ath10k: don't enable interrupts for the diagnostic window
[cascardo/linux.git] / drivers / net / wireless / ath / ath10k / ce.c
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17
18 #include "hif.h"
19 #include "pci.h"
20 #include "ce.h"
21 #include "debug.h"
22
23 /*
24  * Support for Copy Engine hardware, which is mainly used for
25  * communication between Host and Target over a PCIe interconnect.
26  */
27
28 /*
29  * A single CopyEngine (CE) comprises two "rings":
30  *   a source ring
31  *   a destination ring
32  *
33  * Each ring consists of a number of descriptors which specify
34  * an address, length, and meta-data.
35  *
36  * Typically, one side of the PCIe interconnect (Host or Target)
37  * controls one ring and the other side controls the other ring.
38  * The source side chooses when to initiate a transfer and it
39  * chooses what to send (buffer address, length). The destination
40  * side keeps a supply of "anonymous receive buffers" available and
41  * it handles incoming data as it arrives (when the destination
42  * recieves an interrupt).
43  *
44  * The sender may send a simple buffer (address/length) or it may
45  * send a small list of buffers.  When a small list is sent, hardware
46  * "gathers" these and they end up in a single destination buffer
47  * with a single interrupt.
48  *
49  * There are several "contexts" managed by this layer -- more, it
50  * may seem -- than should be needed. These are provided mainly for
51  * maximum flexibility and especially to facilitate a simpler HIF
52  * implementation. There are per-CopyEngine recv, send, and watermark
53  * contexts. These are supplied by the caller when a recv, send,
54  * or watermark handler is established and they are echoed back to
55  * the caller when the respective callbacks are invoked. There is
56  * also a per-transfer context supplied by the caller when a buffer
57  * (or sendlist) is sent and when a buffer is enqueued for recv.
58  * These per-transfer contexts are echoed back to the caller when
59  * the buffer is sent/received.
60  */
61
62 static inline void ath10k_ce_dest_ring_write_index_set(struct ath10k *ar,
63                                                        u32 ce_ctrl_addr,
64                                                        unsigned int n)
65 {
66         ath10k_pci_write32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS, n);
67 }
68
69 static inline u32 ath10k_ce_dest_ring_write_index_get(struct ath10k *ar,
70                                                       u32 ce_ctrl_addr)
71 {
72         return ath10k_pci_read32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS);
73 }
74
75 static inline void ath10k_ce_src_ring_write_index_set(struct ath10k *ar,
76                                                       u32 ce_ctrl_addr,
77                                                       unsigned int n)
78 {
79         ath10k_pci_write32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS, n);
80 }
81
82 static inline u32 ath10k_ce_src_ring_write_index_get(struct ath10k *ar,
83                                                      u32 ce_ctrl_addr)
84 {
85         return ath10k_pci_read32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS);
86 }
87
88 static inline u32 ath10k_ce_src_ring_read_index_get(struct ath10k *ar,
89                                                     u32 ce_ctrl_addr)
90 {
91         return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_SRRI_ADDRESS);
92 }
93
94 static inline void ath10k_ce_src_ring_base_addr_set(struct ath10k *ar,
95                                                     u32 ce_ctrl_addr,
96                                                     unsigned int addr)
97 {
98         ath10k_pci_write32(ar, ce_ctrl_addr + SR_BA_ADDRESS, addr);
99 }
100
101 static inline void ath10k_ce_src_ring_size_set(struct ath10k *ar,
102                                                u32 ce_ctrl_addr,
103                                                unsigned int n)
104 {
105         ath10k_pci_write32(ar, ce_ctrl_addr + SR_SIZE_ADDRESS, n);
106 }
107
108 static inline void ath10k_ce_src_ring_dmax_set(struct ath10k *ar,
109                                                u32 ce_ctrl_addr,
110                                                unsigned int n)
111 {
112         u32 ctrl1_addr = ath10k_pci_read32((ar),
113                                            (ce_ctrl_addr) + CE_CTRL1_ADDRESS);
114
115         ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
116                            (ctrl1_addr &  ~CE_CTRL1_DMAX_LENGTH_MASK) |
117                            CE_CTRL1_DMAX_LENGTH_SET(n));
118 }
119
120 static inline void ath10k_ce_src_ring_byte_swap_set(struct ath10k *ar,
121                                                     u32 ce_ctrl_addr,
122                                                     unsigned int n)
123 {
124         u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
125
126         ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
127                            (ctrl1_addr & ~CE_CTRL1_SRC_RING_BYTE_SWAP_EN_MASK) |
128                            CE_CTRL1_SRC_RING_BYTE_SWAP_EN_SET(n));
129 }
130
131 static inline void ath10k_ce_dest_ring_byte_swap_set(struct ath10k *ar,
132                                                      u32 ce_ctrl_addr,
133                                                      unsigned int n)
134 {
135         u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
136
137         ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
138                            (ctrl1_addr & ~CE_CTRL1_DST_RING_BYTE_SWAP_EN_MASK) |
