud_cntrl_st2, i);
6065
6066         if (!eld[0])
6067                 return;
6068
6069         i = I915_READ(aud_cntl_st);
6070         i &= ~IBX_ELD_ADDRESS;
6071         I915_WRITE(aud_cntl_st, i);
6072         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6073         DRM_DEBUG_DRIVER("port num:%d\n", i);
6074
6075         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6076         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6077         for (i = 0; i < len; i++)
6078                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6079
6080         i = I915_READ(aud_cntrl_st2);
6081         i |= eldv;
6082         I915_WRITE(aud_cntrl_st2, i);
6083
6084 }
6085
6086 static void ironlake_write_eld(struct drm_connector *connector,
6087                                      struct drm_crtc *crtc)
6088 {
6089         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6090         uint8_t *eld = connector->eld;
6091         uint32_t eldv;
6092         uint32_t i;
6093         int len;
6094         int hdmiw_hdmiedid;
6095         int aud_config;
6096         int aud_cntl_st;
6097         int aud_cntrl_st2;
6098         int pipe = to_intel_crtc(crtc)->pipe;
6099
6100         if (HAS_PCH_IBX(connector->dev)) {
6101                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6102                 aud_config = IBX_AUD_CFG(pipe);
6103                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6104                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6105         } else {
6106                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6107                 aud_config = CPT_AUD_CFG(pipe);
6108                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6109                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6110         }
6111
6112         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6113
6114         i = I915_READ(aud_cntl_st);
6115         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6116         if (!i) {
6117                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6118                 /* operate blindly on all ports */
6119                 eldv = IBX_ELD_VALIDB;
6120                 eldv |= IBX_ELD_VALIDB << 4;
6121                 eldv |= IBX_ELD_VALIDB << 8;
6122         } else {
6123                 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
6124                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6125         }
6126
6127         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6128                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6129                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6130                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6131         } else
6132                 I915_WRITE(aud_config, 0);
6133
6134         if (intel_eld_uptodate(connector,
6135                                aud_cntrl_st2, eldv,
6136                                aud_cntl_st, IBX_ELD_ADDRESS,
6137                                hdmiw_hdmiedid))
6138                 return;
6139
6140         i = I915_READ(aud_cntrl_st2);
6141         i &= ~eldv;
6142         I915_WRITE(aud_cntrl_st2, i);
6143
6144         if (!eld[0])
6145                 return;
6146
6147         i = I915_READ(aud_cntl_st);
6148         i &= ~IBX_ELD_ADDRESS;
6149         I915_WRITE(aud_cntl_st, i);
6150
6151         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6152         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6153         for (i = 0; i < len; i++)
6154                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6155
6156         i = I915_READ(aud_cntrl_st2);
6157         i |= eldv;
6158         I915_WRITE(aud_cntrl_st2, i);
6159 }
6160
6161 void intel_write_eld(struct drm_encoder *encoder,
6162                      struct drm_display_mode *mode)
6163 {
6164         struct drm_crtc *crtc = encoder->crtc;
6165         struct drm_connector *connector;
6166         struct drm_device *dev = encoder->dev;
6167         struct drm_i915_private *dev_priv = dev->dev_private;
6168
6169         connector = drm_select_eld(encoder, mode);
6170         if (!connector)
6171                 return;
6172
6173         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6174                          connector->base.id,
6175                          drm_get_connector_name(connector),
6176                          connector->encoder->base.id,
6177                          drm_get_encoder_name(connector->encoder));
6178
6179         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6180
6181         if (dev_priv->display.write_eld)
6182                 dev_priv->display.write_eld(connector, crtc);
6183 }
6184
6185 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6186 void intel_crtc_load_lut(struct drm_crtc *crtc)
6187 {
6188         struct drm_device *dev = crtc->dev;
6189         struct drm_i915_private *dev_priv = dev->dev_private;
6190         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6191         int palreg = PALETTE(intel_crtc->pipe);
6192         int i;
6193
6194         /* The clocks have to be on to load the palette. */
6195         if (!crtc->enabled || !intel_crtc->active)
6196                 return;
6197
6198         /* use legacy palette for Ironlake */
6199         if (HAS_PCH_SPLIT(dev))
6200                 palreg = LGC_PALETTE(intel_crtc->pipe);
6201
6202         for (i = 0; i < 256; i++) {
6203                 I915_WRITE(palreg + 4 * i,
6204                            (intel_crtc->lut_r[i] << 16) |
6205                            (intel_crtc->lut_g[i] << 8) |
6206                            intel_crtc->lut_b[i]);
6207         }
6208 }
6209
6210 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6211 {
6212         struct drm_device *dev = crtc->dev;
6213         struct drm_i915_private *dev_priv = dev->dev_private;
6214         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6215         bool visible = base != 0;
6216         u32 cntl;
6217
6218         if (intel_crtc->cursor_visible == visible)
6219                 return;
6220
6221         cntl = I915_READ(_CURACNTR);
6222         if (visible) {
6223                 /* On these chipsets we can only modify the base whilst
6224                  * the cursor is disabled.
6225                  */
6226                 I915_WRITE(_CURABASE, base);
6227
6228                 cntl &= ~(CURSOR_FORMAT_MASK);
6229                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6230                 cntl |= CURSOR_ENABLE |
6231                         CURSOR_GAMMA_ENABLE |
6232                         CURSOR_FORMAT_ARGB;
6233         } else
6234                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6235         I915_WRITE(_CURACNTR, cntl);
6236
6237         intel_crtc->cursor_visible = visible;
6238 }
6239
6240 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6241 {
6242         struct drm_device *dev = crtc->dev;
6243         struct drm_i915_private *dev_priv = dev->dev_private;
6244         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6245         int pipe = intel_crtc->pipe;
6246         bool visible = base != 0;
6247
6248         if (intel_crtc->cursor_visible != visible) {
6249                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6250                 if (base) {
6251                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6252                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6253                         cntl |= pipe << 28; /* Connect to correct pipe */
6254                 } else {
6255                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6256                         cntl |= CURSOR_MODE_DISABLE;
6257                 }
6258                 I915_WRITE(CURCNTR(pipe), cntl);
6259
6260                 intel_crtc->cursor_visible = visible;
6261         }
6262         /* and commit changes on next vblank */
6263         I915_WRITE(CURBASE(pipe), base);
6264 }
6265
6266 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6267 {
6268         struct drm_device *dev = crtc->dev;
6269         struct drm_i915_private *dev_priv = dev->dev_private;
6270         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6271         int pipe = intel_crtc->pipe;
6272         bool visible = base != 0;
6273
6274         if (intel_crtc->cursor_visible != visible) {
6275                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6276                 if (base) {
6277                         cntl &= ~CURSOR_MODE;
6278                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6279                 } else {
6280                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6281                         cntl |= CURSOR_MODE_DISABLE;
6282                 }
6283                 if (IS_HASWELL(dev))
6284                         cntl |= CURSOR_PIPE_CSC_ENABLE;
6285                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6286
6287                 intel_crtc->cursor_visible = visible;
6288         }
6289         /* and commit changes on next vblank */
6290         I915_WRITE(CURBASE_IVB(pipe), base);
6291 }
6292
6293 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6294 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6295                                      bool on)
6296 {
6297         struct drm_device *dev = crtc->dev;
6298         struct drm_i915_private *dev_priv = dev->dev_private;
6299         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6300         int pipe = intel_crtc->pipe;
6301         int x = intel_crtc->cursor_x;
6302         int y = intel_crtc->cursor_y;
6303         u32 base, pos;
6304         bool visible;
6305
6306         pos = 0;
6307
6308         if (on && crtc->enabled && crtc->fb) {
6309                 base = intel_crtc->cursor_addr;
6310                 if (x > (int) crtc->fb->width)
6311                         base = 0;
6312
6313                 if (y > (int) crtc->fb->height)
6314                         base = 0;
6315         } else
6316                 base = 0;
6317
6318         if (x < 0) {
6319                 if (x + intel_crtc->cursor_width < 0)
6320                         base = 0;
6321
6322                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6323                 x = -x;
6324         }
6325         pos |= x << CURSOR_X_SHIFT;
6326
6327         if (y < 0) {
6328                 if (y + intel_crtc->cursor_height < 0)
6329                         base = 0;
6330
6331                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6332                 y = -y;
6333         }
6334         pos |= y << CURSOR_Y_SHIFT;
6335
6336         visible = base != 0;
6337         if (!visible && !intel_crtc->cursor_visible)
6338                 return;
6339
6340         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6341                 I915_WRITE(CURPOS_IVB(pipe), pos);
6342                 ivb_update_cursor(crtc, base);
6343         } else {
6344                 I915_WRITE(CURPOS(pipe), pos);
6345                 if (IS_845G(dev) || IS_I865G(dev))
6346                         i845_update_cursor(crtc, base);
6347                 else
6348                         i9xx_update_cursor(crtc, base);
6349         }
6350 }
6351
6352 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6353                                  struct drm_file *file,
6354                                  uint32_t handle,
6355                                  uint32_t width, uint32_t height)
6356 {
6357         struct drm_device *dev = crtc->dev;
6358         struct drm_i915_private *dev_priv = dev->dev_private;
6359         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6360         struct drm_i915_gem_object *obj;
6361         uint32_t addr;
6362         int ret;
6363
6364         /* if we want to turn off the cursor ignore width and height */
6365         if (!handle) {
6366                 DRM_DEBUG_KMS("cursor off\n");
6367                 addr = 0;
6368                 obj = NULL;
6369                 mutex_lock(&dev->struct_mutex);
6370                 goto finish;
6371         }
6372
6373         /* Currently we only support 64x64 cursors */
6374         if (width != 64 || height != 64) {
6375                 DRM_ERROR("we currently only support 64x64 cursors\n");
6376                 return -EINVAL;
6377         }
6378
6379         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6380         if (&obj->base == NULL)
6381                 return -ENOENT;
6382
6383         if (obj->base.size < width * height * 4) {
6384                 DRM_ERROR("buffer is to small\n");
6385                 ret = -ENOMEM;
6386                 goto fail;
6387         }
6388
6389         /* we only need to pin inside GTT if cursor is non-phy */
6390         mutex_lock(&dev->struct_mutex);
6391         if (!dev_priv->info->cursor_needs_physical) {
6392                 unsigned alignment;
6393
6394                 if (obj->tiling_mode) {
6395                         DRM_ERROR("cursor cannot be tiled\n");
6396                         ret = -EINVAL;
6397                         goto fail_locked;
6398                 }
6399
6400                 /* Note that the w/a also requires 2 PTE of padding following
6401                  * the bo. We currently fill all unused PTE with the shadow
6402                  * page and so we should always have valid PTE following the
6403                  * cursor preventing the VT-d warning.
