Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[cascardo/linux.git] / drivers / net / wireless / ath / ath10k / ce.c
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17
18 #include "hif.h"
19 #include "pci.h"
20 #include "ce.h"
21 #include "debug.h"
22
23 /*
24  * Support for Copy Engine hardware, which is mainly used for
25  * communication between Host and Target over a PCIe interconnect.
26  */
27
28 /*
29  * A single CopyEngine (CE) comprises two "rings":
30  *   a source ring
31  *   a destination ring
32  *
33  * Each ring consists of a number of descriptors which specify
34  * an address, length, and meta-data.
35  *
36  * Typically, one side of the PCIe interconnect (Host or Target)
37  * controls one ring and the other side controls the other ring.
38  * The source side chooses when to initiate a transfer and it
39  * chooses what to send (buffer address, length). The destination
40  * side keeps a supply of "anonymous receive buffers" available and
41  * it handles incoming data as it arrives (when the destination
42  * recieves an interrupt).
43  *
44  * The sender may send a simple buffer (address/length) or it may
45  * send a small list of buffers.  When a small list is sent, hardware
46  * "gathers" these and they end up in a single destination buffer
47  * with a single interrupt.
48  *
49  * There are several "contexts" managed by this layer -- more, it
50  * may seem -- than should be needed. These are provided mainly for
51  * maximum flexibility and especially to facilitate a simpler HIF
52  * implementation. There are per-CopyEngine recv, send, and watermark
53  * contexts. These are supplied by the caller when a recv, send,
54  * or watermark handler is established and they are echoed back to
55  * the caller when the respective callbacks are invoked. There is
56  * also a per-transfer context supplied by the caller when a buffer
57  * (or sendlist) is sent and when a buffer is enqueued for recv.
58  * These per-transfer contexts are echoed back to the caller when
59  * the buffer is sent/received.
60  */
61
62 static inline void ath10k_ce_dest_ring_write_index_set(struct ath10k *ar,
63                                                        u32 ce_ctrl_addr,
64                                                        unsigned int n)
65 {
66         ath10k_pci_write32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS, n);
67 }
68
69 static inline u32 ath10k_ce_dest_ring_write_index_get(struct ath10k *ar,
70                                                       u32 ce_ctrl_addr)
71 {
72         return ath10k_pci_read32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS);
73 }
74
75 static inline void ath10k_ce_src_ring_write_index_set(struct ath10k *ar,
76                                                       u32 ce_ctrl_addr,
77                                                       unsigned int n)
78 {
79         ath10k_pci_write32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS, n);
80 }
81
82 static inline u32 ath10k_ce_src_ring_write_index_get(struct ath10k *ar,
83                                                      u32 ce_ctrl_addr)
84 {
85         return ath10k_pci_read32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS);
86 }
87
88 static inline u32 ath10k_ce_src_ring_read_index_get(struct ath10k *ar,
89                                                     u32 ce_ctrl_addr)
90 {
91         return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_SRRI_ADDRESS);
92 }
93
94 static inline void ath10k_ce_src_ring_base_addr_set(struct ath10k *ar,
95                                                     u32 ce_ctrl_addr,
96                                                     unsigned int addr)
97 {
98         ath10k_pci_write32(ar, ce_ctrl_addr + SR_BA_ADDRESS, addr);
99 }
100
101 static inline void ath10k_ce_src_ring_size_set(struct ath10k *ar,
102                                                u32 ce_ctrl_addr,
103                                                unsigned int n)
104 {
105         ath10k_pci_write32(ar, ce_ctrl_addr + SR_SIZE_ADDRESS, n);
106 }
107
108 static inline void ath10k_ce_src_ring_dmax_set(struct ath10k *ar,
109                                                u32 ce_ctrl_addr,
110                                                unsigned int n)
111 {
112         u32 ctrl1_addr = ath10k_pci_read32((ar),
113                                            (ce_ctrl_addr) + CE_CTRL1_ADDRESS);
114
115         ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
116                            (ctrl1_addr &  ~CE_CTRL1_DMAX_LENGTH_MASK) |
117                            CE_CTRL1_DMAX_LENGTH_SET(n));
118 }
119
120 static inline void ath10k_ce_src_ring_byte_swap_set(struct ath10k *ar,
121                                                     u32 ce_ctrl_addr,
122                                                     unsigned int n)
123 {
124         u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
125
126         ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
127                            (ctrl1_addr & ~CE_CTRL1_SRC_RING_BYTE_SWAP_EN_MASK) |
128                            CE_CTRL1_SRC_RING_BYTE_SWAP_EN_SET(n));
129 }
130
131 static inline void ath10k_ce_dest_ring_byte_swap_set(struct ath10k *ar,
132                                                      u32 ce_ctrl_addr,
133                                                      unsigned int n)
134 {
135         u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
136
137         ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