139                            CE_CTRL1_DST_RING_BYTE_SWAP_EN_SET(n));
140 }
141
142 static inline u32 ath10k_ce_dest_ring_read_index_get(struct ath10k *ar,
143                                                      u32 ce_ctrl_addr)
144 {
145         return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_DRRI_ADDRESS);
146 }
147
148 static inline void ath10k_ce_dest_ring_base_addr_set(struct ath10k *ar,
149                                                      u32 ce_ctrl_addr,
150                                                      u32 addr)
151 {
152         ath10k_pci_write32(ar, ce_ctrl_addr + DR_BA_ADDRESS, addr);
153 }
154
155 static inline void ath10k_ce_dest_ring_size_set(struct ath10k *ar,
156                                                 u32 ce_ctrl_addr,
157                                                 unsigned int n)
158 {
159         ath10k_pci_write32(ar, ce_ctrl_addr + DR_SIZE_ADDRESS, n);
160 }
161
162 static inline void ath10k_ce_src_ring_highmark_set(struct ath10k *ar,
163                                                    u32 ce_ctrl_addr,
164                                                    unsigned int n)
165 {
166         u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
167
168         ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
169                            (addr & ~SRC_WATERMARK_HIGH_MASK) |
170                            SRC_WATERMARK_HIGH_SET(n));
171 }
172
173 static inline void ath10k_ce_src_ring_lowmark_set(struct ath10k *ar,
174                                                   u32 ce_ctrl_addr,
175                                                   unsigned int n)
176 {
177         u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
178
179         ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
180                            (addr & ~SRC_WATERMARK_LOW_MASK) |
181                            SRC_WATERMARK_LOW_SET(n));
182 }
183
184 static inline void ath10k_ce_dest_ring_highmark_set(struct ath10k *ar,
185                                                     u32 ce_ctrl_addr,
186                                                     unsigned int n)
187 {
188         u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
189
190         ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
191                            (addr & ~DST_WATERMARK_HIGH_MASK) |
192                            DST_WATERMARK_HIGH_SET(n));
193 }
194
195 static inline void ath10k_ce_dest_ring_lowmark_set(struct ath10k *ar,
196                                                    u32 ce_ctrl_addr,
197                                                    unsigned int n)
198 {
199         u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
200
201         ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
202                            (addr & ~DST_WATERMARK_LOW_MASK) |
203                            DST_WATERMARK_LOW_SET(n));
204 }
205
206 static inline void ath10k_ce_copy_complete_inter_enable(struct ath10k *ar,
207                                                         u32 ce_ctrl_addr)
208 {
209         u32 host_ie_addr = ath10k_pci_read32(ar,
210                                              ce_ctrl_addr + HOST_IE_ADDRESS);
211
212         ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
213                            host_ie_addr | HOST_IE_COPY_COMPLETE_MASK);
214 }
215
216 static inline void ath10k_ce_copy_complete_intr_disable(struct ath10k *ar,
217                                                         u32 ce_ctrl_addr)
218 {
219         u32 host_ie_addr = ath10k_pci_read32(ar,
220                                              ce_ctrl_addr + HOST_IE_ADDRESS);
221
222         ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
223                            host_ie_addr & ~HOST_IE_COPY_COMPLETE_MASK);
224 }
225
226 static inline void ath10k_ce_watermark_intr_disable(struct ath10k *ar,
227                                                     u32 ce_ctrl_addr)
228 {
229         u32 host_ie_addr = ath10k_pci_read32(ar,
230                                              ce_ctrl_addr + HOST_IE_ADDRESS);
231
232         ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
233                            host_ie_addr & ~CE_WATERMARK_MASK);
234 }
235
236 static inline void ath10k_ce_error_intr_enable(struct ath10k *ar,
237                                                u32 ce_ctrl_addr)
238 {
239         u32 misc_ie_addr = ath10k_pci_read32(ar,
240                                              ce_ctrl_addr + MISC_IE_ADDRESS);
241
242         ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
243                            misc_ie_addr | CE_ERROR_MASK);
244 }
245
246 static inline void ath10k_ce_error_intr_disable(struct ath10k *ar,
247                                                 u32 ce_ctrl_addr)
248 {
249         u32 misc_ie_addr = ath10k_pci_read32(ar,
250                                              ce_ctrl_addr + MISC_IE_ADDRESS);
251
252         ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
253                            misc_ie_addr & ~CE_ERROR_MASK);
254 }
255
256 static inline void ath10k_ce_engine_int_status_clear(struct ath10k *ar,
257                                                      u32 ce_ctrl_addr,
258                                                      unsigned int mask)
259 {
260         ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IS_ADDRESS, mask);
261 }
262
263 /*
264  * Guts of ath10k_ce_send, used by both ath10k_ce_send and
265  * ath10k_ce_sendlist_send.
266  * The caller takes responsibility for any needed locking.