6404                  */
6405                 alignment = 0;
6406                 if (need_vtd_wa(dev))
6407                         alignment = 64*1024;
6408
6409                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
6410                 if (ret) {
6411                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6412                         goto fail_locked;
6413                 }
6414
6415                 ret = i915_gem_object_put_fence(obj);
6416                 if (ret) {
6417                         DRM_ERROR("failed to release fence for cursor");
6418                         goto fail_unpin;
6419                 }
6420
6421                 addr = obj->gtt_offset;
6422         } else {
6423                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6424                 ret = i915_gem_attach_phys_object(dev, obj,
6425                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6426                                                   align);
6427                 if (ret) {
6428                         DRM_ERROR("failed to attach phys object\n");
6429                         goto fail_locked;
6430                 }
6431                 addr = obj->phys_obj->handle->busaddr;
6432         }
6433
6434         if (IS_GEN2(dev))
6435                 I915_WRITE(CURSIZE, (height << 12) | width);
6436
6437  finish:
6438         if (intel_crtc->cursor_bo) {
6439                 if (dev_priv->info->cursor_needs_physical) {
6440                         if (intel_crtc->cursor_bo != obj)
6441                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6442                 } else
6443                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6444                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6445         }
6446
6447         mutex_unlock(&dev->struct_mutex);
6448
6449         intel_crtc->cursor_addr = addr;
6450         intel_crtc->cursor_bo = obj;
6451         intel_crtc->cursor_width = width;
6452         intel_crtc->cursor_height = height;
6453
6454         intel_crtc_update_cursor(crtc, true);
6455
6456         return 0;
6457 fail_unpin:
6458         i915_gem_object_unpin(obj);
6459 fail_locked:
6460         mutex_unlock(&dev->struct_mutex);
6461 fail:
6462         drm_gem_object_unreference_unlocked(&obj->base);
6463         return ret;
6464 }
6465
6466 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6467 {
6468         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6469
6470         intel_crtc->cursor_x = x;
6471         intel_crtc->cursor_y = y;
6472
6473         intel_crtc_update_cursor(crtc, true);
6474
6475         return 0;
6476 }
6477
6478 /** Sets the color ramps on behalf of RandR */
6479 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6480                                  u16 blue, int regno)
6481 {
6482         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6483
6484         intel_crtc->lut_r[regno] = red >> 8;
6485         intel_crtc->lut_g[regno] = green >> 8;
6486         intel_crtc->lut_b[regno] = blue >> 8;
6487 }
6488
6489 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6490                              u16 *blue, int regno)
6491 {
6492         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6493
6494         *red = intel_crtc->lut_r[regno] << 8;
6495         *green = intel_crtc->lut_g[regno] << 8;
6496         *blue = intel_crtc->lut_b[regno] << 8;
6497 }
6498
6499 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6500                                  u16 *blue, uint32_t start, uint32_t size)
6501 {
6502         int end = (start + size > 256) ? 256 : start + size, i;
6503         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6504
6505         for (i = start; i < end; i++) {
6506                 intel_crtc->lut_r[i] = red[i] >> 8;
6507                 intel_crtc->lut_g[i] = green[i] >> 8;
6508                 intel_crtc->lut_b[i] = blue[i] >> 8;
6509         }
6510
6511         intel_crtc_load_lut(crtc);
6512 }
6513
6514 /* VESA 640x480x72Hz mode to set on the pipe */
6515 static struct drm_display_mode load_detect_mode = {
6516         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6517                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6518 };
6519
6520 static struct drm_framebuffer *
6521 intel_framebuffer_create(struct drm_device *dev,
6522                          struct drm_mode_fb_cmd2 *mode_cmd,
6523                          struct drm_i915_gem_object *obj)
6524 {
6525         struct intel_framebuffer *intel_fb;
6526         int ret;
6527
6528         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6529         if (!intel_fb) {
6530                 drm_gem_object_unreference_unlocked(&obj->base);
6531                 return ERR_PTR(-ENOMEM);
6532         }
6533
6534         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6535         if (ret) {
6536                 drm_gem_object_unreference_unlocked(&obj->base);
6537                 kfree(intel_fb);
6538                 return ERR_PTR(ret);
6539         }
6540
6541         return &intel_fb->base;
6542 }
6543
6544 static u32
6545 intel_framebuffer_pitch_for_width(int width, int bpp)
6546 {
6547         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6548         return ALIGN(pitch, 64);
6549 }
6550
6551 static u32
6552 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6553 {
6554         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6555         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6556 }
6557
6558 static struct drm_framebuffer *
6559 intel_framebuffer_create_for_mode(struct drm_device *dev,
6560                                   struct drm_display_mode *mode,
6561                                   int depth, int bpp)
6562 {
6563         struct drm_i915_gem_object *obj;
6564         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
6565
6566         obj = i915_gem_alloc_object(dev,
6567                                     intel_framebuffer_size_for_mode(mode, bpp));
6568         if (obj == NULL)
6569                 return ERR_PTR(-ENOMEM);
6570
6571         mode_cmd.width = mode->hdisplay;
6572         mode_cmd.height = mode->vdisplay;
6573         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6574                                                                 bpp);
6575         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6576
6577         return intel_framebuffer_create(dev, &mode_cmd, obj);
6578 }
6579
6580 static struct drm_framebuffer *
6581 mode_fits_in_fbdev(struct drm_device *dev,
6582                    struct drm_display_mode *mode)
6583 {
6584         struct drm_i915_private *dev_priv = dev->dev_private;
6585         struct drm_i915_gem_object *obj;
6586         struct drm_framebuffer *fb;
6587
6588         if (dev_priv->fbdev == NULL)
6589                 return NULL;
6590
6591         obj = dev_priv->fbdev->ifb.obj;
6592         if (obj == NULL)
6593                 return NULL;
6594
6595         fb = &dev_priv->fbdev->ifb.base;
6596         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6597                                                                fb->bits_per_pixel))
6598                 return NULL;
6599
6600         if (obj->base.size < mode->vdisplay * fb->pitches[0])
6601                 return NULL;
6602
6603         return fb;
6604 }
6605
6606 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6607                                 struct drm_display_mode *mode,
6608                                 struct intel_load_detect_pipe *old)
6609 {
6610         struct intel_crtc *intel_crtc;
6611         struct intel_encoder *intel_encoder =
6612                 intel_attached_encoder(connector);
6613         struct drm_crtc *possible_crtc;
6614         struct drm_encoder *encoder = &intel_encoder->base;
6615         struct drm_crtc *crtc = NULL;
6616         struct drm_device *dev = encoder->dev;
6617         struct drm_framebuffer *fb;
6618         int i = -1;
6619
6620         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6621                       connector->base.id, drm_get_connector_name(connector),
6622                       encoder->base.id, drm_get_encoder_name(encoder));
6623
6624         /*
6625          * Algorithm gets a little messy:
6626          *
6627          *   - if the connector already has an assigned crtc, use it (but make
6628          *     sure it's on first)
6629          *
6630          *   - try to find the first unused crtc that can drive this connector,
6631          *     and use that if we find one
6632          */
6633
6634         /* See if we already have a CRTC for this connector */
6635         if (encoder->crtc) {
6636                 crtc = encoder->crtc;
6637
6638                 mutex_lock(&crtc->mutex);
6639
6640                 old->dpms_mode = connector->dpms;
6641                 old->load_detect_temp = false;
6642
6643                 /* Make sure the crtc and connector are running */
6644                 if (connector->dpms != DRM_MODE_DPMS_ON)
6645                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6646
6647                 return true;
6648         }
6649
6650         /* Find an unused one (if possible) */
6651         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6652                 i++;
6653                 if (!(encoder->possible_crtcs & (1 << i)))
6654                         continue;
6655                 if (!possible_crtc->enabled) {
6656                         crtc = possible_crtc;
6657                         break;
6658                 }
6659         }
6660
6661         /*
6662          * If we didn't find an unused CRTC, don't use any.
6663          */
6664         if (!crtc) {
6665                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6666                 return false;
6667         }
6668
6669         mutex_lock(&crtc->mutex);
6670         intel_encoder->new_crtc = to_intel_crtc(crtc);
6671         to_intel_connector(connector)->new_encoder = intel_encoder;
6672
6673         intel_crtc = to_intel_crtc(crtc);
6674         old->dpms_mode = connector->dpms;
6675         old->load_detect_temp = true;
6676         old->release_fb = NULL;
6677
6678         if (!mode)
6679                 mode = &load_detect_mode;
6680
6681         /* We need a framebuffer large enough to accommodate all accesses
6682          * that the plane may generate whilst we perform load detection.
6683          * We can not rely on the fbcon either being present (we get called
6684          * during its initialisation to detect all boot displays, or it may
6685          * not even exist) or that it is large enough to satisfy the
6686          * requested mode.
6687          */
6688         fb = mode_fits_in_fbdev(dev, mode);
6689         if (fb == NULL) {
6690                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6691                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6692                 old->release_fb = fb;
6693         } else
6694                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6695         if (IS_ERR(fb)) {
6696                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6697                 mutex_unlock(&crtc->mutex);
6698                 return false;
6699         }
6700
6701         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6702                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6703                 if (old->release_fb)
6704                         old->release_fb->funcs->destroy(old->release_fb);
6705                 mutex_unlock(&crtc->mutex);
6706                 return false;
6707         }
6708
6709         /* let the connector get through one full cycle before testing */
6710         intel_wait_for_vblank(dev, intel_crtc->pipe);
6711         return true;
6712 }
6713
6714 void intel_release_load_detect_pipe(struct drm_connector *connector,
6715                                     struct intel_load_detect_pipe *old)
6716 {
6717         struct intel_encoder *intel_encoder =
6718                 intel_attached_encoder(connector);
6719         struct drm_encoder *encoder = &intel_encoder->base;
6720         struct drm_crtc *crtc = encoder->crtc;
6721
6722         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6723                       connector->base.id, drm_get_connector_name(connector),
6724                       encoder->base.id, drm_get_encoder_name(encoder));
6725
6726         if (old->load_detect_temp) {
6727                 to_intel_connector(connector)->new_encoder = NULL;
6728                 intel_encoder->new_crtc = NULL;
6729                 intel_set_mode(crtc, NULL, 0, 0, NULL);
6730
6731                 if (old->release_fb) {
6732                         drm_framebuffer_unregister_private(old->release_fb);
6733                         drm_framebuffer_unreference(old->release_fb);
6734                 }
6735
6736                 mutex_unlock(&crtc->mutex);
6737                 return;
6738         }
6739
6740         /* Switch crtc and encoder back off if necessary */
6741         if (old->dpms_mode != DRM_MODE_DPMS_ON)
6742                 connector->funcs->dpms(connector, old->dpms_mode);
6743
6744         mutex_unlock(&crtc->mutex);
6745 }
6746
6747 /* Returns the clock of the currently programmed mode of the given pipe. */
6748 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6749 {
6750         struct drm_i915_private *dev_priv = dev->dev_private;
6751         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6752         int pipe = intel_crtc->pipe;
6753         u32 dpll = I915_READ(DPLL(pipe));
6754         u32 fp;
6755         intel_clock_t clock;
6756
6757         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6758                 fp = I915_READ(FP0(pipe));
6759         else
6760                 fp = I915_READ(FP1(pipe));
6761
6762         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6763         if (IS_PINEVIEW(dev)) {
6764                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6765                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6766         } else {
6767                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6768                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6769         }
6770
6771         if (!IS_GEN2(dev)) {
6772                 if (IS_PINEVIEW(dev))
6773                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6774                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6775                 else
6776                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6777                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6778
6779                 switch (dpll & DPLL_MODE_MASK) {
6780                 case DPLLB_MODE_DAC_SERIAL:
6781                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6782                                 5 : 10;
6783                         break;
6784                 case DPLLB_MODE_LVDS:
6785                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6786                                 7 : 14;
6787                         break;
6788                 default:
6789                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6790                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6791                         return 0;
6792                 }
6793
6794                 /* XXX: Handle the 100Mhz refclk */
6795                 intel_clock(dev, 96000, &clock);
6796         } else {
6797                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6798
6799                 if (is_lvds) {
6800                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6801                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6802                         clock.p2 = 14;
6803
6804                         if ((dpll & PLL_REF_INPUT_MASK) ==
6805                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6806                                 /* XXX: might not be 66MHz */
6807                                 intel_clock(dev, 66000, &clock);
6808                         } else
6809                                 intel_clock(dev, 48000, &clock);
6810                 } else {
6811                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6812                                 clock.p1 = 2;
6813                         else {
6814                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6815                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6816                         }
6817                         if (dpll & PLL_P2_DIVIDE_BY_4)
6818                                 clock.p2 = 4;
6819                         else
6820                                 clock.p2 = 2;
6821
6822                         intel_clock(dev, 48000, &clock);
6823                 }
6824         }
6825
6826         /* XXX: It would be nice to validate the clocks, but we can't reuse
6827          * i830PllIsValid() because it relies on the xf86_config connector
6828          * configuration being accurate, which it isn't necessarily.
6829          */
6830
6831         return clock.dot;
6832 }
6833
6834 /** Returns the currently programmed mode of the given pipe. */
6835 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6836                                              struct drm_crtc *crtc)
6837 {
6838         struct drm_i915_private *dev_priv = dev->dev_private;
6839         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6840         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6841         struct drm_display_mode *mode;
6842         int htot = I915_READ(HTOTAL(cpu_transcoder));
6843         int hsync = I915_READ(HSYNC(cpu_transcoder));
6844         int vtot = I915_READ(VTOTAL(cpu_transcoder));
6845         int vsync = I915_READ(VSYNC(cpu_transcoder));
6846
6847         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6848         if (!mode)
6849                 return NULL;
6850
6851         mode->clock = intel_crtc_clock_get(dev, crtc);
6852         mode->hdisplay = (htot & 0xffff) + 1;
6853         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6854         mode->hsync_start = (hsync & 0xffff) + 1;
6855         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6856         mode->vdisplay = (vtot & 0xffff) + 1;
6857         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6858         mode->vsync_start = (vsync & 0xffff) + 1;
6859         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6860
6861         drm_mode_set_name(mode);
6862
6863         return mode;
6864 }
6865
6866 static void intel_increase_pllclock(struct drm_crtc *crtc)
6867 {
6868         struct drm_device *dev = crtc->dev;
6869         drm_i915_private_t *dev_priv = dev->dev_private;
6870         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6871         int pipe = intel_crtc->pipe;
6872         int dpll_reg = DPLL(pipe);
6873         int dpll;
6874
6875         if (HAS_PCH_SPLIT(dev))
6876                 return;
6877
6878         if (!dev_priv->lvds_downclock_avail)
6879                 return;
6880
6881         dpll = I915_READ(dpll_reg);
6882         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6883                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6884
6885                 assert_panel_unlocked(dev_priv, pipe);
6886
6887                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6888                 I915_WRITE(dpll_reg, dpll);
6889                 intel_wait_for_vblank(dev, pipe);
6890
6891                 dpll = I915_READ(dpll_reg);
6892                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6893                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6894         }
6895 }
6896
6897 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6898 {
6899         struct drm_device *dev = crtc->dev;
6900         drm_i915_private_t *dev_priv = dev->dev_private;
6901         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6902
6903         if (HAS_PCH_SPLIT(dev))
6904                 return;
6905
6906         if (!dev_priv->lvds_downclock_avail)
6907                 return;
6908
6909         /*
6910          * Since this is called by a timer, we should never get here in
6911          * the manual case.