138                            (ctrl1_addr & ~CE_CTRL1_DST_RING_BYTE_SWAP_EN_MASK) |
139                            CE_CTRL1_DST_RING_BYTE_SWAP_EN_SET(n));
140 }
141
142 static inline u32 ath10k_ce_dest_ring_read_index_get(struct ath10k *ar,
143                                                      u32 ce_ctrl_addr)
144 {
145         return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_DRRI_ADDRESS);
146 }
147
148 static inline void ath10k_ce_dest_ring_base_addr_set(struct ath10k *ar,
149                                                      u32 ce_ctrl_addr,
150                                                      u32 addr)
151 {
152         ath10k_pci_write32(ar, ce_ctrl_addr + DR_BA_ADDRESS, addr);
153 }
154
155 static inline void ath10k_ce_dest_ring_size_set(struct ath10k *ar,
156                                                 u32 ce_ctrl_addr,
157                                                 unsigned int n)
158 {
159         ath10k_pci_write32(ar, ce_ctrl_addr + DR_SIZE_ADDRESS, n);
160 }
161
162 static inline void ath10k_ce_src_ring_highmark_set(struct ath10k *ar,
163                                                    u32 ce_ctrl_addr,
164                                                    unsigned int n)
165 {
166         u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
167
168         ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
169                            (addr & ~SRC_WATERMARK_HIGH_MASK) |
170                            SRC_WATERMARK_HIGH_SET(n));
171 }
172
173 static inline void ath10k_ce_src_ring_lowmark_set(struct ath10k *ar,
174                                                   u32 ce_ctrl_addr,
175                                                   unsigned int n)
176 {
177         u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
178
179         ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
180                            (addr & ~SRC_WATERMARK_LOW_MASK) |
181                            SRC_WATERMARK_LOW_SET(n));
182 }
183
184 static inline void ath10k_ce_dest_ring_highmark_set(struct ath10k *ar,
185                                                     u32 ce_ctrl_addr,
186                                                     unsigned int n)
187 {
188         u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
189
190         ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
191                            (addr & ~DST_WATERMARK_HIGH_MASK) |
192                            DST_WATERMARK_HIGH_SET(n));
193 }
194
195 static inline void ath10k_ce_dest_ring_lowmark_set(struct ath10k *ar,
196                                                    u32 ce_ctrl_addr,
197                                                    unsigned int n)
198 {
199         u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
200
201         ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
202                            (addr & ~DST_WATERMARK_LOW_MASK) |
203                            DST_WATERMARK_LOW_SET(n));
204 }
205
206 static inline void ath10k_ce_copy_complete_inter_enable(struct ath10k *ar,
207                                                         u32 ce_ctrl_addr)
208 {
209         u32 host_ie_addr = ath10k_pci_read32(ar,
210                                              ce_ctrl_addr + HOST_IE_ADDRESS);
211
212         ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
213                            host_ie_addr | HOST_IE_COPY_COMPLETE_MASK);
214 }
215
216 static inline void ath10k_ce_copy_complete_intr_disable(struct ath10k *ar,
217                                                         u32 ce_ctrl_addr)
218 {
219         u32 host_ie_addr = ath10k_pci_read32(ar,
220                                              ce_ctrl_addr + HOST_IE_ADDRESS);
221
222         ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
223                            host_ie_addr & ~HOST_IE_COPY_COMPLETE_MASK);
224 }
225
226 static inline void ath10k_ce_watermark_intr_disable(struct ath10k *ar,
227                                                     u32 ce_ctrl_addr)
228 {
229         u32 host_ie_addr = ath10k_pci_read32(ar,
230                                              ce_ctrl_addr + HOST_IE_ADDRESS);
231
232         ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
233                            host_ie_addr & ~CE_WATERMARK_MASK);
234 }
235
236 static inline void ath10k_ce_error_intr_enable(struct ath10k *ar,
237                                                u32 ce_ctrl_addr)
238 {
239         u32 misc_ie_addr = ath10k_pci_read32(ar,
240                                              ce_ctrl_addr + MISC_IE_ADDRESS);
241
242         ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
243                            misc_ie_addr | CE_ERROR_MASK);
244 }
245
246 static inline void ath10k_ce_error_intr_disable(struct ath10k *ar,
247                                                 u32 ce_ctrl_addr)
248 {
249         u32 misc_ie_addr = ath10k_pci_read32(ar,
250                                              ce_ctrl_addr + MISC_IE_ADDRESS);
251
252         ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
253                            misc_ie_addr & ~CE_ERROR_MASK);
254 }
255
256 static inline void ath10k_ce_engine_int_status_clear(struct ath10k *ar,
257                                                      u32 ce_ctrl_addr,
258                                                      unsigned int mask)
259 {
260         ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IS_ADDRESS, mask);
261 }
262
263
264 /*
265  * Guts of ath10k_ce_send, used by both ath10k_ce_send and
266  * ath10k_ce_sendlist_send.