267  */
268 int ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state,
269                           void *per_transfer_context,
270                           u32 buffer,
271                           unsigned int nbytes,
272                           unsigned int transfer_id,
273                           unsigned int flags)
274 {
275         struct ath10k *ar = ce_state->ar;
276         struct ath10k_ce_ring *src_ring = ce_state->src_ring;
277         struct ce_desc *desc, *sdesc;
278         unsigned int nentries_mask = src_ring->nentries_mask;
279         unsigned int sw_index = src_ring->sw_index;
280         unsigned int write_index = src_ring->write_index;
281         u32 ctrl_addr = ce_state->ctrl_addr;
282         u32 desc_flags = 0;
283         int ret = 0;
284
285         if (nbytes > ce_state->src_sz_max)
286                 ath10k_warn(ar, "%s: send more we can (nbytes: %d, max: %d)\n",
287                             __func__, nbytes, ce_state->src_sz_max);
288
289         if (unlikely(CE_RING_DELTA(nentries_mask,
290                                    write_index, sw_index - 1) <= 0)) {
291                 ret = -ENOSR;
292                 goto exit;
293         }
294
295         desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
296                                    write_index);
297         sdesc = CE_SRC_RING_TO_DESC(src_ring->shadow_base, write_index);
298
299         desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);
300
301         if (flags & CE_SEND_FLAG_GATHER)
302                 desc_flags |= CE_DESC_FLAGS_GATHER;
303         if (flags & CE_SEND_FLAG_BYTE_SWAP)
304                 desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;
305
306         sdesc->addr   = __cpu_to_le32(buffer);
307         sdesc->nbytes = __cpu_to_le16(nbytes);
308         sdesc->flags  = __cpu_to_le16(desc_flags);
309
310         *desc = *sdesc;
311
312         src_ring->per_transfer_context[write_index] = per_transfer_context;
313
314         /* Update Source Ring Write Index */
315         write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
316
317         /* WORKAROUND */
318         if (!(flags & CE_SEND_FLAG_GATHER))
319                 ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index);
320
321         src_ring->write_index = write_index;
322 exit:
323         return ret;
324 }
325
326 void __ath10k_ce_send_revert(struct ath10k_ce_pipe *pipe)
327 {
328         struct ath10k *ar = pipe->ar;
329         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
330         struct ath10k_ce_ring *src_ring = pipe->src_ring;
331         u32 ctrl_addr = pipe->ctrl_addr;
332
333         lockdep_assert_held(&ar_pci->ce_lock);
334
335         /*
336          * This function must be called only if there is an incomplete
337          * scatter-gather transfer (before index register is updated)
338          * that needs to be cleaned up.
339          */
340         if (WARN_ON_ONCE(src_ring->write_index == src_ring->sw_index))
341                 return;
342
343         if (WARN_ON_ONCE(src_ring->write_index ==
344                          ath10k_ce_src_ring_write_index_get(ar, ctrl_addr)))
345                 return;
346
347         src_ring->write_index--;
348         src_ring->write_index &= src_ring->nentries_mask;
349
350         src_ring->per_transfer_context[src_ring->write_index] = NULL;
351 }
352
353 int ath10k_ce_send(struct ath10k_ce_pipe *ce_state,
354                    void *per_transfer_context,
355                    u32 buffer,
356                    unsigned int nbytes,
357                    unsigned int transfer_id,
358                    unsigned int flags)
359 {
360         struct ath10k *ar = ce_state->ar;
361         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
362         int ret;
363
364         spin_lock_bh(&ar_pci->ce_lock);
365         ret = ath10k_ce_send_nolock(ce_state, per_transfer_context,
366                                     buffer, nbytes, transfer_id, flags);
367         spin_unlock_bh(&ar_pci->ce_lock);
368
369         return ret;
370 }
371
372 int ath10k_ce_num_free_src_entries(struct ath10k_ce_pipe *pipe)
373 {
374         struct ath10k *ar = pipe->ar;
375         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
376         int delta;
377
378         spin_lock_bh(&ar_pci->ce_lock);
379         delta = CE_RING_DELTA(pipe->src_ring->nentries_mask,
380                               pipe->src_ring->write_index,
381                               pipe->src_ring->sw_index - 1);
382         spin_unlock_bh(&ar_pci->ce_lock);
383
384         return delta;
385 }
386
387 int __ath10k_ce_rx_num_free_bufs(struct ath10k_ce_pipe *pipe)
388 {
389         struct ath10k *ar = pipe->ar;
390         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
391         struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
392         unsigned int nentries_mask = dest_ring->nentries_mask;
393         unsigned int write_index = dest_ring->write_index;
394         unsigned int sw_index = dest_ring->sw_index;
395
396         lockdep_assert_held(&ar_pci->ce_lock);
397
398         return CE_RING_DELTA(nentries_mask, write_index, sw_index - 1);
399 }
400
401 int __ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx, u32 paddr)
402 {
403         struct ath10k *ar = pipe->ar;
404         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
405         struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
406         unsigned int nentries_mask = dest_ring->nentries_mask;
407         unsigned int write_index = dest_ring->write_index;
408         unsigned int sw_index = dest_ring->sw_index;
409         struct ce_desc *base = dest_ring->base_addr_owner_space;
410         struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, write_index);
411         u32 ctrl_addr = pipe->ctrl_addr;
412
413         lockdep_assert_held(&ar_pci->ce_lock);
414
415         if (CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) == 0)
416                 return -EIO;
417
418         desc->addr = __cpu_to_le32(paddr);
419         desc->nbytes = 0;
420
421         dest_ring->per_transfer_context[write_index] = ctx;
422         write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
423         ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
424         dest_ring->write_index = write_index;
425
426         return 0;
427 }
428
429 int ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx, u32 paddr)
430 {
431         struct ath10k *ar = pipe->ar;
432         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
433         int ret;
434
435         spin_lock_bh(&ar_pci->ce_lock);
436         ret = __ath10k_ce_rx_post_buf(pipe, ctx, paddr);
437         spin_unlock_bh(&ar_pci->ce_lock);
438
439         return ret;
440 }
441
442 /*
443  * Guts of ath10k_ce_completed_recv_next.
444  * The caller takes responsibility for any necessary locking.