6912          */
6913         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6914                 int pipe = intel_crtc->pipe;
6915                 int dpll_reg = DPLL(pipe);
6916                 int dpll;
6917
6918                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6919
6920                 assert_panel_unlocked(dev_priv, pipe);
6921
6922                 dpll = I915_READ(dpll_reg);
6923                 dpll |= DISPLAY_RATE_SELECT_FPA1;
6924                 I915_WRITE(dpll_reg, dpll);
6925                 intel_wait_for_vblank(dev, pipe);
6926                 dpll = I915_READ(dpll_reg);
6927                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6928                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6929         }
6930
6931 }
6932
6933 void intel_mark_busy(struct drm_device *dev)
6934 {
6935         i915_update_gfx_val(dev->dev_private);
6936 }
6937
6938 void intel_mark_idle(struct drm_device *dev)
6939 {
6940         struct drm_crtc *crtc;
6941
6942         if (!i915_powersave)
6943                 return;
6944
6945         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6946                 if (!crtc->fb)
6947                         continue;
6948
6949                 intel_decrease_pllclock(crtc);
6950         }
6951 }
6952
6953 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6954 {
6955         struct drm_device *dev = obj->base.dev;
6956         struct drm_crtc *crtc;
6957
6958         if (!i915_powersave)
6959                 return;
6960
6961         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6962                 if (!crtc->fb)
6963                         continue;
6964
6965                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6966                         intel_increase_pllclock(crtc);
6967         }
6968 }
6969
6970 static void intel_crtc_destroy(struct drm_crtc *crtc)
6971 {
6972         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6973         struct drm_device *dev = crtc->dev;
6974         struct intel_unpin_work *work;
6975         unsigned long flags;
6976
6977         spin_lock_irqsave(&dev->event_lock, flags);
6978         work = intel_crtc->unpin_work;
6979         intel_crtc->unpin_work = NULL;
6980         spin_unlock_irqrestore(&dev->event_lock, flags);
6981
6982         if (work) {
6983                 cancel_work_sync(&work->work);
6984                 kfree(work);
6985         }
6986
6987         drm_crtc_cleanup(crtc);
6988
6989         kfree(intel_crtc);
6990 }
6991
6992 static void intel_unpin_work_fn(struct work_struct *__work)
6993 {
6994         struct intel_unpin_work *work =
6995                 container_of(__work, struct intel_unpin_work, work);
6996         struct drm_device *dev = work->crtc->dev;
6997
6998         mutex_lock(&dev->struct_mutex);
6999         intel_unpin_fb_obj(work->old_fb_obj);
7000         drm_gem_object_unreference(&work->pending_flip_obj->base);
7001         drm_gem_object_unreference(&work->old_fb_obj->base);
7002
7003         intel_update_fbc(dev);
7004         mutex_unlock(&dev->struct_mutex);
7005
7006         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
7007         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
7008
7009         kfree(work);
7010 }
7011
7012 static void do_intel_finish_page_flip(struct drm_device *dev,
7013                                       struct drm_crtc *crtc)
7014 {
7015         drm_i915_private_t *dev_priv = dev->dev_private;
7016         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7017         struct intel_unpin_work *work;
7018         unsigned long flags;
7019
7020         /* Ignore early vblank irqs */
7021         if (intel_crtc == NULL)
7022                 return;
7023
7024         spin_lock_irqsave(&dev->event_lock, flags);
7025         work = intel_crtc->unpin_work;
7026
7027         /* Ensure we don't miss a work->pending update ... */
7028         smp_rmb();
7029
7030         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
7031                 spin_unlock_irqrestore(&dev->event_lock, flags);
7032                 return;
7033         }
7034
7035         /* and that the unpin work is consistent wrt ->pending. */
7036         smp_rmb();
7037
7038         intel_crtc->unpin_work = NULL;
7039
7040         if (work->event)
7041                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
7042
7043         drm_vblank_put(dev, intel_crtc->pipe);
7044
7045         spin_unlock_irqrestore(&dev->event_lock, flags);
7046
7047         wake_up_all(&dev_priv->pending_flip_queue);
7048
7049         queue_work(dev_priv->wq, &work->work);
7050
7051         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7052 }
7053
7054 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7055 {
7056         drm_i915_private_t *dev_priv = dev->dev_private;
7057         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7058
7059         do_intel_finish_page_flip(dev, crtc);
7060 }
7061
7062 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7063 {
7064         drm_i915_private_t *dev_priv = dev->dev_private;
7065         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7066
7067         do_intel_finish_page_flip(dev, crtc);
7068 }
7069
7070 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7071 {
7072         drm_i915_private_t *dev_priv = dev->dev_private;
7073         struct intel_crtc *intel_crtc =
7074                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7075         unsigned long flags;
7076
7077         /* NB: An MMIO update of the plane base pointer will also
7078          * generate a page-flip completion irq, i.e. every modeset
7079          * is also accompanied by a spurious intel_prepare_page_flip().
7080          */
7081         spin_lock_irqsave(&dev->event_lock, flags);
7082         if (intel_crtc->unpin_work)
7083                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
7084         spin_unlock_irqrestore(&dev->event_lock, flags);
7085 }
7086
7087 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7088 {
7089         /* Ensure that the work item is consistent when activating it ... */
7090         smp_wmb();
7091         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7092         /* and that it is marked active as soon as the irq could fire. */
7093         smp_wmb();
7094 }
7095
7096 static int intel_gen2_queue_flip(struct drm_device *dev,
7097                                  struct drm_crtc *crtc,
7098                                  struct drm_framebuffer *fb,
7099                                  struct drm_i915_gem_object *obj)
7100 {
7101         struct drm_i915_private *dev_priv = dev->dev_private;
7102         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7103         u32 flip_mask;
7104         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7105         int ret;
7106
7107         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7108         if (ret)
7109                 goto err;
7110
7111         ret = intel_ring_begin(ring, 6);
7112         if (ret)
7113                 goto err_unpin;
7114
7115         /* Can't queue multiple flips, so wait for the previous
7116          * one to finish before executing the next.
7117          */
7118         if (intel_crtc->plane)
7119                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7120         else
7121                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7122         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7123         intel_ring_emit(ring, MI_NOOP);
7124         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7125                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7126         intel_ring_emit(ring, fb->pitches[0]);
7127         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7128         intel_ring_emit(ring, 0); /* aux display base address, unused */
7129
7130         intel_mark_page_flip_active(intel_crtc);
7131         intel_ring_advance(ring);
7132         return 0;
7133
7134 err_unpin:
7135         intel_unpin_fb_obj(obj);
7136 err:
7137         return ret;
7138 }
7139
7140 static int intel_gen3_queue_flip(struct drm_device *dev,
7141                                  struct drm_crtc *crtc,
7142                                  struct drm_framebuffer *fb,
7143                                  struct drm_i915_gem_object *obj)
7144 {
7145         struct drm_i915_private *dev_priv = dev->dev_private;
7146         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7147         u32 flip_mask;
7148         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7149         int ret;
7150
7151         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7152         if (ret)
7153                 goto err;
7154
7155         ret = intel_ring_begin(ring, 6);
7156         if (ret)
7157                 goto err_unpin;
7158
7159         if (intel_crtc->plane)
7160                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7161         else
7162                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7163         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7164         intel_ring_emit(ring, MI_NOOP);
7165         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7166                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7167         intel_ring_emit(ring, fb->pitches[0]);
7168         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7169         intel_ring_emit(ring, MI_NOOP);
7170
7171         intel_mark_page_flip_active(intel_crtc);
7172         intel_ring_advance(ring);
7173         return 0;
7174
7175 err_unpin:
7176         intel_unpin_fb_obj(obj);
7177 err:
7178         return ret;
7179 }
7180
7181 static int intel_gen4_queue_flip(struct drm_device *dev,
7182                                  struct drm_crtc *crtc,
7183                                  struct drm_framebuffer *fb,
7184                                  struct drm_i915_gem_object *obj)
7185 {
7186         struct drm_i915_private *dev_priv = dev->dev_private;
7187         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7188         uint32_t pf, pipesrc;
7189         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7190         int ret;
7191
7192         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7193         if (ret)
7194                 goto err;
7195
7196         ret = intel_ring_begin(ring, 4);
7197         if (ret)
7198                 goto err_unpin;
7199
7200         /* i965+ uses the linear or tiled offsets from the
7201          * Display Registers (which do not change across a page-flip)
7202          * so we need only reprogram the base address.
7203          */
7204         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7205                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7206         intel_ring_emit(ring, fb->pitches[0]);
7207         intel_ring_emit(ring,
7208                         (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7209                         obj->tiling_mode);
7210
7211         /* XXX Enabling the panel-fitter across page-flip is so far
7212          * untested on non-native modes, so ignore it for now.
7213          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7214          */
7215         pf = 0;
7216         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7217         intel_ring_emit(ring, pf | pipesrc);
7218
7219         intel_mark_page_flip_active(intel_crtc);
7220         intel_ring_advance(ring);
7221         return 0;
7222
7223 err_unpin:
7224         intel_unpin_fb_obj(obj);
7225 err:
7226         return ret;
7227 }
7228
7229 static int intel_gen6_queue_flip(struct drm_device *dev,
7230                                  struct drm_crtc *crtc,
7231                                  struct drm_framebuffer *fb,
7232                                  struct drm_i915_gem_object *obj)
7233 {
7234         struct drm_i915_private *dev_priv = dev->dev_private;
7235         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7236         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7237         uint32_t pf, pipesrc;
7238         int ret;
7239
7240         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7241         if (ret)
7242                 goto err;
7243
7244         ret = intel_ring_begin(ring, 4);
7245         if (ret)
7246                 goto err_unpin;
7247
7248         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7249                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7250         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7251         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7252
7253         /* Contrary to the suggestions in the documentation,
7254          * "Enable Panel Fitter" does not seem to be required when page
7255          * flipping with a non-native mode, and worse causes a normal
7256          * modeset to fail.
7257          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7258          */
7259         pf = 0;
7260         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7261         intel_ring_emit(ring, pf | pipesrc);
7262
7263         intel_mark_page_flip_active(intel_crtc);
7264         intel_ring_advance(ring);
7265         return 0;
7266
7267 err_unpin:
7268         intel_unpin_fb_obj(obj);
7269 err:
7270         return ret;
7271 }
7272
7273 /*
7274  * On gen7 we currently use the blit ring because (in early silicon at least)
7275  * the render ring doesn't give us interrpts for page flip completion, which
7276  * means clients will hang after the first flip is queued.  Fortunately the
7277  * blit ring generates interrupts properly, so use it instead.
7278  */
7279 static int intel_gen7_queue_flip(struct drm_device *dev,
7280                                  struct drm_crtc *crtc,
7281                                  struct drm_framebuffer *fb,
7282                                  struct drm_i915_gem_object *obj)
7283 {
7284         struct drm_i915_private *dev_priv = dev->dev_private;
7285         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7286         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7287         uint32_t plane_bit = 0;
7288         int ret;
7289
7290         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7291         if (ret)
7292                 goto err;
7293
7294         switch(intel_crtc->plane) {
7295         case PLANE_A:
7296                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7297                 break;
7298         case PLANE_B:
7299                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7300                 break;
7301         case PLANE_C:
7302                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7303                 break;
7304         default:
7305                 WARN_ONCE(1, "unknown plane in flip command\n");
7306                 ret = -ENODEV;
7307                 goto err_unpin;
7308         }
7309
7310         ret = intel_ring_begin(ring, 4);
7311         if (ret)
7312                 goto err_unpin;
7313
7314         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7315         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7316         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7317         intel_ring_emit(ring, (MI_NOOP));
7318
7319         intel_mark_page_flip_active(intel_crtc);
7320         intel_ring_advance(ring);
7321         return 0;
7322
7323 err_unpin:
7324         intel_unpin_fb_obj(obj);
7325 err:
7326         return ret;
7327 }
7328
7329 static int intel_default_queue_flip(struct drm_device *dev,
7330                                     struct drm_crtc *crtc,
7331                                     struct drm_framebuffer *fb,
7332                                     struct drm_i915_gem_object *obj)
7333 {
7334         return -ENODEV;
7335 }
7336
7337 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7338                                 struct drm_framebuffer *fb,
7339                                 struct drm_pending_vblank_event *event)
7340 {
7341         struct drm_device *dev = crtc->dev;
7342         struct drm_i915_private *dev_priv = dev->dev_private;
7343         struct drm_framebuffer *old_fb = crtc->fb;
7344         struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
7345         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7346         struct intel_unpin_work *work;
7347         unsigned long flags;
7348         int ret;
7349
7350         /* Can't change pixel format via MI display flips. */
7351         if (fb->pixel_format != crtc->fb->pixel_format)
7352                 return -EINVAL;
7353
7354         /*
7355          * TILEOFF/LINOFF registers can't be changed via MI display flips.
7356          * Note that pitch changes could also affect these register.
7357          */
7358         if (INTEL_INFO(dev)->gen > 3 &&
7359             (fb->offsets[0] != crtc->fb->offsets[0] ||
7360              fb->pitches[0] != crtc->fb->pitches[0]))
7361                 return -EINVAL;
7362
7363         work = kzalloc(sizeof *work, GFP_KERNEL);
7364         if (work == NULL)
7365                 return -ENOMEM;
7366
7367         work->event = event;
7368         work->crtc = crtc;
7369         work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
7370         INIT_WORK(&work->work, intel_unpin_work_fn);
7371
7372         ret = drm_vblank_get(dev, intel_crtc->pipe);
7373         if (ret)
7374                 goto free_work;
7375
7376         /* We borrow the event spin lock for protecting unpin_work */
7377         spin_lock_irqsave(&dev->event_lock, flags);
7378         if (intel_crtc->unpin_work) {
7379                 spin_unlock_irqrestore(&dev->event_lock, flags);
7380                 kfree(work);
7381                 drm_vblank_put(dev, intel_crtc->pipe);
7382
7383                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7384                 return -EBUSY;
7385         }
7386         intel_crtc->unpin_work = work;
7387         spin_unlock_irqrestore(&dev->event_lock, flags);
7388
7389         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7390                 flush_workqueue(dev_priv->wq);
7391
7392         ret = i915_mutex_lock_interruptible(dev);
7393         if (ret)
7394                 goto cleanup;
7395
7396         /* Reference the objects for the scheduled work. */
7397         drm_gem_object_reference(&work->old_fb_obj->base);
7398         drm_gem_object_reference(&obj->base);
7399
7400         crtc->fb = fb;
7401
7402         work->pending_flip_obj = obj;
7403
7404         work->enable_stall_check = true;
7405
7406         atomic_inc(&intel_crtc->unpin_work_count);
7407         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
7408
7409         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7410         if (ret)
7411                 goto cleanup_pending;
7412
7413         intel_disable_fbc(dev);
7414         intel_mark_fb_busy(obj);
7415         mutex_unlock(&dev->struct_mutex);
7416
7417         trace_i915_flip_request(intel_crtc->plane, obj);
7418
7419         return 0;
7420
7421 cleanup_pending:
7422         atomic_dec(&intel_crtc->unpin_work_count);
7423         crtc->fb = old_fb;
7424         drm_gem_object_unreference(&work->old_fb_obj->base);
7425         drm_gem_object_unreference(&obj->base);
7426         mutex_unlock(&dev->struct_mutex);
7427
7428 cleanup:
7429         spin_lock_irqsave(&dev->event_lock, flags);
7430         intel_crtc->unpin_work = NULL;
7431         spin_unlock_irqrestore(&dev->event_lock, flags);
7432
7433         drm_vblank_put(dev, intel_crtc->pipe);
7434 free_work:
7435         kfree(work);
7436
7437         return ret;
7438 }
7439
7440 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7441         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7442         .load_lut = intel_crtc_load_lut,
7443 };
7444
7445 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7446 {
7447         struct intel_encoder *other_encoder;
7448         struct drm_crtc *crtc = &encoder->new_crtc->base;
7449
7450         if (WARN_ON(!crtc))
7451                 return false;
7452
7453         list_for_each_entry(other_encoder,
7454                             &crtc->dev->mode_config.encoder_list,
7455                             base.head) {
7456
7457                 if (&other_encoder->new_crtc->base != crtc ||
7458                     encoder == other_encoder)
7459                         continue;
7460                 else
7461                         return true;
7462         }
7463
7464         return false;
7465 }
7466
7467 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7468                                   struct drm_crtc *crtc)
7469 {
7470         struct drm_device *dev;
7471         struct drm_crtc *tmp;
7472         int crtc_mask = 1;
7473
7474         WARN(!crtc, "checking null crtc?\n");
7475
7476         dev = crtc->dev;
7477
7478         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7479                 if (tmp == crtc)
7480                         break;
7481                 crtc_mask <<= 1;
7482         }
7483
7484         if (encoder->possible_crtcs & crtc_mask)
7485                 return true;
7486         return false;
7487 }
7488
7489 /**
7490  * intel_modeset_update_staged_output_state
7491  *
7492  * Updates the staged output configuration state, e.g. after we've read out the
7493  * current hw state.