267  * The caller takes responsibility for any needed locking.
268  */
269 int ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state,
270                           void *per_transfer_context,
271                           u32 buffer,
272                           unsigned int nbytes,
273                           unsigned int transfer_id,
274                           unsigned int flags)
275 {
276         struct ath10k *ar = ce_state->ar;
277         struct ath10k_ce_ring *src_ring = ce_state->src_ring;
278         struct ce_desc *desc, *sdesc;
279         unsigned int nentries_mask = src_ring->nentries_mask;
280         unsigned int sw_index = src_ring->sw_index;
281         unsigned int write_index = src_ring->write_index;
282         u32 ctrl_addr = ce_state->ctrl_addr;
283         u32 desc_flags = 0;
284         int ret = 0;
285
286         if (nbytes > ce_state->src_sz_max)
287                 ath10k_warn("%s: send more we can (nbytes: %d, max: %d)\n",
288                             __func__, nbytes, ce_state->src_sz_max);
289
290         ret = ath10k_pci_wake(ar);
291         if (ret)
292                 return ret;
293
294         if (unlikely(CE_RING_DELTA(nentries_mask,
295                                    write_index, sw_index - 1) <= 0)) {
296                 ret = -ENOSR;
297                 goto exit;
298         }
299
300         desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
301                                    write_index);
302         sdesc = CE_SRC_RING_TO_DESC(src_ring->shadow_base, write_index);
303
304         desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);
305
306         if (flags & CE_SEND_FLAG_GATHER)
307                 desc_flags |= CE_DESC_FLAGS_GATHER;
308         if (flags & CE_SEND_FLAG_BYTE_SWAP)
309                 desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;
310
311         sdesc->addr   = __cpu_to_le32(buffer);
312         sdesc->nbytes = __cpu_to_le16(nbytes);
313         sdesc->flags  = __cpu_to_le16(desc_flags);
314
315         *desc = *sdesc;
316
317         src_ring->per_transfer_context[write_index] = per_transfer_context;
318
319         /* Update Source Ring Write Index */
320         write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
321
322         /* WORKAROUND */
323         if (!(flags & CE_SEND_FLAG_GATHER))
324                 ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index);
325
326         src_ring->write_index = write_index;
327 exit:
328         ath10k_pci_sleep(ar);
329         return ret;
330 }
331
332 void __ath10k_ce_send_revert(struct ath10k_ce_pipe *pipe)
333 {
334         struct ath10k *ar = pipe->ar;
335         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
336         struct ath10k_ce_ring *src_ring = pipe->src_ring;
337         u32 ctrl_addr = pipe->ctrl_addr;
338
339         lockdep_assert_held(&ar_pci->ce_lock);
340
341         /*
342          * This function must be called only if there is an incomplete
343          * scatter-gather transfer (before index register is updated)
344          * that needs to be cleaned up.