445  */
446 static int ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state,
447                                                 void **per_transfer_contextp,
448                                                 u32 *bufferp,
449                                                 unsigned int *nbytesp,
450                                                 unsigned int *transfer_idp,
451                                                 unsigned int *flagsp)
452 {
453         struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
454         unsigned int nentries_mask = dest_ring->nentries_mask;
455         unsigned int sw_index = dest_ring->sw_index;
456
457         struct ce_desc *base = dest_ring->base_addr_owner_space;
458         struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
459         struct ce_desc sdesc;
460         u16 nbytes;
461
462         /* Copy in one go for performance reasons */
463         sdesc = *desc;
464
465         nbytes = __le16_to_cpu(sdesc.nbytes);
466         if (nbytes == 0) {
467                 /*
468                  * This closes a relatively unusual race where the Host
469                  * sees the updated DRRI before the update to the
470                  * corresponding descriptor has completed. We treat this
471                  * as a descriptor that is not yet done.
472                  */
473                 return -EIO;
474         }
475
476         desc->nbytes = 0;
477
478         /* Return data from completed destination descriptor */
479         *bufferp = __le32_to_cpu(sdesc.addr);
480         *nbytesp = nbytes;
481         *transfer_idp = MS(__le16_to_cpu(sdesc.flags), CE_DESC_FLAGS_META_DATA);
482
483         if (__le16_to_cpu(sdesc.flags) & CE_DESC_FLAGS_BYTE_SWAP)
484                 *flagsp = CE_RECV_FLAG_SWAPPED;
485         else
486                 *flagsp = 0;
487
488         if (per_transfer_contextp)
489                 *per_transfer_contextp =
490                         dest_ring->per_transfer_context[sw_index];
491
492         /* sanity */
493         dest_ring->per_transfer_context[sw_index] = NULL;
494
495         /* Update sw_index */
496         sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
497         dest_ring->sw_index = sw_index;
498
499         return 0;
500 }
501
502 int ath10k_ce_completed_recv_next(struct ath10k_ce_pipe *ce_state,
503                                   void **per_transfer_contextp,
504                                   u32 *bufferp,
505                                   unsigned int *nbytesp,
506                                   unsigned int *transfer_idp,
507                                   unsigned int *flagsp)
508 {
509         struct ath10k *ar = ce_state->ar;
510         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
511         int ret;
512
513         spin_lock_bh(&ar_pci->ce_lock);
514         ret = ath10k_ce_completed_recv_next_nolock(ce_state,
515                                                    per_transfer_contextp,
516                                                    bufferp, nbytesp,
517                                                    transfer_idp, flagsp);
518         spin_unlock_bh(&ar_pci->ce_lock);
519
520         return ret;
521 }
522
523 int ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state,
524                                void **per_transfer_contextp,
525                                u32 *bufferp)
526 {
527         struct ath10k_ce_ring *dest_ring;
528         unsigned int nentries_mask;
529         unsigned int sw_index;
530         unsigned int write_index;
531         int ret;
532         struct ath10k *ar;
533         struct ath10k_pci *ar_pci;
534
535         dest_ring = ce_state->dest_ring;
536
537         if (!dest_ring)
538                 return -EIO;
539
540         ar = ce_state->ar;
541         ar_pci = ath10k_pci_priv(ar);
542
543         spin_lock_bh(&ar_pci->ce_lock);
544
545         nentries_mask = dest_ring->nentries_mask;
546         sw_index = dest_ring->sw_index;
547         write_index = dest_ring->write_index;
548         if (write_index != sw_index) {
549                 struct ce_desc *base = dest_ring->base_addr_owner_space;
550                 struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
551
552                 /* Return data from completed destination descriptor */
553                 *bufferp = __le32_to_cpu(desc->addr);
554
555                 if (per_transfer_contextp)
556                         *per_transfer_contextp =
557                                 dest_ring->per_transfer_context[sw_index];
558
559                 /* sanity */
560                 dest_ring->per_transfer_context[sw_index] = NULL;
561
562                 /* Update sw_index */
563                 sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
564                 dest_ring->sw_index = sw_index;
565                 ret = 0;
566         } else {
567                 ret = -EIO;
568         }
569
570         spin_unlock_bh(&ar_pci->ce_lock);
571
572         return ret;
573 }
574
575 /*
576  * Guts of ath10k_ce_completed_send_next.
577  * The caller takes responsibility for any necessary locking.
578  */
579 static int ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe *ce_state,
580                                                 void **per_transfer_contextp,
581                                                 u32 *bufferp,
582                                                 unsigned int *nbytesp,
583                                                 unsigned int *transfer_idp)
584 {
585         struct ath10k_ce_ring *src_ring = ce_state->src_ring;
586         u32 ctrl_addr = ce_state->ctrl_addr;
587         struct ath10k *ar = ce_state->ar;
588         unsigned int nentries_mask = src_ring->nentries_mask;
589         unsigned int sw_index = src_ring->sw_index;
590         struct ce_desc *sdesc, *sbase;
591         unsigned int read_index;
592
593         if (src_ring->hw_index == sw_index) {
594                 /*
595                  * The SW completion index has caught up with the cached
596                  * version of the HW completion index.
597                  * Update the cached HW completion index to see whether
598                  * the SW has really caught up to the HW, or if the cached
599                  * value of the HW index has become stale.