7494  */
7495 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7496 {
7497         struct intel_encoder *encoder;
7498         struct intel_connector *connector;
7499
7500         list_for_each_entry(connector, &dev->mode_config.connector_list,
7501                             base.head) {
7502                 connector->new_encoder =
7503                         to_intel_encoder(connector->base.encoder);
7504         }
7505
7506         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7507                             base.head) {
7508                 encoder->new_crtc =
7509                         to_intel_crtc(encoder->base.crtc);
7510         }
7511 }
7512
7513 /**
7514  * intel_modeset_commit_output_state
7515  *
7516  * This function copies the stage display pipe configuration to the real one.
7517  */
7518 static void intel_modeset_commit_output_state(struct drm_device *dev)
7519 {
7520         struct intel_encoder *encoder;
7521         struct intel_connector *connector;
7522
7523         list_for_each_entry(connector, &dev->mode_config.connector_list,
7524                             base.head) {
7525                 connector->base.encoder = &connector->new_encoder->base;
7526         }
7527
7528         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7529                             base.head) {
7530                 encoder->base.crtc = &encoder->new_crtc->base;
7531         }
7532 }
7533
7534 static int
7535 pipe_config_set_bpp(struct drm_crtc *crtc,
7536                     struct drm_framebuffer *fb,
7537                     struct intel_crtc_config *pipe_config)
7538 {
7539         struct drm_device *dev = crtc->dev;
7540         struct drm_connector *connector;
7541         int bpp;
7542
7543         switch (fb->pixel_format) {
7544         case DRM_FORMAT_C8:
7545                 bpp = 8*3; /* since we go through a colormap */
7546                 break;
7547         case DRM_FORMAT_XRGB1555:
7548         case DRM_FORMAT_ARGB1555:
7549                 /* checked in intel_framebuffer_init already */
7550                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
7551                         return -EINVAL;
7552         case DRM_FORMAT_RGB565:
7553                 bpp = 6*3; /* min is 18bpp */
7554                 break;
7555         case DRM_FORMAT_XBGR8888:
7556         case DRM_FORMAT_ABGR8888:
7557                 /* checked in intel_framebuffer_init already */
7558                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7559                         return -EINVAL;
7560         case DRM_FORMAT_XRGB8888:
7561         case DRM_FORMAT_ARGB8888:
7562                 bpp = 8*3;
7563                 break;
7564         case DRM_FORMAT_XRGB2101010:
7565         case DRM_FORMAT_ARGB2101010:
7566         case DRM_FORMAT_XBGR2101010:
7567         case DRM_FORMAT_ABGR2101010:
7568                 /* checked in intel_framebuffer_init already */
7569                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7570                         return -EINVAL;
7571                 bpp = 10*3;
7572                 break;
7573         /* TODO: gen4+ supports 16 bpc floating point, too. */
7574         default:
7575                 DRM_DEBUG_KMS("unsupported depth\n");
7576                 return -EINVAL;
7577         }
7578
7579         pipe_config->pipe_bpp = bpp;
7580
7581         /* Clamp display bpp to EDID value */
7582         list_for_each_entry(connector, &dev->mode_config.connector_list,
7583                             head) {
7584                 if (connector->encoder && connector->encoder->crtc != crtc)
7585                         continue;
7586
7587                 /* Don't use an invalid EDID bpc value */
7588                 if (connector->display_info.bpc &&
7589                     connector->display_info.bpc * 3 < bpp) {
7590                         DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
7591                                       bpp, connector->display_info.bpc*3);
7592                         pipe_config->pipe_bpp = connector->display_info.bpc*3;
7593                 }
7594         }
7595
7596         return bpp;
7597 }
7598
7599 static struct intel_crtc_config *
7600 intel_modeset_pipe_config(struct drm_crtc *crtc,
7601                           struct drm_framebuffer *fb,
7602                           struct drm_display_mode *mode)
7603 {
7604         struct drm_device *dev = crtc->dev;
7605         struct drm_encoder_helper_funcs *encoder_funcs;
7606         struct intel_encoder *encoder;
7607         struct intel_crtc_config *pipe_config;
7608         int plane_bpp;
7609
7610         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7611         if (!pipe_config)
7612                 return ERR_PTR(-ENOMEM);
7613
7614         drm_mode_copy(&pipe_config->adjusted_mode, mode);
7615         drm_mode_copy(&pipe_config->requested_mode, mode);
7616
7617         plane_bpp = pipe_config_set_bpp(crtc, fb, pipe_config);
7618         if (plane_bpp < 0)
7619                 goto fail;
7620
7621         /* Pass our mode to the connectors and the CRTC to give them a chance to
7622          * adjust it according to limitations or connector properties, and also
7623          * a chance to reject the mode entirely.
7624          */
7625         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7626                             base.head) {
7627
7628                 if (&encoder->new_crtc->base != crtc)
7629                         continue;
7630
7631                 if (encoder->compute_config) {
7632                         if (!(encoder->compute_config(encoder, pipe_config))) {
7633                                 DRM_DEBUG_KMS("Encoder config failure\n");
7634                                 goto fail;
7635                         }
7636
7637                         continue;
7638                 }
7639
7640                 encoder_funcs = encoder->base.helper_private;
7641                 if (!(encoder_funcs->mode_fixup(&encoder->base,
7642                                                 &pipe_config->requested_mode,
7643                                                 &pipe_config->adjusted_mode))) {
7644                         DRM_DEBUG_KMS("Encoder fixup failed\n");
7645                         goto fail;
7646                 }
7647         }
7648
7649         if (!(intel_crtc_compute_config(crtc, pipe_config))) {
7650                 DRM_DEBUG_KMS("CRTC fixup failed\n");
7651                 goto fail;
7652         }
7653         DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7654
7655         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
7656         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
7657                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
7658
7659         return pipe_config;
7660 fail:
7661         kfree(pipe_config);
7662         return ERR_PTR(-EINVAL);
7663 }
7664
7665 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7666  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7667 static void
7668 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7669                              unsigned *prepare_pipes, unsigned *disable_pipes)
7670 {
7671         struct intel_crtc *intel_crtc;
7672         struct drm_device *dev = crtc->dev;
7673         struct intel_encoder *encoder;
7674         struct intel_connector *connector;
7675         struct drm_crtc *tmp_crtc;
7676
7677         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7678
7679         /* Check which crtcs have changed outputs connected to them, these need
7680          * to be part of the prepare_pipes mask. We don't (yet) support global
7681          * modeset across multiple crtcs, so modeset_pipes will only have one
7682          * bit set at most. */
7683         list_for_each_entry(connector, &dev->mode_config.connector_list,
7684                             base.head) {
7685                 if (connector->base.encoder == &connector->new_encoder->base)
7686                         continue;
7687
7688                 if (connector->base.encoder) {
7689                         tmp_crtc = connector->base.encoder->crtc;
7690
7691                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7692                 }
7693
7694                 if (connector->new_encoder)
7695                         *prepare_pipes |=
7696                                 1 << connector->new_encoder->new_crtc->pipe;
7697         }
7698
7699         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7700                             base.head) {
7701                 if (encoder->base.crtc == &encoder->new_crtc->base)
7702                         continue;
7703
7704                 if (encoder->base.crtc) {
7705                         tmp_crtc = encoder->base.crtc;
7706
7707                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7708                 }
7709
7710                 if (encoder->new_crtc)
7711                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7712         }
7713
7714         /* Check for any pipes that will be fully disabled ... */
7715         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7716                             base.head) {
7717                 bool used = false;
7718
7719                 /* Don't try to disable disabled crtcs. */
7720                 if (!intel_crtc->base.enabled)
7721                         continue;
7722
7723                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7724                                     base.head) {
7725                         if (encoder->new_crtc == intel_crtc)
7726                                 used = true;
7727                 }
7728
7729                 if (!used)
7730                         *disable_pipes |= 1 << intel_crtc->pipe;
7731         }
7732
7733
7734         /* set_mode is also used to update properties on life display pipes. */
7735         intel_crtc = to_intel_crtc(crtc);
7736         if (crtc->enabled)
7737                 *prepare_pipes |= 1 << intel_crtc->pipe;
7738
7739         /*
7740          * For simplicity do a full modeset on any pipe where the output routing
7741          * changed. We could be more clever, but that would require us to be
7742          * more careful with calling the relevant encoder->mode_set functions.
7743          */
7744         if (*prepare_pipes)
7745                 *modeset_pipes = *prepare_pipes;
7746
7747         /* ... and mask these out. */
7748         *modeset_pipes &= ~(*disable_pipes);
7749         *prepare_pipes &= ~(*disable_pipes);
7750
7751         /*
7752          * HACK: We don't (yet) fully support global modesets. intel_set_config
7753          * obies this rule, but the modeset restore mode of
7754          * intel_modeset_setup_hw_state does not.
7755          */
7756         *modeset_pipes &= 1 << intel_crtc->pipe;
7757         *prepare_pipes &= 1 << intel_crtc->pipe;
7758 }
7759
7760 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7761 {
7762         struct drm_encoder *encoder;
7763         struct drm_device *dev = crtc->dev;
7764
7765         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7766                 if (encoder->crtc == crtc)
7767                         return true;
7768
7769         return false;
7770 }
7771
7772 static void
7773 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7774 {
7775         struct intel_encoder *intel_encoder;
7776         struct intel_crtc *intel_crtc;
7777         struct drm_connector *connector;
7778
7779         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7780                             base.head) {
7781                 if (!intel_encoder->base.crtc)
7782                         continue;
7783
7784                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7785
7786                 if (prepare_pipes & (1 << intel_crtc->pipe))
7787                         intel_encoder->connectors_active = false;
7788         }
7789
7790         intel_modeset_commit_output_state(dev);
7791
7792         /* Update computed state. */
7793         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7794                             base.head) {
7795                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7796         }
7797
7798         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7799                 if (!connector->encoder || !connector->encoder->crtc)
7800                         continue;
7801
7802                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7803
7804                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
7805                         struct drm_property *dpms_property =
7806                                 dev->mode_config.dpms_property;
7807
7808                         connector->dpms = DRM_MODE_DPMS_ON;
7809                         drm_object_property_set_value(&connector->base,
7810                                                          dpms_property,
7811                                                          DRM_MODE_DPMS_ON);
7812
7813                         intel_encoder = to_intel_encoder(connector->encoder);
7814                         intel_encoder->connectors_active = true;
7815                 }
7816         }
7817
7818 }
7819
7820 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7821         list_for_each_entry((intel_crtc), \
7822                             &(dev)->mode_config.crtc_list, \
7823                             base.head) \
7824                 if (mask & (1 <<(intel_crtc)->pipe)) \
7825
7826 static bool
7827 intel_pipe_config_compare(struct intel_crtc_config *current_config,
7828                           struct intel_crtc_config *pipe_config)
7829 {
7830         if (current_config->has_pch_encoder != pipe_config->has_pch_encoder) {
7831                 DRM_ERROR("mismatch in has_pch_encoder "
7832                           "(expected %i, found %i)\n",
7833                           current_config->has_pch_encoder,
7834                           pipe_config->has_pch_encoder);
7835                 return false;
7836         }
7837
7838         return true;
7839 }
7840
7841 void
7842 intel_modeset_check_state(struct drm_device *dev)
7843 {
7844         drm_i915_private_t *dev_priv = dev->dev_private;
7845         struct intel_crtc *crtc;
7846         struct intel_encoder *encoder;
7847         struct intel_connector *connector;
7848         struct intel_crtc_config pipe_config;
7849
7850         list_for_each_entry(connector, &dev->mode_config.connector_list,
7851                             base.head) {
7852                 /* This also checks the encoder/connector hw state with the
7853                  * ->get_hw_state callbacks. */
7854                 intel_connector_check_state(connector);
7855
7856                 WARN(&connector->new_encoder->base != connector->base.encoder,
7857                      "connector's staged encoder doesn't match current encoder\n");
7858         }
7859
7860         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7861                             base.head) {
7862                 bool enabled = false;
7863                 bool active = false;
7864                 enum pipe pipe, tracked_pipe;
7865
7866                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7867                               encoder->base.base.id,
7868                               drm_get_encoder_name(&encoder->base));
7869
7870                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7871                      "encoder's stage crtc doesn't match current crtc\n");
7872                 WARN(encoder->connectors_active && !encoder->base.crtc,
7873                      "encoder's active_connectors set, but no crtc\n");
7874
7875                 list_for_each_entry(connector, &dev->mode_config.connector_list,
7876                                     base.head) {
7877                         if (connector->base.encoder != &encoder->base)
7878                                 continue;
7879                         enabled = true;
7880                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7881                                 active = true;
7882                 }
7883                 WARN(!!encoder->base.crtc != enabled,
7884                      "encoder's enabled state mismatch "
7885                      "(expected %i, found %i)\n",
7886                      !!encoder->base.crtc, enabled);
7887                 WARN(active && !encoder->base.crtc,
7888                      "active encoder with no crtc\n");
7889
7890                 WARN(encoder->connectors_active != active,
7891                      "encoder's computed active state doesn't match tracked active state "
7892                      "(expected %i, found %i)\n", active, encoder->connectors_active);
7893
7894                 active = encoder->get_hw_state(encoder, &pipe);
7895                 WARN(active != encoder->connectors_active,
7896                      "encoder's hw state doesn't match sw tracking "
7897                      "(expected %i, found %i)\n",
7898                      encoder->connectors_active, active);
7899
7900                 if (!encoder->base.crtc)
7901                         continue;
7902
7903                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7904                 WARN(active && pipe != tracked_pipe,
7905                      "active encoder's pipe doesn't match"
7906                      "(expected %i, found %i)\n",
7907                      tracked_pipe, pipe);
7908
7909         }
7910
7911         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7912                             base.head) {
7913                 bool enabled = false;
7914                 bool active = false;
7915
7916                 DRM_DEBUG_KMS("[CRTC:%d]\n",
7917                               crtc->base.base.id);
7918
7919                 WARN(crtc->active && !crtc->base.enabled,
7920                      "active crtc, but not enabled in sw tracking\n");
7921
7922                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7923                                     base.head) {
7924                         if (encoder->base.crtc != &crtc->base)
7925                                 continue;
7926                         enabled = true;
7927                         if (encoder->connectors_active)
7928                                 active = true;
7929                 }
7930                 WARN(active != crtc->active,
7931                      "crtc's computed active state doesn't match tracked active state "
7932                      "(expected %i, found %i)\n", active, crtc->active);
7933                 WARN(enabled != crtc->base.enabled,
7934                      "crtc's computed enabled state doesn't match tracked enabled state "
7935                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7936
7937                 memset(&pipe_config, 0, sizeof(pipe_config));
7938                 active = dev_priv->display.get_pipe_config(crtc,
7939                                                            &pipe_config);
7940
7941                 /* hw state is inconsistent with the pipe A quirk */
7942                 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
7943                         active = crtc->active;
7944
7945                 WARN(crtc->active != active,
7946                      "crtc active state doesn't match with hw state "
7947                      "(expected %i, found %i)\n", crtc->active, active);
7948
7949                 WARN(active &&
7950                      !intel_pipe_config_compare(&crtc->config, &pipe_config),
7951                      "pipe state doesn't match!\n");
7952         }
7953 }
7954
7955 static int __intel_set_mode(struct drm_crtc *crtc,
7956                             struct drm_display_mode *mode,
7957                             int x, int y, struct drm_framebuffer *fb)
7958 {
7959         struct drm_device *dev = crtc->dev;
7960         drm_i915_private_t *dev_priv = dev->dev_private;
7961         struct drm_display_mode *saved_mode, *saved_hwmode;
7962         struct intel_crtc_config *pipe_config = NULL;
7963         struct intel_crtc *intel_crtc;
7964         unsigned disable_pipes, prepare_pipes, modeset_pipes;
7965         int ret = 0;
7966
7967         saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
7968         if (!saved_mode)
7969                 return -ENOMEM;
7970         saved_hwmode = saved_mode + 1;
7971
7972         intel_modeset_affected_pipes(crtc, &modeset_pipes,
7973                                      &prepare_pipes, &disable_pipes);
7974
7975         *saved_hwmode = crtc->hwmode;
7976         *saved_mode = crtc->mode;
7977
7978         /* Hack: Because we don't (yet) support global modeset on multiple
7979          * crtcs, we don't keep track of the new mode for more than one crtc.