345          */
346         if (WARN_ON_ONCE(src_ring->write_index == src_ring->sw_index))
347                 return;
348
349         if (WARN_ON_ONCE(src_ring->write_index ==
350                          ath10k_ce_src_ring_write_index_get(ar, ctrl_addr)))
351                 return;
352
353         src_ring->write_index--;
354         src_ring->write_index &= src_ring->nentries_mask;
355
356         src_ring->per_transfer_context[src_ring->write_index] = NULL;
357 }
358
359 int ath10k_ce_send(struct ath10k_ce_pipe *ce_state,
360                    void *per_transfer_context,
361                    u32 buffer,
362                    unsigned int nbytes,
363                    unsigned int transfer_id,
364                    unsigned int flags)
365 {
366         struct ath10k *ar = ce_state->ar;
367         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
368         int ret;
369
370         spin_lock_bh(&ar_pci->ce_lock);
371         ret = ath10k_ce_send_nolock(ce_state, per_transfer_context,
372                                     buffer, nbytes, transfer_id, flags);
373         spin_unlock_bh(&ar_pci->ce_lock);
374
375         return ret;
376 }
377
378 int ath10k_ce_num_free_src_entries(struct ath10k_ce_pipe *pipe)
379 {
380         struct ath10k *ar = pipe->ar;
381         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
382         int delta;
383
384         spin_lock_bh(&ar_pci->ce_lock);
385         delta = CE_RING_DELTA(pipe->src_ring->nentries_mask,
386                               pipe->src_ring->write_index,
387                               pipe->src_ring->sw_index - 1);
388         spin_unlock_bh(&ar_pci->ce_lock);
389
390         return delta;
391 }
392
393 int ath10k_ce_recv_buf_enqueue(struct ath10k_ce_pipe *ce_state,
394                                void *per_recv_context,
395                                u32 buffer)
396 {
397         struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
398         u32 ctrl_addr = ce_state->ctrl_addr;
399         struct ath10k *ar = ce_state->ar;
400         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
401         unsigned int nentries_mask = dest_ring->nentries_mask;
402         unsigned int write_index;
403         unsigned int sw_index;
404         int ret;
405
406         spin_lock_bh(&ar_pci->ce_lock);
407         write_index = dest_ring->write_index;
408         sw_index = dest_ring->sw_index;
409
410         ret = ath10k_pci_wake(ar);
411         if (ret)
412                 goto out;
413
414         if (CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) > 0) {
415                 struct ce_desc *base = dest_ring->base_addr_owner_space;
416                 struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, write_index);
417
418                 /* Update destination descriptor */
419                 desc->addr    = __cpu_to_le32(buffer);
420                 desc->nbytes = 0;
421
422                 dest_ring->per_transfer_context[write_index] =
423                                                         per_recv_context;
424
425                 /* Update Destination Ring Write Index */
426                 write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
427                 ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
428                 dest_ring->write_index = write_index;
429                 ret = 0;
430         } else {
431                 ret = -EIO;
432         }
433         ath10k_pci_sleep(ar);
434
435 out:
436         spin_unlock_bh(&ar_pci->ce_lock);
437
438         return ret;
439 }
440
441 /*
442  * Guts of ath10k_ce_completed_recv_next.
443  * The caller takes responsibility for any necessary locking.
444  */
445 static int ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state,
446                                                 void **per_transfer_contextp,
447                                                 u32 *bufferp,
448                                                 unsigned int *nbytesp,
449                                                 unsigned int *transfer_idp,
450                                                 unsigned int *flagsp)
451 {
452         struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
453         unsigned int nentries_mask = dest_ring->nentries_mask;
454         unsigned int sw_index = dest_ring->sw_index;
455
456         struct ce_desc *base = dest_ring->base_addr_owner_space;
457         struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
458         struct ce_desc sdesc;
459         u16 nbytes;
460
461         /* Copy in one go for performance reasons */
462         sdesc = *desc;
463
464         nbytes = __le16_to_cpu(sdesc.nbytes);
465         if (nbytes == 0) {
466                 /*
467                  * This closes a relatively unusual race where the Host
468                  * sees the updated DRRI before the update to the
469                  * corresponding descriptor has completed. We treat this
470                  * as a descriptor that is not yet done.