600                  */
601
602                 read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
603                 if (read_index == 0xffffffff)
604                         return -ENODEV;
605
606                 read_index &= nentries_mask;
607                 src_ring->hw_index = read_index;
608         }
609
610         read_index = src_ring->hw_index;
611
612         if (read_index == sw_index)
613                 return -EIO;
614
615         sbase = src_ring->shadow_base;
616         sdesc = CE_SRC_RING_TO_DESC(sbase, sw_index);
617
618         /* Return data from completed source descriptor */
619         *bufferp = __le32_to_cpu(sdesc->addr);
620         *nbytesp = __le16_to_cpu(sdesc->nbytes);
621         *transfer_idp = MS(__le16_to_cpu(sdesc->flags),
622                            CE_DESC_FLAGS_META_DATA);
623
624         if (per_transfer_contextp)
625                 *per_transfer_contextp =
626                         src_ring->per_transfer_context[sw_index];
627
628         /* sanity */
629         src_ring->per_transfer_context[sw_index] = NULL;
630
631         /* Update sw_index */
632         sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
633         src_ring->sw_index = sw_index;
634
635         return 0;
636 }
637
638 /* NB: Modeled after ath10k_ce_completed_send_next */
639 int ath10k_ce_cancel_send_next(struct ath10k_ce_pipe *ce_state,
640                                void **per_transfer_contextp,
641                                u32 *bufferp,
642                                unsigned int *nbytesp,
643                                unsigned int *transfer_idp)
644 {
645         struct ath10k_ce_ring *src_ring;
646         unsigned int nentries_mask;
647         unsigned int sw_index;
648         unsigned int write_index;
649         int ret;
650         struct ath10k *ar;
651         struct ath10k_pci *ar_pci;
652
653         src_ring = ce_state->src_ring;
654
655         if (!src_ring)
656                 return -EIO;
657
658         ar = ce_state->ar;
659         ar_pci = ath10k_pci_priv(ar);
660
661         spin_lock_bh(&ar_pci->ce_lock);
662
663         nentries_mask = src_ring->nentries_mask;
664         sw_index = src_ring->sw_index;
665         write_index = src_ring->write_index;
666
667         if (write_index != sw_index) {
668                 struct ce_desc *base = src_ring->base_addr_owner_space;
669                 struct ce_desc *desc = CE_SRC_RING_TO_DESC(base, sw_index);
670
671                 /* Return data from completed source descriptor */
672                 *bufferp = __le32_to_cpu(desc->addr);
673                 *nbytesp = __le16_to_cpu(desc->nbytes);
674                 *transfer_idp = MS(__le16_to_cpu(desc->flags),
675                                                 CE_DESC_FLAGS_META_DATA);
676
677                 if (per_transfer_contextp)
678                         *per_transfer_contextp =
679                                 src_ring->per_transfer_context[sw_index];
680
681                 /* sanity */
682                 src_ring->per_transfer_context[sw_index] = NULL;
683
684                 /* Update sw_index */
685                 sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
686                 src_ring->sw_index = sw_index;
687                 ret = 0;
688         } else {
689                 ret = -EIO;
690         }
691
692         spin_unlock_bh(&ar_pci->ce_lock);
693
694         return ret;
695 }
696
697 int ath10k_ce_completed_send_next(struct ath10k_ce_pipe *ce_state,
698                                   void **per_transfer_contextp,
699                                   u32 *bufferp,
700                                   unsigned int *nbytesp,
701                                   unsigned int *transfer_idp)
702 {
703         struct ath10k *ar = ce_state->ar;
704         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
705         int ret;
706
707         spin_lock_bh(&ar_pci->ce_lock);
708         ret = ath10k_ce_completed_send_next_nolock(ce_state,
709                                                    per_transfer_contextp,
710                                                    bufferp, nbytesp,
711                                                    transfer_idp);
712         spin_unlock_bh(&ar_pci->ce_lock);
713
714         return ret;
715 }
716
717 /*
718  * Guts of interrupt handler for per-engine interrupts on a particular CE.
719  *
720  * Invokes registered callbacks for recv_complete,
721  * send_complete, and watermarks.
722  */
723 void ath10k_ce_per_engine_service(struct ath10k *ar, unsigned int ce_id)
724 {
725         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
726         struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
727         u32 ctrl_addr = ce_state->ctrl_addr;
728
729         spin_lock_bh(&ar_pci->ce_lock);
730
731         /* Clear the copy-complete interrupts that will be handled here. */
732         ath10k_ce_engine_int_status_clear(ar, ctrl_addr,
733                                           HOST_IS_COPY_COMPLETE_MASK);
734
735         spin_unlock_bh(&ar_pci->ce_lock);
736
737         if (ce_state->recv_cb)
738                 ce_state->recv_cb(ce_state);
739
740         if (ce_state->send_cb)
741                 ce_state->send_cb(ce_state);
742
743         spin_lock_bh(&ar_pci->ce_lock);
744
745         /*
746          * Misc CE interrupts are not being handled, but still need
747          * to be cleared.
748          */
749         ath10k_ce_engine_int_status_clear(ar, ctrl_addr, CE_WATERMARK_MASK);
750
751         spin_unlock_bh(&ar_pci->ce_lock);
752 }
753
754 /*
755  * Handler for per-engine interrupts on ALL active CEs.