7980          * Hence simply check whether any bit is set in modeset_pipes in all the
7981          * pieces of code that are not yet converted to deal with mutliple crtcs
7982          * changing their mode at the same time. */
7983         if (modeset_pipes) {
7984                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
7985                 if (IS_ERR(pipe_config)) {
7986                         ret = PTR_ERR(pipe_config);
7987                         pipe_config = NULL;
7988
7989                         goto out;
7990                 }
7991         }
7992
7993         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7994                       modeset_pipes, prepare_pipes, disable_pipes);
7995
7996         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7997                 intel_crtc_disable(&intel_crtc->base);
7998
7999         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
8000                 if (intel_crtc->base.enabled)
8001                         dev_priv->display.crtc_disable(&intel_crtc->base);
8002         }
8003
8004         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
8005          * to set it here already despite that we pass it down the callchain.
8006          */
8007         if (modeset_pipes) {
8008                 enum transcoder tmp = to_intel_crtc(crtc)->config.cpu_transcoder;
8009                 crtc->mode = *mode;
8010                 /* mode_set/enable/disable functions rely on a correct pipe
8011                  * config. */
8012                 to_intel_crtc(crtc)->config = *pipe_config;
8013                 to_intel_crtc(crtc)->config.cpu_transcoder = tmp;
8014         }
8015
8016         /* Only after disabling all output pipelines that will be changed can we
8017          * update the the output configuration. */
8018         intel_modeset_update_state(dev, prepare_pipes);
8019
8020         if (dev_priv->display.modeset_global_resources)
8021                 dev_priv->display.modeset_global_resources(dev);
8022
8023         /* Set up the DPLL and any encoders state that needs to adjust or depend
8024          * on the DPLL.
8025          */
8026         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
8027                 ret = intel_crtc_mode_set(&intel_crtc->base,
8028                                           x, y, fb);
8029                 if (ret)
8030                         goto done;
8031         }
8032
8033         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
8034         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
8035                 dev_priv->display.crtc_enable(&intel_crtc->base);
8036
8037         if (modeset_pipes) {
8038                 /* Store real post-adjustment hardware mode. */
8039                 crtc->hwmode = pipe_config->adjusted_mode;
8040
8041                 /* Calculate and store various constants which
8042                  * are later needed by vblank and swap-completion
8043                  * timestamping. They are derived from true hwmode.
8044                  */
8045                 drm_calc_timestamping_constants(crtc);
8046         }
8047
8048         /* FIXME: add subpixel order */
8049 done:
8050         if (ret && crtc->enabled) {
8051                 crtc->hwmode = *saved_hwmode;
8052                 crtc->mode = *saved_mode;
8053         }
8054
8055 out:
8056         kfree(pipe_config);
8057         kfree(saved_mode);
8058         return ret;
8059 }
8060
8061 int intel_set_mode(struct drm_crtc *crtc,
8062                      struct drm_display_mode *mode,
8063                      int x, int y, struct drm_framebuffer *fb)
8064 {
8065         int ret;
8066
8067         ret = __intel_set_mode(crtc, mode, x, y, fb);
8068
8069         if (ret == 0)
8070                 intel_modeset_check_state(crtc->dev);
8071
8072         return ret;
8073 }
8074
8075 void intel_crtc_restore_mode(struct drm_crtc *crtc)
8076 {
8077         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
8078 }
8079
8080 #undef for_each_intel_crtc_masked
8081
8082 static void intel_set_config_free(struct intel_set_config *config)
8083 {
8084         if (!config)
8085                 return;
8086
8087         kfree(config->save_connector_encoders);
8088         kfree(config->save_encoder_crtcs);
8089         kfree(config);
8090 }
8091
8092 static int intel_set_config_save_state(struct drm_device *dev,
8093                                        struct intel_set_config *config)
8094 {
8095         struct drm_encoder *encoder;
8096         struct drm_connector *connector;
8097         int count;
8098
8099         config->save_encoder_crtcs =
8100                 kcalloc(dev->mode_config.num_encoder,
8101                         sizeof(struct drm_crtc *), GFP_KERNEL);
8102         if (!config->save_encoder_crtcs)
8103                 return -ENOMEM;
8104
8105         config->save_connector_encoders =
8106                 kcalloc(dev->mode_config.num_connector,
8107                         sizeof(struct drm_encoder *), GFP_KERNEL);
8108         if (!config->save_connector_encoders)
8109                 return -ENOMEM;
8110
8111         /* Copy data. Note that driver private data is not affected.
8112          * Should anything bad happen only the expected state is
8113          * restored, not the drivers personal bookkeeping.
8114          */
8115         count = 0;
8116         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
8117                 config->save_encoder_crtcs[count++] = encoder->crtc;
8118         }
8119
8120         count = 0;
8121         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8122                 config->save_connector_encoders[count++] = connector->encoder;
8123         }
8124
8125         return 0;
8126 }
8127
8128 static void intel_set_config_restore_state(struct drm_device *dev,
8129                                            struct intel_set_config *config)
8130 {
8131         struct intel_encoder *encoder;
8132         struct intel_connector *connector;
8133         int count;
8134
8135         count = 0;
8136         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8137                 encoder->new_crtc =
8138                         to_intel_crtc(config->save_encoder_crtcs[count++]);
8139         }
8140
8141         count = 0;
8142         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
8143                 connector->new_encoder =
8144                         to_intel_encoder(config->save_connector_encoders[count++]);
8145         }
8146 }
8147
8148 static bool
8149 is_crtc_connector_off(struct drm_crtc *crtc, struct drm_connector *connectors,
8150                       int num_connectors)
8151 {
8152         int i;
8153
8154         for (i = 0; i < num_connectors; i++)
8155                 if (connectors[i].encoder &&
8156                     connectors[i].encoder->crtc == crtc &&
8157                     connectors[i].dpms != DRM_MODE_DPMS_ON)
8158                         return true;
8159
8160         return false;
8161 }
8162
8163 static void
8164 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
8165                                       struct intel_set_config *config)
8166 {
8167
8168         /* We should be able to check here if the fb has the same properties
8169          * and then just flip_or_move it */
8170         if (set->connectors != NULL &&
8171             is_crtc_connector_off(set->crtc, *set->connectors,
8172                                   set->num_connectors)) {
8173                         config->mode_changed = true;
8174         } else if (set->crtc->fb != set->fb) {
8175                 /* If we have no fb then treat it as a full mode set */
8176                 if (set->crtc->fb == NULL) {
8177                         DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
8178                         config->mode_changed = true;
8179                 } else if (set->fb == NULL) {
8180                         config->mode_changed = true;
8181                 } else if (set->fb->pixel_format !=
8182                            set->crtc->fb->pixel_format) {
8183                         config->mode_changed = true;
8184                 } else {
8185                         config->fb_changed = true;
8186                 }
8187         }
8188
8189         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
8190                 config->fb_changed = true;
8191
8192         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
8193                 DRM_DEBUG_KMS("modes are different, full mode set\n");
8194                 drm_mode_debug_printmodeline(&set->crtc->mode);
8195                 drm_mode_debug_printmodeline(set->mode);
8196                 config->mode_changed = true;
8197         }
8198 }
8199
8200 static int
8201 intel_modeset_stage_output_state(struct drm_device *dev,
8202                                  struct drm_mode_set *set,
8203                                  struct intel_set_config *config)
8204 {
8205         struct drm_crtc *new_crtc;
8206         struct intel_connector *connector;
8207         struct intel_encoder *encoder;
8208         int count, ro;
8209
8210         /* The upper layers ensure that we either disable a crtc or have a list
8211          * of connectors. For paranoia, double-check this. */
8212         WARN_ON(!set->fb && (set->num_connectors != 0));
8213         WARN_ON(set->fb && (set->num_connectors == 0));
8214
8215         count = 0;
8216         list_for_each_entry(connector, &dev->mode_config.connector_list,
8217                             base.head) {
8218                 /* Otherwise traverse passed in connector list and get encoders
8219                  * for them. */
8220                 for (ro = 0; ro < set->num_connectors; ro++) {
8221                         if (set->connectors[ro] == &connector->base) {
8222                                 connector->new_encoder = connector->encoder;
8223                                 break;
8224                         }
8225                 }
8226
8227                 /* If we disable the crtc, disable all its connectors. Also, if
8228                  * the connector is on the changing crtc but not on the new
8229                  * connector list, disable it. */
8230                 if ((!set->fb || ro == set->num_connectors) &&
8231                     connector->base.encoder &&
8232                     connector->base.encoder->crtc == set->crtc) {
8233                         connector->new_encoder = NULL;
8234
8235                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
8236                                 connector->base.base.id,
8237                                 drm_get_connector_name(&connector->base));
8238                 }
8239
8240
8241                 if (&connector->new_encoder->base != connector->base.encoder) {
8242                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
8243                         config->mode_changed = true;
8244                 }
8245         }
8246         /* connector->new_encoder is now updated for all connectors. */
8247
8248         /* Update crtc of enabled connectors. */
8249         count = 0;
8250         list_for_each_entry(connector, &dev->mode_config.connector_list,
8251                             base.head) {
8252                 if (!connector->new_encoder)
8253                         continue;
8254
8255                 new_crtc = connector->new_encoder->base.crtc;
8256
8257                 for (ro = 0; ro < set->num_connectors; ro++) {
8258                         if (set->connectors[ro] == &connector->base)
8259                                 new_crtc = set->crtc;
8260                 }
8261
8262                 /* Make sure the new CRTC will work with the encoder */
8263                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
8264                                            new_crtc)) {
8265                         return -EINVAL;
8266                 }
8267                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8268
8269                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8270                         connector->base.base.id,
8271                         drm_get_connector_name(&connector->base),
8272                         new_crtc->base.id);
8273         }
8274
8275         /* Check for any encoders that needs to be disabled. */
8276         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8277                             base.head) {
8278                 list_for_each_entry(connector,
8279                                     &dev->mode_config.connector_list,
8280                                     base.head) {
8281                         if (connector->new_encoder == encoder) {
8282                                 WARN_ON(!connector->new_encoder->new_crtc);
8283
8284                                 goto next_encoder;
8285                         }
8286                 }
8287                 encoder->new_crtc = NULL;
8288 next_encoder:
8289                 /* Only now check for crtc changes so we don't miss encoders
8290                  * that will be disabled. */
8291                 if (&encoder->new_crtc->base != encoder->base.crtc) {
8292                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
8293                         config->mode_changed = true;
8294                 }
8295         }
8296         /* Now we've also updated encoder->new_crtc for all encoders. */
8297
8298         return 0;
8299 }
8300
8301 static int intel_crtc_set_config(struct drm_mode_set *set)
8302 {
8303         struct drm_device *dev;
8304         struct drm_mode_set save_set;
8305         struct intel_set_config *config;
8306         int ret;
8307
8308         BUG_ON(!set);
8309         BUG_ON(!set->crtc);
8310         BUG_ON(!set->crtc->helper_private);
8311
8312         /* Enforce sane interface api - has been abused by the fb helper. */
8313         BUG_ON(!set->mode && set->fb);
8314         BUG_ON(set->fb && set->num_connectors == 0);
8315
8316         if (set->fb) {
8317                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8318                                 set->crtc->base.id, set->fb->base.id,
8319                                 (int)set->num_connectors, set->x, set->y);
8320         } else {
8321                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
8322         }
8323
8324         dev = set->crtc->dev;
8325
8326         ret = -ENOMEM;
8327         config = kzalloc(sizeof(*config), GFP_KERNEL);
8328         if (!config)
8329                 goto out_config;
8330
8331         ret = intel_set_config_save_state(dev, config);
8332         if (ret)
8333                 goto out_config;
8334
8335         save_set.crtc = set->crtc;
8336         save_set.mode = &set->crtc->mode;
8337         save_set.x = set->crtc->x;
8338         save_set.y = set->crtc->y;
8339         save_set.fb = set->crtc->fb;
8340
8341         /* Compute whether we need a full modeset, only an fb base update or no
8342          * change at all. In the future we might also check whether only the
8343          * mode changed, e.g. for LVDS where we only change the panel fitter in
8344          * such cases. */
8345         intel_set_config_compute_mode_changes(set, config);
8346
8347         ret = intel_modeset_stage_output_state(dev, set, config);
8348         if (ret)
8349                 goto fail;
8350
8351         if (config->mode_changed) {
8352                 if (set->mode) {
8353                         DRM_DEBUG_KMS("attempting to set mode from"
8354                                         " userspace\n");
8355                         drm_mode_debug_printmodeline(set->mode);
8356                 }
8357
8358                 ret = intel_set_mode(set->crtc, set->mode,
8359                                      set->x, set->y, set->fb);
8360         } else if (config->fb_changed) {
8361                 intel_crtc_wait_for_pending_flips(set->crtc);
8362
8363                 ret = intel_pipe_set_base(set->crtc,
8364                                           set->x, set->y, set->fb);
8365         }
8366
8367         if (ret) {
8368                 DRM_ERROR("failed to set mode on [CRTC:%d], err = %d\n",
8369                           set->crtc->base.id, ret);
8370 fail:
8371                 intel_set_config_restore_state(dev, config);