756  * This is used in cases where the system is sharing a
757  * single interrput for all CEs
758  */
759
760 void ath10k_ce_per_engine_service_any(struct ath10k *ar)
761 {
762         int ce_id;
763         u32 intr_summary;
764
765         intr_summary = CE_INTERRUPT_SUMMARY(ar);
766
767         for (ce_id = 0; intr_summary && (ce_id < CE_COUNT); ce_id++) {
768                 if (intr_summary & (1 << ce_id))
769                         intr_summary &= ~(1 << ce_id);
770                 else
771                         /* no intr pending on this CE */
772                         continue;
773
774                 ath10k_ce_per_engine_service(ar, ce_id);
775         }
776 }
777
778 /*
779  * Adjust interrupts for the copy complete handler.
780  * If it's needed for either send or recv, then unmask
781  * this interrupt; otherwise, mask it.
782  *
783  * Called with ce_lock held.
784  */
785 static void ath10k_ce_per_engine_handler_adjust(struct ath10k_ce_pipe *ce_state)
786 {
787         u32 ctrl_addr = ce_state->ctrl_addr;
788         struct ath10k *ar = ce_state->ar;
789         bool disable_copy_compl_intr = ce_state->attr_flags & CE_ATTR_DIS_INTR;
790
791         if ((!disable_copy_compl_intr) &&
792             (ce_state->send_cb || ce_state->recv_cb))
793                 ath10k_ce_copy_complete_inter_enable(ar, ctrl_addr);
794         else
795                 ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
796
797         ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
798 }
799
800 int ath10k_ce_disable_interrupts(struct ath10k *ar)
801 {
802         int ce_id;
803
804         for (ce_id = 0; ce_id < CE_COUNT; ce_id++) {
805                 u32 ctrl_addr = ath10k_ce_base_address(ce_id);
806
807                 ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
808                 ath10k_ce_error_intr_disable(ar, ctrl_addr);
809                 ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
810         }
811
812         return 0;
813 }
814
815 void ath10k_ce_enable_interrupts(struct ath10k *ar)
816 {
817         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
818         int ce_id;
819
820         /* Skip the last copy engine, CE7 the diagnostic window, as that
821          * uses polling and isn't initialized for interrupts.
822          */
823         for (ce_id = 0; ce_id < CE_COUNT - 1; ce_id++)
824                 ath10k_ce_per_engine_handler_adjust(&ar_pci->ce_states[ce_id]);
825 }
826
827 static int ath10k_ce_init_src_ring(struct ath10k *ar,
828                                    unsigned int ce_id,
829                                    const struct ce_attr *attr)
830 {
831         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
832         struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
833         struct ath10k_ce_ring *src_ring = ce_state->src_ring;
834         u32 nentries, ctrl_addr = ath10k_ce_base_address(ce_id);
835
836         nentries = roundup_pow_of_two(attr->src_nentries);
837
838         memset(src_ring->per_transfer_context, 0,
839                nentries * sizeof(*src_ring->per_transfer_context));
840
841         src_ring->sw_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
842         src_ring->sw_index &= src_ring->nentries_mask;
843         src_ring->hw_index = src_ring->sw_index;
844
845         src_ring->write_index =
846                 ath10k_ce_src_ring_write_index_get(ar, ctrl_addr);
847         src_ring->write_index &= src_ring->nentries_mask;
848
849         ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr,
850                                          src_ring->base_addr_ce_space);
851         ath10k_ce_src_ring_size_set(ar, ctrl_addr, nentries);
852         ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, attr->src_sz_max);
853         ath10k_ce_src_ring_byte_swap_set(ar, ctrl_addr, 0);
854         ath10k_ce_src_ring_lowmark_set(ar, ctrl_addr, 0);
855         ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, nentries);
856
857         ath10k_dbg(ar, ATH10K_DBG_BOOT,
858                    "boot init ce src ring id %d entries %d base_addr %p\n",
859                    ce_id, nentries, src_ring->base_addr_owner_space);
860
861         return 0;
862 }
863
864 static int ath10k_ce_init_dest_ring(struct ath10k *ar,
865                                     unsigned int ce_id,
866                                     const struct ce_attr *attr)
867 {
868         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
869         struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
870         struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
871         u32 nentries, ctrl_addr = ath10k_ce_base_address(ce_id);
872
873         nentries = roundup_pow_of_two(attr->dest_nentries);
874
875         memset(dest_ring->per_transfer_context, 0,
876                nentries * sizeof(*dest_ring->per_transfer_context));
877
878         dest_ring->sw_index = ath10k_ce_dest_ring_read_index_get(ar, ctrl_addr);
879         dest_ring->sw_index &= dest_ring->nentries_mask;
880         dest_ring->write_index =
881                 ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
882         dest_ring->write_index &= dest_ring->nentries_mask;
883
884         ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr,
885                                           dest_ring->base_addr_ce_space);
886         ath10k_ce_dest_ring_size_set(ar, ctrl_addr, nentries);
887         ath10k_ce_dest_ring_byte_swap_set(ar, ctrl_addr, 0);
888         ath10k_ce_dest_ring_lowmark_set(ar, ctrl_addr, 0);
889         ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, nentries);
890
891         ath10k_dbg(ar, ATH10K_DBG_BOOT,
892                    "boot ce dest ring id %d entries %d base_addr %p\n",
893                    ce_id, nentries, dest_ring->base_addr_owner_space);