8372
8373                 /* Try to restore the config */
8374                 if (config->mode_changed &&
8375                     intel_set_mode(save_set.crtc, save_set.mode,
8376                                    save_set.x, save_set.y, save_set.fb))
8377                         DRM_ERROR("failed to restore config after modeset failure\n");
8378         }
8379
8380 out_config:
8381         intel_set_config_free(config);
8382         return ret;
8383 }
8384
8385 static const struct drm_crtc_funcs intel_crtc_funcs = {
8386         .cursor_set = intel_crtc_cursor_set,
8387         .cursor_move = intel_crtc_cursor_move,
8388         .gamma_set = intel_crtc_gamma_set,
8389         .set_config = intel_crtc_set_config,
8390         .destroy = intel_crtc_destroy,
8391         .page_flip = intel_crtc_page_flip,
8392 };
8393
8394 static void intel_cpu_pll_init(struct drm_device *dev)
8395 {
8396         if (HAS_DDI(dev))
8397                 intel_ddi_pll_init(dev);
8398 }
8399
8400 static void intel_pch_pll_init(struct drm_device *dev)
8401 {
8402         drm_i915_private_t *dev_priv = dev->dev_private;
8403         int i;
8404
8405         if (dev_priv->num_pch_pll == 0) {
8406                 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
8407                 return;
8408         }
8409
8410         for (i = 0; i < dev_priv->num_pch_pll; i++) {
8411                 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
8412                 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8413                 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8414         }
8415 }
8416
8417 static void intel_crtc_init(struct drm_device *dev, int pipe)
8418 {
8419         drm_i915_private_t *dev_priv = dev->dev_private;
8420         struct intel_crtc *intel_crtc;
8421         int i;
8422
8423         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8424         if (intel_crtc == NULL)
8425                 return;
8426
8427         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8428
8429         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8430         for (i = 0; i < 256; i++) {
8431                 intel_crtc->lut_r[i] = i;
8432                 intel_crtc->lut_g[i] = i;
8433                 intel_crtc->lut_b[i] = i;
8434         }
8435
8436         /* Swap pipes & planes for FBC on pre-965 */
8437         intel_crtc->pipe = pipe;
8438         intel_crtc->plane = pipe;
8439         intel_crtc->config.cpu_transcoder = pipe;
8440         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8441                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8442                 intel_crtc->plane = !pipe;
8443         }
8444
8445         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8446                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8447         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8448         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8449
8450         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8451 }
8452
8453 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8454                                 struct drm_file *file)
8455 {
8456         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8457         struct drm_mode_object *drmmode_obj;
8458         struct intel_crtc *crtc;
8459
8460         if (!drm_core_check_feature(dev, DRIVER_MODESET))
8461                 return -ENODEV;
8462
8463         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8464                         DRM_MODE_OBJECT_CRTC);
8465
8466         if (!drmmode_obj) {
8467                 DRM_ERROR("no such CRTC id\n");
8468                 return -EINVAL;
8469         }
8470
8471         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8472         pipe_from_crtc_id->pipe = crtc->pipe;
8473
8474         return 0;
8475 }
8476
8477 static int intel_encoder_clones(struct intel_encoder *encoder)
8478 {
8479         struct drm_device *dev = encoder->base.dev;
8480         struct intel_encoder *source_encoder;
8481         int index_mask = 0;
8482         int entry = 0;
8483
8484         list_for_each_entry(source_encoder,
8485                             &dev->mode_config.encoder_list, base.head) {
8486
8487                 if (encoder == source_encoder)
8488                         index_mask |= (1 << entry);
8489
8490                 /* Intel hw has only one MUX where enocoders could be cloned. */
8491                 if (encoder->cloneable && source_encoder->cloneable)
8492                         index_mask |= (1 << entry);
8493
8494                 entry++;
8495         }
8496
8497         return index_mask;
8498 }
8499
8500 static bool has_edp_a(struct drm_device *dev)
8501 {
8502         struct drm_i915_private *dev_priv = dev->dev_private;
8503
8504         if (!IS_MOBILE(dev))
8505                 return false;
8506
8507         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8508                 return false;
8509
8510         if (IS_GEN5(dev) &&
8511             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8512                 return false;
8513
8514         return true;
8515 }
8516
8517 static void intel_setup_outputs(struct drm_device *dev)
8518 {
8519         struct drm_i915_private *dev_priv = dev->dev_private;
8520         struct intel_encoder *encoder;
8521         bool dpd_is_edp = false;
8522         bool has_lvds;
8523
8524         has_lvds = intel_lvds_init(dev);
8525         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8526                 /* disable the panel fitter on everything but LVDS */
8527                 I915_WRITE(PFIT_CONTROL, 0);
8528         }
8529
8530         if (!IS_ULT(dev))
8531                 intel_crt_init(dev);
8532
8533         if (HAS_DDI(dev)) {
8534                 int found;
8535
8536                 /* Haswell uses DDI functions to detect digital outputs */
8537                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8538                 /* DDI A only supports eDP */
8539                 if (found)
8540                         intel_ddi_init(dev, PORT_A);
8541
8542                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8543                  * register */
8544                 found = I915_READ(SFUSE_STRAP);
8545
8546                 if (found & SFUSE_STRAP_DDIB_DETECTED)
8547                         intel_ddi_init(dev, PORT_B);
8548                 if (found & SFUSE_STRAP_DDIC_DETECTED)
8549                         intel_ddi_init(dev, PORT_C);
8550                 if (found & SFUSE_STRAP_DDID_DETECTED)
8551                         intel_ddi_init(dev, PORT_D);
8552         } else if (HAS_PCH_SPLIT(dev)) {
8553                 int found;
8554                 dpd_is_edp = intel_dpd_is_edp(dev);
8555
8556                 if (has_edp_a(dev))
8557                         intel_dp_init(dev, DP_A, PORT_A);
8558
8559                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
8560                         /* PCH SDVOB multiplex with HDMIB */
8561                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
8562                         if (!found)
8563                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
8564                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8565                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
8566                 }
8567
8568                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
8569                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
8570
8571                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
8572                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
8573
8574                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8575                         intel_dp_init(dev, PCH_DP_C, PORT_C);
8576
8577                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
8578                         intel_dp_init(dev, PCH_DP_D, PORT_D);
8579         } else if (IS_VALLEYVIEW(dev)) {
8580                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8581                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
8582                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
8583
8584                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
8585                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
8586                                         PORT_B);
8587                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
8588                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
8589                 }
8590         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8591                 bool found = false;
8592
8593                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
8594                         DRM_DEBUG_KMS("probing SDVOB\n");
8595                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
8596                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8597                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8598                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
8599                         }
8600
8601                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8602                                 DRM_DEBUG_KMS("probing DP_B\n");
8603                                 intel_dp_init(dev, DP_B, PORT_B);
8604                         }
8605                 }
8606
8607                 /* Before G4X SDVOC doesn't have its own detect register */
8608
8609                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
8610                         DRM_DEBUG_KMS("probing SDVOC\n");
8611                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
8612                 }
8613
8614                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
8615
8616                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8617                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8618                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
8619                         }
8620                         if (SUPPORTS_INTEGRATED_DP(dev)) {
8621                                 DRM_DEBUG_KMS("probing DP_C\n");
8622                                 intel_dp_init(dev, DP_C, PORT_C);
8623                         }
8624                 }
8625
8626                 if (SUPPORTS_INTEGRATED_DP(dev) &&
8627                     (I915_READ(DP_D) & DP_DETECTED)) {
8628                         DRM_DEBUG_KMS("probing DP_D\n");
8629                         intel_dp_init(dev, DP_D, PORT_D);
8630                 }
8631         } else if (IS_GEN2(dev))
8632                 intel_dvo_init(dev);
8633
8634         if (SUPPORTS_TV(dev))
8635                 intel_tv_init(dev);
8636
8637         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8638                 encoder->base.possible_crtcs = encoder->crtc_mask;
8639                 encoder->base.possible_clones =
8640                         intel_encoder_clones(encoder);
8641         }
8642
8643         intel_init_pch_refclk(dev);
8644
8645         drm_helper_move_panel_connectors_to_head(dev);
8646 }
8647
8648 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8649 {
8650         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8651
8652         drm_framebuffer_cleanup(fb);
8653         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8654
8655         kfree(intel_fb);
8656 }
8657
8658 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8659                                                 struct drm_file *file,
8660                                                 unsigned int *handle)
8661 {
8662         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8663         struct drm_i915_gem_object *obj = intel_fb->obj;
8664
8665         return drm_gem_handle_create(file, &obj->base, handle);
8666 }
8667
8668 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8669         .destroy = intel_user_framebuffer_destroy,
8670         .create_handle = intel_user_framebuffer_create_handle,
8671 };
8672
8673 int intel_framebuffer_init(struct drm_device *dev,
8674                            struct intel_framebuffer *intel_fb,
8675                            struct drm_mode_fb_cmd2 *mode_cmd,
8676                            struct drm_i915_gem_object *obj)
8677 {
8678         int ret;
8679
8680         if (obj->tiling_mode == I915_TILING_Y) {
8681                 DRM_DEBUG("hardware does not support tiling Y\n");
8682                 return -EINVAL;
8683         }
8684
8685         if (mode_cmd->pitches[0] & 63) {
8686                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
8687                           mode_cmd->pitches[0]);
8688                 return -EINVAL;
8689         }
8690
8691         /* FIXME <= Gen4 stride limits are bit unclear */
8692         if (mode_cmd->pitches[0] > 32768) {
8693                 DRM_DEBUG("pitch (%d) must be at less than 32768\n",
8694                           mode_cmd->pitches[0]);
8695                 return -EINVAL;
8696         }
8697
8698         if (obj->tiling_mode != I915_TILING_NONE &&
8699             mode_cmd->pitches[0] != obj->stride) {
8700                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
8701                           mode_cmd->pitches[0], obj->stride);
8702                 return -EINVAL;
8703         }
8704
8705         /* Reject formats not supported by any plane early. */
8706         switch (mode_cmd->pixel_format) {
8707         case DRM_FORMAT_C8:
8708         case DRM_FORMAT_RGB565:
8709         case DRM_FORMAT_XRGB8888:
8710         case DRM_FORMAT_ARGB8888:
8711                 break;
8712         case DRM_FORMAT_XRGB1555:
8713         case DRM_FORMAT_ARGB1555:
8714                 if (INTEL_INFO(dev)->gen > 3) {
8715                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8716                         return -EINVAL;
8717                 }
8718                 break;
8719         case DRM_FORMAT_XBGR8888:
8720         case DRM_FORMAT_ABGR8888:
8721         case DRM_FORMAT_XRGB2101010:
8722         case DRM_FORMAT_ARGB2101010:
8723         case DRM_FORMAT_XBGR2101010:
8724         case DRM_FORMAT_ABGR2101010:
8725                 if (INTEL_INFO(dev)->gen < 4) {
8726                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8727                         return -EINVAL;
8728                 }
8729                 break;
8730         case DRM_FORMAT_YUYV:
8731         case DRM_FORMAT_UYVY:
8732         case DRM_FORMAT_YVYU:
8733         case DRM_FORMAT_VYUY:
8734                 if (INTEL_INFO(dev)->gen < 5) {
8735                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8736                         return -EINVAL;
8737                 }
8738                 break;
8739         default:
8740                 DRM_DEBUG("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
8741                 return -EINVAL;
8742         }
8743
8744         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
8745         if (mode_cmd->offsets[0] != 0)
8746                 return -EINVAL;
8747
8748         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8749         intel_fb->obj = obj;
8750
8751         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8752         if (ret) {
8753                 DRM_ERROR("framebuffer init failed %d\n", ret);
8754                 return ret;
8755         }
8756
8757         return 0;
8758 }
8759
8760 static struct drm_framebuffer *
8761 intel_user_framebuffer_create(struct drm_device *dev,
8762                               struct drm_file *filp,
8763                               struct drm_mode_fb_cmd2 *mode_cmd)
8764 {
8765         struct drm_i915_gem_object *obj;
8766
8767         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8768                                                 mode_cmd->handles[0]));
8769         if (&obj->base == NULL)
8770                 return ERR_PTR(-ENOENT);
8771
8772         return intel_framebuffer_create(dev, mode_cmd, obj);
8773 }
8774
8775 static const struct drm_mode_config_funcs intel_mode_funcs = {
8776         .fb_create = intel_user_framebuffer_create,
8777         .output_poll_changed = intel_fb_output_poll_changed,