894
895         return 0;
896 }
897
898 static struct ath10k_ce_ring *
899 ath10k_ce_alloc_src_ring(struct ath10k *ar, unsigned int ce_id,
900                          const struct ce_attr *attr)
901 {
902         struct ath10k_ce_ring *src_ring;
903         u32 nentries = attr->src_nentries;
904         dma_addr_t base_addr;
905
906         nentries = roundup_pow_of_two(nentries);
907
908         src_ring = kzalloc(sizeof(*src_ring) +
909                            (nentries *
910                             sizeof(*src_ring->per_transfer_context)),
911                            GFP_KERNEL);
912         if (src_ring == NULL)
913                 return ERR_PTR(-ENOMEM);
914
915         src_ring->nentries = nentries;
916         src_ring->nentries_mask = nentries - 1;
917
918         /*
919          * Legacy platforms that do not support cache
920          * coherent DMA are unsupported
921          */
922         src_ring->base_addr_owner_space_unaligned =
923                 dma_alloc_coherent(ar->dev,
924                                    (nentries * sizeof(struct ce_desc) +
925                                     CE_DESC_RING_ALIGN),
926                                    &base_addr, GFP_KERNEL);
927         if (!src_ring->base_addr_owner_space_unaligned) {
928                 kfree(src_ring);
929                 return ERR_PTR(-ENOMEM);
930         }
931
932         src_ring->base_addr_ce_space_unaligned = base_addr;
933
934         src_ring->base_addr_owner_space = PTR_ALIGN(
935                         src_ring->base_addr_owner_space_unaligned,
936                         CE_DESC_RING_ALIGN);
937         src_ring->base_addr_ce_space = ALIGN(
938                         src_ring->base_addr_ce_space_unaligned,
939                         CE_DESC_RING_ALIGN);
940
941         /*
942          * Also allocate a shadow src ring in regular
943          * mem to use for faster access.
944          */
945         src_ring->shadow_base_unaligned =
946                 kmalloc((nentries * sizeof(struct ce_desc) +
947                          CE_DESC_RING_ALIGN), GFP_KERNEL);
948         if (!src_ring->shadow_base_unaligned) {
949                 dma_free_coherent(ar->dev,
950                                   (nentries * sizeof(struct ce_desc) +
951                                    CE_DESC_RING_ALIGN),
952                                   src_ring->base_addr_owner_space,
953                                   src_ring->base_addr_ce_space);
954                 kfree(src_ring);
955                 return ERR_PTR(-ENOMEM);
956         }
957
958         src_ring->shadow_base = PTR_ALIGN(
959                         src_ring->shadow_base_unaligned,
960                         CE_DESC_RING_ALIGN);
961
962         return src_ring;
963 }
964
965 static struct ath10k_ce_ring *
966 ath10k_ce_alloc_dest_ring(struct ath10k *ar, unsigned int ce_id,
967                           const struct ce_attr *attr)
968 {
969         struct ath10k_ce_ring *dest_ring;
970         u32 nentries;
971         dma_addr_t base_addr;
972
973         nentries = roundup_pow_of_two(attr->dest_nentries);
974
975         dest_ring = kzalloc(sizeof(*dest_ring) +
976                             (nentries *
977                              sizeof(*dest_ring->per_transfer_context)),
978                             GFP_KERNEL);
979         if (dest_ring == NULL)
980                 return ERR_PTR(-ENOMEM);
981
982         dest_ring->nentries = nentries;
983         dest_ring->nentries_mask = nentries - 1;
984
985         /*
986          * Legacy platforms that do not support cache
987          * coherent DMA are unsupported
988          */
989         dest_ring->base_addr_owner_space_unaligned =
990                 dma_alloc_coherent(ar->dev,
991                                    (nentries * sizeof(struct ce_desc) +
992                                     CE_DESC_RING_ALIGN),
993                                    &base_addr, GFP_KERNEL);
994         if (!dest_ring->base_addr_owner_space_unaligned) {
995                 kfree(dest_ring);
996                 return ERR_PTR(-ENOMEM);
997         }
998
999         dest_ring->base_addr_ce_space_unaligned = base_addr;
1000
1001         /*
1002          * Correctly initialize memory to 0 to prevent garbage
1003          * data crashing system when download firmware
1004          */
1005         memset(dest_ring->base_addr_owner_space_unaligned, 0,
1006                nentries * sizeof(struct ce_desc) + CE_DESC_RING_ALIGN);
1007
1008         dest_ring->base_addr_owner_space = PTR_ALIGN(
1009                         dest_ring->base_addr_owner_space_unaligned,
1010                         CE_DESC_RING_ALIGN);
1011         dest_ring->base_addr_ce_space = ALIGN(
1012                         dest_ring->base_addr_ce_space_unaligned,
1013                         CE_DESC_RING_ALIGN);
1014
1015         return dest_ring;
1016 }
1017
1018 /*
1019  * Initialize a Copy Engine based on caller-supplied attributes.
1020  * This may be called once to initialize both source and destination
1021  * rings or it may be called twice for separate source and destination
1022  * initialization. It may be that only one side or the other is
1023  * initialized by software/firmware.
1024  */
1025 int ath10k_ce_init_pipe(struct ath10k *ar, unsigned int ce_id,
1026                         const struct ce_attr *attr,
1027                         void (*send_cb)(struct ath10k_ce_pipe *),
1028                         void (*recv_cb)(struct ath10k_ce_pipe *))
1029 {
1030         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1031         struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
1032         int ret;
1033
1034         /*
1035          * Make sure there's enough CE ringbuffer entries for HTT TX to avoid
1036          * additional TX locking checks.
1037          *
1038          * For the lack of a better place do the check here.
1039          */
1040         BUILD_BUG_ON(2*TARGET_NUM_MSDU_DESC >
1041                      (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1042         BUILD_BUG_ON(2*TARGET_10X_NUM_MSDU_DESC >
1043                      (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1044
1045         spin_lock_bh(&ar_pci->ce_lock);
1046         ce_state->ar = ar;
1047         ce_state->id = ce_id;
1048         ce_state->ctrl_addr = ath10k_ce_base_address(ce_id);
1049         ce_state->attr_flags = attr->flags;
1050         ce_state->src_sz_max = attr->src_sz_max;
1051         if (attr->src_nentries)
1052                 ce_state->send_cb = send_cb;
1053         if (attr->dest_nentries)
1054                 ce_state->recv_cb = recv_cb;
1055         spin_unlock_bh(&ar_pci->ce_lock);
1056
1057         if (attr->src_nentries) {
1058                 ret = ath10k_ce_init_src_ring(ar, ce_id, attr);
1059                 if (ret) {
1060                         ath10k_err(ar, "Failed to initialize CE src ring for ID: %d (%d)\n",
1061                                    ce_id, ret);
1062                         return ret;
1063                 }
1064         }
1065
1066         if (attr->dest_nentries) {
1067                 ret = ath10k_ce_init_dest_ring(ar, ce_id, attr);
1068                 if (ret) {
1069                         ath10k_err(ar, "Failed to initialize CE dest ring for ID: %d (%d)\n",
1070                                    ce_id, ret);
1071                         return ret;
1072                 }
1073         }
1074
1075         return 0;
1076 }
1077
1078 static void ath10k_ce_deinit_src_ring(struct ath10k *ar, unsigned int ce_id)
1079 {
1080         u32 ctrl_addr = ath10k_ce_base_address(ce_id);
1081
1082         ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr, 0);
1083         ath10k_ce_src_ring_size_set(ar, ctrl_addr, 0);
1084         ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, 0);
1085         ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, 0);
1086 }
1087
1088 static void ath10k_ce_deinit_dest_ring(struct ath10k *ar, unsigned int ce_id)
1089 {
1090         u32 ctrl_addr = ath10k_ce_base_address(ce_id);
1091
1092         ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr, 0);
1093         ath10k_ce_dest_ring_size_set(ar, ctrl_addr, 0);
1094         ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, 0);
1095 }
1096
1097 void ath10k_ce_deinit_pipe(struct ath10k *ar, unsigned int ce_id)
1098 {
1099         ath10k_ce_deinit_src_ring(ar, ce_id);
1100         ath10k_ce_deinit_dest_ring(ar, ce_id);
1101 }
1102
1103 int ath10k_ce_alloc_pipe(struct ath10k *ar, int ce_id,
1104                          const struct ce_attr *attr)
1105 {
1106         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1107         struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
1108         int ret;
1109
1110         if (attr->src_nentries) {
1111                 ce_state->src_ring = ath10k_ce_alloc_src_ring(ar, ce_id, attr);
1112                 if (IS_ERR(ce_state->src_ring)) {
1113                         ret = PTR_ERR(ce_state->src_ring);
1114                         ath10k_err(ar, "failed to allocate copy engine source ring %d: %d\n",
1115                                    ce_id, ret);
1116                         ce_state->src_ring = NULL;
1117                         return ret;
1118                 }
1119         }
1120
1121         if (attr->dest_nentries) {
1122                 ce_state->dest_ring = ath10k_ce_alloc_dest_ring(ar, ce_id,
1123                                                                 attr);
1124                 if (IS_ERR(ce_state->dest_ring)) {
1125                         ret = PTR_ERR(ce_state->dest_ring);
1126                         ath10k_err(ar, "failed to allocate copy engine destination ring %d: %d\n",
1127                                    ce_id, ret);
1128                         ce_state->dest_ring = NULL;
1129                         return ret;
1130                 }
1131         }
1132
1133         return 0;
1134 }
1135
1136 void ath10k_ce_free_pipe(struct ath10k *ar, int ce_id)
1137 {
1138         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1139         struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
1140
1141         if (ce_state->src_ring) {
1142                 kfree(ce_state->src_ring->shadow_base_unaligned);
1143                 dma_free_coherent(ar->dev,
1144                                   (ce_state->src_ring->nentries *
1145                                    sizeof(struct ce_desc) +
1146                                    CE_DESC_RING_ALIGN),
1147                                   ce_state->src_ring->base_addr_owner_space,
1148                                   ce_state->src_ring->base_addr_ce_space);
1149                 kfree(ce_state->src_ring);
1150         }
1151
1152         if (ce_state->dest_ring) {
1153                 dma_free_coherent(ar->dev,
1154                                   (ce_state->dest_ring->nentries *
1155                                    sizeof(struct ce_desc) +
1156                                    CE_DESC_RING_ALIGN),
1157                                   ce_state->dest_ring->base_addr_owner_space,
1158                                   ce_state->dest_ring->base_addr_ce_space);
1159                 kfree(ce_state->dest_ring);
1160         }
1161
1162         ce_state->src_ring = NULL;
1163         ce_state->dest_ring = NULL;
1164 }