8778 };
8779
8780 /* Set up chip specific display functions */
8781 static void intel_init_display(struct drm_device *dev)
8782 {
8783         struct drm_i915_private *dev_priv = dev->dev_private;
8784
8785         if (HAS_DDI(dev)) {
8786                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
8787                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8788                 dev_priv->display.crtc_enable = haswell_crtc_enable;
8789                 dev_priv->display.crtc_disable = haswell_crtc_disable;
8790                 dev_priv->display.off = haswell_crtc_off;
8791                 dev_priv->display.update_plane = ironlake_update_plane;
8792         } else if (HAS_PCH_SPLIT(dev)) {
8793                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
8794                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8795                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8796                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
8797                 dev_priv->display.off = ironlake_crtc_off;
8798                 dev_priv->display.update_plane = ironlake_update_plane;
8799         } else {
8800                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
8801                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8802                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8803                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8804                 dev_priv->display.off = i9xx_crtc_off;
8805                 dev_priv->display.update_plane = i9xx_update_plane;
8806         }
8807
8808         /* Returns the core display clock speed */
8809         if (IS_VALLEYVIEW(dev))
8810                 dev_priv->display.get_display_clock_speed =
8811                         valleyview_get_display_clock_speed;
8812         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8813                 dev_priv->display.get_display_clock_speed =
8814                         i945_get_display_clock_speed;
8815         else if (IS_I915G(dev))
8816                 dev_priv->display.get_display_clock_speed =
8817                         i915_get_display_clock_speed;
8818         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8819                 dev_priv->display.get_display_clock_speed =
8820                         i9xx_misc_get_display_clock_speed;
8821         else if (IS_I915GM(dev))
8822                 dev_priv->display.get_display_clock_speed =
8823                         i915gm_get_display_clock_speed;
8824         else if (IS_I865G(dev))
8825                 dev_priv->display.get_display_clock_speed =
8826                         i865_get_display_clock_speed;
8827         else if (IS_I85X(dev))
8828                 dev_priv->display.get_display_clock_speed =
8829                         i855_get_display_clock_speed;
8830         else /* 852, 830 */
8831                 dev_priv->display.get_display_clock_speed =
8832                         i830_get_display_clock_speed;
8833
8834         if (HAS_PCH_SPLIT(dev)) {
8835                 if (IS_GEN5(dev)) {
8836                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8837                         dev_priv->display.write_eld = ironlake_write_eld;
8838                 } else if (IS_GEN6(dev)) {
8839                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8840                         dev_priv->display.write_eld = ironlake_write_eld;
8841                 } else if (IS_IVYBRIDGE(dev)) {
8842                         /* FIXME: detect B0+ stepping and use auto training */
8843                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8844                         dev_priv->display.write_eld = ironlake_write_eld;
8845                         dev_priv->display.modeset_global_resources =
8846                                 ivb_modeset_global_resources;
8847                 } else if (IS_HASWELL(dev)) {
8848                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
8849                         dev_priv->display.write_eld = haswell_write_eld;
8850                         dev_priv->display.modeset_global_resources =
8851                                 haswell_modeset_global_resources;
8852                 }
8853         } else if (IS_G4X(dev)) {
8854                 dev_priv->display.write_eld = g4x_write_eld;
8855         }
8856
8857         /* Default just returns -ENODEV to indicate unsupported */
8858         dev_priv->display.queue_flip = intel_default_queue_flip;
8859
8860         switch (INTEL_INFO(dev)->gen) {
8861         case 2:
8862                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8863                 break;
8864
8865         case 3:
8866                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8867                 break;
8868
8869         case 4:
8870         case 5:
8871                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8872                 break;
8873
8874         case 6:
8875                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8876                 break;
8877         case 7:
8878                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8879                 break;
8880         }
8881 }
8882
8883 /*
8884  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8885  * resume, or other times.  This quirk makes sure that's the case for
8886  * affected systems.
8887  */
8888 static void quirk_pipea_force(struct drm_device *dev)
8889 {
8890         struct drm_i915_private *dev_priv = dev->dev_private;
8891
8892         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8893         DRM_INFO("applying pipe a force quirk\n");
8894 }
8895
8896 /*
8897  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8898  */
8899 static void quirk_ssc_force_disable(struct drm_device *dev)
8900 {
8901         struct drm_i915_private *dev_priv = dev->dev_private;
8902         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8903         DRM_INFO("applying lvds SSC disable quirk\n");
8904 }
8905
8906 /*
8907  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8908  * brightness value
8909  */
8910 static void quirk_invert_brightness(struct drm_device *dev)
8911 {
8912         struct drm_i915_private *dev_priv = dev->dev_private;
8913         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
8914         DRM_INFO("applying inverted panel brightness quirk\n");
8915 }
8916
8917 struct intel_quirk {
8918         int device;
8919         int subsystem_vendor;
8920         int subsystem_device;
8921         void (*hook)(struct drm_device *dev);
8922 };
8923
8924 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
8925 struct intel_dmi_quirk {
8926         void (*hook)(struct drm_device *dev);
8927         const struct dmi_system_id (*dmi_id_list)[];
8928 };
8929
8930 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
8931 {
8932         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
8933         return 1;
8934 }
8935
8936 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
8937         {
8938                 .dmi_id_list = &(const struct dmi_system_id[]) {
8939                         {
8940                                 .callback = intel_dmi_reverse_brightness,
8941                                 .ident = "NCR Corporation",
8942                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
8943                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
8944                                 },
8945                         },
8946                         { }  /* terminating entry */
8947                 },
8948                 .hook = quirk_invert_brightness,
8949         },
8950 };
8951
8952 static struct intel_quirk intel_quirks[] = {
8953         /* HP Mini needs pipe A force quirk (LP: #322104) */
8954         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8955
8956         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8957         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8958
8959         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8960         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8961
8962         /* 830/845 need to leave pipe A & dpll A up */
8963         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8964         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8965
8966         /* Lenovo U160 cannot use SSC on LVDS */
8967         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8968
8969         /* Sony Vaio Y cannot use SSC on LVDS */
8970         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8971
8972         /* Acer Aspire 5734Z must invert backlight brightness */
8973         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
8974
8975         /* Acer/eMachines G725 */
8976         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
8977
8978         /* Acer/eMachines e725 */
8979         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
8980
8981         /* Acer/Packard Bell NCL20 */
8982         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
8983
8984         /* Acer Aspire 4736Z */
8985         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
8986 };
8987
8988 static void intel_init_quirks(struct drm_device *dev)
8989 {
8990         struct pci_dev *d = dev->pdev;
8991         int i;
8992
8993         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8994                 struct intel_quirk *q = &intel_quirks[i];
8995
8996                 if (d->device == q->device &&
8997                     (d->subsystem_vendor == q->subsystem_vendor ||
8998                      q->subsystem_vendor == PCI_ANY_ID) &&
8999                     (d->subsystem_device == q->subsystem_device ||
9000                      q->subsystem_device == PCI_ANY_ID))
9001                         q->hook(dev);
9002         }
9003         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
9004                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
9005                         intel_dmi_quirks[i].hook(dev);
9006         }
9007 }
9008
9009 /* Disable the VGA plane that we never use */
9010 static void i915_disable_vga(struct drm_device *dev)
9011 {
9012         struct drm_i915_private *dev_priv = dev->dev_private;
9013         u8 sr1;
9014         u32 vga_reg = i915_vgacntrl_reg(dev);
9015
9016         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
9017         outb(SR01, VGA_SR_INDEX);
9018         sr1 = inb(VGA_SR_DATA);
9019         outb(sr1 | 1<<5, VGA_SR_DATA);
9020         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
9021         udelay(300);
9022
9023         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9024         POSTING_READ(vga_reg);
9025 }
9026
9027 void intel_modeset_init_hw(struct drm_device *dev)
9028 {
9029         intel_init_power_well(dev);
9030
9031         intel_prepare_ddi(dev);
9032
9033         intel_init_clock_gating(dev);
9034
9035         mutex_lock(&dev->struct_mutex);
9036         intel_enable_gt_powersave(dev);
9037         mutex_unlock(&dev->struct_mutex);
9038 }
9039
9040 void intel_modeset_init(struct drm_device *dev)
9041 {
9042         struct drm_i915_private *dev_priv = dev->dev_private;
9043         int i, j, ret;
9044
9045         drm_mode_config_init(dev);
9046
9047         dev->mode_config.min_width = 0;
9048         dev->mode_config.min_height = 0;
9049
9050         dev->mode_config.preferred_depth = 24;
9051         dev->mode_config.prefer_shadow = 1;
9052
9053         dev->mode_config.funcs = &intel_mode_funcs;
9054
9055         intel_init_quirks(dev);
9056
9057         intel_init_pm(dev);
9058
9059         if (INTEL_INFO(dev)->num_pipes == 0)
9060                 return;
9061
9062         intel_init_display(dev);
9063
9064         if (IS_GEN2(dev)) {
9065                 dev->mode_config.max_width = 2048;
9066                 dev->mode_config.max_height = 2048;
9067         } else if (IS_GEN3(dev)) {
9068                 dev->mode_config.max_width = 4096;
9069                 dev->mode_config.max_height = 4096;
9070         } else {
9071                 dev->mode_config.max_width = 8192;
9072                 dev->mode_config.max_height = 8192;
9073         }
9074         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
9075
9076         DRM_DEBUG_KMS("%d display pipe%s available.\n",
9077                       INTEL_INFO(dev)->num_pipes,
9078                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
9079
9080         for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
9081                 intel_crtc_init(dev, i);
9082                 for (j = 0; j < dev_priv->num_plane; j++) {
9083                         ret = intel_plane_init(dev, i, j);
9084                         if (ret)
9085                                 DRM_DEBUG_KMS("pipe %d plane %d init failed: %d\n",
9086                                               i, j, ret);
9087                 }
9088         }
9089
9090         intel_cpu_pll_init(dev);
9091         intel_pch_pll_init(dev);
9092
9093         /* Just disable it once at startup */
9094         i915_disable_vga(dev);
9095         intel_setup_outputs(dev);
9096
9097         /* Just in case the BIOS is doing something questionable. */
9098         intel_disable_fbc(dev);
9099 }
9100
9101 static void
9102 intel_connector_break_all_links(struct intel_connector *connector)
9103 {
9104         connector->base.dpms = DRM_MODE_DPMS_OFF;
9105         connector->base.encoder = NULL;
9106         connector->encoder->connectors_active = false;
9107         connector->encoder->base.crtc = NULL;
9108 }
9109
9110 static void intel_enable_pipe_a(struct drm_device *dev)
9111 {
9112         struct intel_connector *connector;
9113         struct drm_connector *crt = NULL;
9114         struct intel_load_detect_pipe load_detect_temp;
9115
9116         /* We can't just switch on the pipe A, we need to set things up with a
9117          * proper mode and output configuration. As a gross hack, enable pipe A
9118          * by enabling the load detect pipe once. */
9119         list_for_each_entry(connector,
9120                             &dev->mode_config.connector_list,
9121                             base.head) {
9122                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
9123                         crt = &connector->base;
9124                         break;
9125                 }
9126         }
9127
9128         if (!crt)
9129                 return;
9130
9131         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
9132                 intel_release_load_detect_pipe(crt, &load_detect_temp);
9133
9134
9135 }
9136
9137 static bool
9138 intel_check_plane_mapping(struct intel_crtc *crtc)
9139 {
9140         struct drm_device *dev = crtc->base.dev;
9141         struct drm_i915_private *dev_priv = dev->dev_private;
9142         u32 reg, val;
9143
9144         if (INTEL_INFO(dev)->num_pipes == 1)
9145                 return true;
9146
9147         reg = DSPCNTR(!crtc->plane);
9148         val = I915_READ(reg);
9149
9150         if ((val & DISPLAY_PLANE_ENABLE) &&
9151             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
9152                 return false;
9153
9154         return true;
9155 }
9156
9157 static void intel_sanitize_crtc(struct intel_crtc *crtc)
9158 {
9159         struct drm_device *dev = crtc->base.dev;
9160         struct drm_i915_private *dev_priv = dev->dev_private;
9161         u32 reg;
9162
9163         /* Clear any frame start delays used for debugging left by the BIOS */
9164         reg = PIPECONF(crtc->config.cpu_transcoder);
9165         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
9166
9167         /* We need to sanitize the plane -> pipe mapping first because this will
9168          * disable the crtc (and hence change the state) if it is wrong. Note
9169          * that gen4+ has a fixed plane -> pipe mapping.  */
9170         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
9171                 struct intel_connector *connector;
9172                 bool plane;
9173
9174                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
9175                               crtc->base.base.id);
9176
9177                 /* Pipe has the wrong plane attached and the plane is active.
9178                  * Temporarily change the plane mapping and disable everything
9179                  * ...  */
9180                 plane = crtc->plane;
9181                 crtc->plane = !plane;
9182                 dev_priv->display.crtc_disable(&crtc->base);
9183                 crtc->plane = plane;
9184
9185                 /* ... and break all links. */
9186                 list_for_each_entry(connector, &dev->mode_config.connector_list,
9187                                     base.head) {
9188                         if (connector->encoder->base.crtc != &crtc->base)
9189                                 continue;
9190
9191                         intel_connector_break_all_links(connector);
9192                 }
9193
9194                 WARN_ON(crtc->active);
9195                 crtc->base.enabled = false;
9196         }
9197
9198         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
9199             crtc->pipe == PIPE_A && !crtc->active) {
9200                 /* BIOS forgot to enable pipe A, this mostly happens after
9201                  * resume. Force-enable the pipe to fix this, the update_dpms
9202                  * call below we restore the pipe to the right state, but leave
9203                  * the required bits on. */
9204                 intel_enable_pipe_a(dev);
9205         }
9206
9207         /* Adjust the state of the output pipe according to whether we
9208          * have active connectors/encoders. */
9209         intel_crtc_update_dpms(&crtc->base);
9210
9211         if (crtc->active != crtc->base.enabled) {
9212                 struct intel_encoder *encoder;
9213
9214                 /* This can happen either due to bugs in the get_hw_state
9215                  * functions or because the pipe is force-enabled due to the
9216                  * pipe A quirk. */
9217                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
9218                               crtc->base.base.id,
9219                               crtc->base.enabled ? "enabled" : "disabled",
9220                               crtc->active ? "enabled" : "disabled");
9221
9222                 crtc->base.enabled = crtc->active;
9223
9224                 /* Because we only establish the connector -> encoder ->
9225                  * crtc links if something is active, this means the
9226                  * crtc is now deactivated. Break the links. connector
9227                  * -> encoder links are only establish when things are
9228                  *  actually up, hence no need to break them. */
9229                 WARN_ON(crtc->active);
9230
9231                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
9232                         WARN_ON(encoder->connectors_active);
9233                         encoder->base.crtc = NULL;
9234                 }
9235         }
9236 }
9237
9238 static void intel_sanitize_encoder(struct intel_encoder *encoder)
9239 {
9240         struct intel_connector *connector;
9241         struct drm_device *dev = encoder->base.dev;
9242
9243         /* We need to check both for a crtc link (meaning that the
9244          * encoder is active and trying to read from a pipe) and the
9245          * pipe itself being active. */
9246         bool has_active_crtc = encoder->base.crtc &&
9247                 to_intel_crtc(encoder->base.crtc)->active;
9248
9249         if (encoder->connectors_active && !has_active_crtc) {
9250                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
9251                               encoder->base.base.id,
9252                               drm_get_encoder_name(&encoder->base));
9253
9254                 /* Connector is active, but has no active pipe. This is
9255                  * fallout from our resume register restoring. Disable
9256                  * the encoder manually again. */
9257                 if (encoder->base.crtc) {
9258                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
9259                                       encoder->base.base.id,
9260                                       drm_get_encoder_name(&encoder->base));
9261                         encoder->disable(encoder);
9262                 }
9263
9264                 /* Inconsistent output/port/pipe state happens presumably due to
9265                  * a bug in one of the get_hw_state functions. Or someplace else
9266                  * in our code, like the register restore mess on resume. Clamp
9267                  * things to off as a safer default. */
9268                 list_for_each_entry(connector,
9269                                     &dev->mode_config.connector_list,
9270                                     base.head) {
9271                         if (connector->encoder != encoder)
9272                                 continue;
9273
9274                         intel_connector_break_all_links(connector);
9275                 }
9276         }
9277         /* Enabled encoders without active connectors will be fixed in
9278          * the crtc fixup. */
9279 }
9280
9281 void i915_redisable_vga(struct drm_device *dev)
9282 {
9283         struct drm_i915_private *dev_priv = dev->dev_private;
9284         u32 vga_reg = i915_vgacntrl_reg(dev);
9285
9286         if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
9287                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
9288                 i915_disable_vga(dev);
9289         }
9290 }
9291
9292 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
9293  * and i915 state tracking structures. */
9294 void intel_modeset_setup_hw_state(struct drm_device *dev,
9295                                   bool force_restore)
9296 {
9297         struct drm_i915_private *dev_priv = dev->dev_private;
9298         enum pipe pipe;
9299         u32 tmp;
9300         struct drm_plane *plane;
9301         struct intel_crtc *crtc;
9302         struct intel_encoder *encoder;
9303         struct intel_connector *connector;
9304
9305         if (HAS_DDI(dev)) {
9306                 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9307
9308                 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9309                         switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9310                         case TRANS_DDI_EDP_INPUT_A_ON:
9311                         case TRANS_DDI_EDP_INPUT_A_ONOFF:
9312                                 pipe = PIPE_A;
9313                                 break;
9314                         case TRANS_DDI_EDP_INPUT_B_ONOFF:
9315                                 pipe = PIPE_B;
9316                                 break;
9317                         case TRANS_DDI_EDP_INPUT_C_ONOFF:
9318                                 pipe = PIPE_C;
9319                                 break;
9320                         default:
9321                                 /* A bogus value has been programmed, disable
9322                                  * the transcoder */
9323                                 WARN(1, "Bogus eDP source %08x\n", tmp);
9324                                 intel_ddi_disable_transcoder_func(dev_priv,
9325                                                 TRANSCODER_EDP);
9326                                 goto setup_pipes;
9327                         }
9328
9329                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9330                         crtc->config.cpu_transcoder = TRANSCODER_EDP;
9331
9332                         DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
9333                                       pipe_name(pipe));
9334                 }
9335         }
9336
9337 setup_pipes:
9338         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9339                             base.head) {
9340                 enum transcoder tmp = crtc->config.cpu_transcoder;
9341                 memset(&crtc->config, 0, sizeof(crtc->config));
9342                 crtc->config.cpu_transcoder = tmp;
9343
9344                 crtc->active = dev_priv->display.get_pipe_config(crtc,
9345                                                                  &crtc->config);
9346
9347                 crtc->base.enabled = crtc->active;
9348
9349                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
9350                               crtc->base.base.id,
9351                               crtc->active ? "enabled" : "disabled");
9352         }
9353
9354         if (HAS_DDI(dev))
9355                 intel_ddi_setup_hw_pll_state(dev);
9356
9357         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9358                             base.head) {
9359                 pipe = 0;
9360
9361                 if (encoder->get_hw_state(encoder, &pipe)) {
9362                         encoder->base.crtc =
9363                                 dev_priv->pipe_to_crtc_mapping[pipe];
9364                 } else {
9365                         encoder->base.crtc = NULL;
9366                 }
9367
9368                 encoder->connectors_active = false;
9369                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9370                               encoder->base.base.id,
9371                               drm_get_encoder_name(&encoder->base),
9372                               encoder->base.crtc ? "enabled" : "disabled",
9373                               pipe);
9374         }
9375
9376         list_for_each_entry(connector, &dev->mode_config.connector_list,
9377                             base.head) {
9378                 if (connector->get_hw_state(connector)) {
9379                         connector->base.dpms = DRM_MODE_DPMS_ON;
9380                         connector->encoder->connectors_active = true;
9381                         connector->base.encoder = &connector->encoder->base;
9382                 } else {
9383                         connector->base.dpms = DRM_MODE_DPMS_OFF;
9384                         connector->base.encoder = NULL;
9385                 }
9386                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9387                               connector->base.base.id,
9388                               drm_get_connector_name(&connector->base),
9389                               connector->base.encoder ? "enabled" : "disabled");
9390         }
9391
9392         /* HW state is read out, now we need to sanitize this mess. */
9393         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9394                             base.head) {
9395                 intel_sanitize_encoder(encoder);
9396         }
9397
9398         for_each_pipe(pipe) {
9399                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9400                 intel_sanitize_crtc(crtc);
9401         }
9402
9403         if (force_restore) {
9404                 /*
9405                  * We need to use raw interfaces for restoring state to avoid
9406                  * checking (bogus) intermediate states.
9407                  */
9408                 for_each_pipe(pipe) {
9409                         struct drm_crtc *crtc =
9410                                 dev_priv->pipe_to_crtc_mapping[pipe];
9411
9412                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
9413                                          crtc->fb);
9414                 }
9415                 list_for_each_entry(plane, &dev->mode_config.plane_list, head)
9416                         intel_plane_restore(plane);
9417
9418                 i915_redisable_vga(dev);
9419         } else {
9420                 intel_modeset_update_staged_output_state(dev);
9421         }
9422
9423         intel_modeset_check_state(dev);
9424
9425         drm_mode_config_reset(dev);
9426 }
9427
9428 void intel_modeset_gem_init(struct drm_device *dev)
9429 {
9430         intel_modeset_init_hw(dev);
9431
9432         intel_setup_overlay(dev);
9433
9434         intel_modeset_setup_hw_state(dev, false);
9435 }
9436
9437 void intel_modeset_cleanup(struct drm_device *dev)
9438 {
9439         struct drm_i915_private *dev_priv = dev->dev_private;
9440         struct drm_crtc *crtc;
9441         struct intel_crtc *intel_crtc;
9442
9443         drm_kms_helper_poll_fini(dev);
9444         mutex_lock(&dev->struct_mutex);
9445
9446         intel_unregister_dsm_handler();
9447
9448
9449         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9450                 /* Skip inactive CRTCs */
9451                 if (!crtc->fb)
9452                         continue;
9453
9454                 intel_crtc = to_intel_crtc(crtc);
9455                 intel_increase_pllclock(crtc);
9456         }
9457
9458         intel_disable_fbc(dev);
9459
9460         intel_disable_gt_powersave(dev);
9461
9462         ironlake_teardown_rc6(dev);
9463
9464         if (IS_VALLEYVIEW(dev))
9465                 vlv_init_dpio(dev);
9466
9467         mutex_unlock(&dev->struct_mutex);
9468
9469         /* Disable the irq before mode object teardown, for the irq might
9470          * enqueue unpin/hotplug work. */
9471         drm_irq_uninstall(dev);
9472         cancel_work_sync(&dev_priv->hotplug_work);
9473         cancel_work_sync(&dev_priv->rps.work);
9474
9475         /* flush any delayed tasks or pending work */
9476         flush_scheduled_work();
9477
9478         /* destroy backlight, if any, before the connectors */
9479         intel_panel_destroy_backlight(dev);
9480
9481         drm_mode_config_cleanup(dev);
9482
9483         intel_cleanup_overlay(dev);
9484 }
9485
9486 /*
9487  * Return which encoder is currently attached for connector.
9488  */
9489 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9490 {
9491         return &intel_attached_encoder(connector)->base;
9492 }
9493
9494 void intel_connector_attach_encoder(struct intel_connector *connector,
9495                                     struct intel_encoder *encoder)
9496 {
9497         connector->encoder = encoder;
9498         drm_mode_connector_attach_encoder(&connector->base,
9499                                           &encoder->base);
9500 }
9501
9502 /*
9503  * set vga decode state - true == enable VGA decode
9504  */
9505 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9506 {
9507         struct drm_i915_private *dev_priv = dev->dev_private;
9508         u16 gmch_ctrl;
9509
9510         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9511         if (state)
9512                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9513         else
9514                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9515         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9516         return 0;
9517 }
9518
9519 #ifdef CONFIG_DEBUG_FS
9520 #include <linux/seq_file.h>
9521
9522 struct intel_display_error_state {
9523         struct intel_cursor_error_state {
9524                 u32 control;
9525                 u32 position;
9526                 u32 base;
9527                 u32 size;
9528         } cursor[I915_MAX_PIPES];
9529
9530         struct intel_pipe_error_state {
9531                 u32 conf;
9532                 u32 source;
9533
9534                 u32 htotal;
9535                 u32 hblank;
9536                 u32 hsync;
9537                 u32 vtotal;
9538                 u32 vblank;
9539                 u32 vsync;
9540         } pipe[I915_MAX_PIPES];
9541
9542         struct intel_plane_error_state {
9543                 u32 control;
9544                 u32 stride;
9545                 u32 size;
9546                 u32 pos;
9547                 u32 addr;
9548                 u32 surface;
9549                 u32 tile_offset;
9550         } plane[I915_MAX_PIPES];
9551 };
9552
9553 struct intel_display_error_state *
9554 intel_display_capture_error_state(struct drm_device *dev)
9555 {
9556         drm_i915_private_t *dev_priv = dev->dev_private;
9557         struct intel_display_error_state *error;
9558         enum transcoder cpu_transcoder;
9559         int i;
9560
9561         error = kmalloc(sizeof(*error), GFP_ATOMIC);
9562         if (error == NULL)
9563                 return NULL;
9564
9565         for_each_pipe(i) {
9566                 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9567
9568                 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
9569                         error->cursor[i].control = I915_READ(CURCNTR(i));
9570                         error->cursor[i].position = I915_READ(CURPOS(i));
9571                         error->cursor[i].base = I915_READ(CURBASE(i));
9572                 } else {
9573                         error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
9574                         error->cursor[i].position = I915_READ(CURPOS_IVB(i));
9575                         error->cursor[i].base = I915_READ(CURBASE_IVB(i));
9576                 }
9577
9578                 error->plane[i].control = I915_READ(DSPCNTR(i));
9579                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9580                 if (INTEL_INFO(dev)->gen <= 3) {
9581                         error->plane[i].size = I915_READ(DSPSIZE(i));
9582                         error->plane[i].pos = I915_READ(DSPPOS(i));
9583                 }
9584                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
9585                         error->plane[i].addr = I915_READ(DSPADDR(i));
9586                 if (INTEL_INFO(dev)->gen >= 4) {
9587                         error->plane[i].surface = I915_READ(DSPSURF(i));
9588                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9589                 }
9590
9591                 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
9592                 error->pipe[i].source = I915_READ(PIPESRC(i));
9593                 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9594                 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9595                 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9596                 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9597                 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9598                 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
9599         }
9600
9601         return error;
9602 }
9603
9604 void
9605 intel_display_print_error_state(struct seq_file *m,
9606                                 struct drm_device *dev,
9607                                 struct intel_display_error_state *error)
9608 {
9609         int i;
9610
9611         seq_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
9612         for_each_pipe(i) {
9613                 seq_printf(m, "Pipe [%d]:\n", i);
9614                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
9615                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
9616                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
9617                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
9618                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
9619                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
9620                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
9621                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
9622
9623                 seq_printf(m, "Plane [%d]:\n", i);
9624                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
9625                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
9626                 if (INTEL_INFO(dev)->gen <= 3) {
9627                         seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
9628                         seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
9629                 }
9630                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
9631                         seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
9632                 if (INTEL_INFO(dev)->gen >= 4) {
9633                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
9634                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
9635                 }
9636
9637                 seq_printf(m, "Cursor [%d]:\n", i);
9638                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
9639                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
9640                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
9641         }
9642 }
9643 #endif