471                  */
472                 return -EIO;
473         }
474
475         desc->nbytes = 0;
476
477         /* Return data from completed destination descriptor */
478         *bufferp = __le32_to_cpu(sdesc.addr);
479         *nbytesp = nbytes;
480         *transfer_idp = MS(__le16_to_cpu(sdesc.flags), CE_DESC_FLAGS_META_DATA);
481
482         if (__le16_to_cpu(sdesc.flags) & CE_DESC_FLAGS_BYTE_SWAP)
483                 *flagsp = CE_RECV_FLAG_SWAPPED;
484         else
485                 *flagsp = 0;
486
487         if (per_transfer_contextp)
488                 *per_transfer_contextp =
489                         dest_ring->per_transfer_context[sw_index];
490
491         /* sanity */
492         dest_ring->per_transfer_context[sw_index] = NULL;
493
494         /* Update sw_index */
495         sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
496         dest_ring->sw_index = sw_index;
497
498         return 0;
499 }
500
501 int ath10k_ce_completed_recv_next(struct ath10k_ce_pipe *ce_state,
502                                   void **per_transfer_contextp,
503                                   u32 *bufferp,
504                                   unsigned int *nbytesp,
505                                   unsigned int *transfer_idp,
506                                   unsigned int *flagsp)
507 {
508         struct ath10k *ar = ce_state->ar;
509         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
510         int ret;
511
512         spin_lock_bh(&ar_pci->ce_lock);
513         ret = ath10k_ce_completed_recv_next_nolock(ce_state,
514                                                    per_transfer_contextp,
515                                                    bufferp, nbytesp,
516                                                    transfer_idp, flagsp);
517         spin_unlock_bh(&ar_pci->ce_lock);
518
519         return ret;
520 }
521
522 int ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state,
523                                void **per_transfer_contextp,
524                                u32 *bufferp)
525 {
526         struct ath10k_ce_ring *dest_ring;
527         unsigned int nentries_mask;
528         unsigned int sw_index;
529         unsigned int write_index;
530         int ret;
531         struct ath10k *ar;
532         struct ath10k_pci *ar_pci;
533
534         dest_ring = ce_state->dest_ring;
535
536         if (!dest_ring)
537                 return -EIO;
538
539         ar = ce_state->ar;
540         ar_pci = ath10k_pci_priv(ar);
541
542         spin_lock_bh(&ar_pci->ce_lock);
543
544         nentries_mask = dest_ring->nentries_mask;
545         sw_index = dest_ring->sw_index;
546         write_index = dest_ring->write_index;
547         if (write_index != sw_index) {
548                 struct ce_desc *base = dest_ring->base_addr_owner_space;
549                 struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
550
551                 /* Return data from completed destination descriptor */
552                 *bufferp = __le32_to_cpu(desc->addr);
553
554                 if (per_transfer_contextp)
555                         *per_transfer_contextp =
556                                 dest_ring->per_transfer_context[sw_index];
557
558                 /* sanity */
559                 dest_ring->per_transfer_context[sw_index] = NULL;
560
561                 /* Update sw_index */
562                 sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
563                 dest_ring->sw_index = sw_index;
564                 ret = 0;
565         } else {
566                 ret = -EIO;
567         }
568
569         spin_unlock_bh(&ar_pci->ce_lock);
570
571         return ret;
572 }
573
574 /*
575  * Guts of ath10k_ce_completed_send_next.
576  * The caller takes responsibility for any necessary locking.
577  */
578 static int ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe *ce_state,
579                                                 void **per_transfer_contextp,
580                                                 u32 *bufferp,
581                                                 unsigned int *nbytesp,
582                                                 unsigned int *transfer_idp)
583 {
584         struct ath10k_ce_ring *src_ring = ce_state->src_ring;
585         u32 ctrl_addr = ce_state->ctrl_addr;
586         struct ath10k *ar = ce_state->ar;
587         unsigned int nentries_mask = src_ring->nentries_mask;
588         unsigned int sw_index = src_ring->sw_index;
589         struct ce_desc *sdesc, *sbase;
590         unsigned int read_index;
591         int ret;
592
593         if (src_ring->hw_index == sw_index) {
594                 /*
595                  * The SW completion index has caught up with the cached
596                  * version of the HW completion index.
597                  * Update the cached HW completion index to see whether
598                  * the SW has really caught up to the HW, or if the cached
599                  * value of the HW index has become stale.
600                  */
601
602                 ret = ath10k_pci_wake(ar);
603                 if (ret)
604                         return ret;
605
606                 read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
607                 if (read_index == 0xffffffff)
608                         return -ENODEV;
609
610                 read_index &= nentries_mask;
611                 src_ring->hw_index = read_index;
612
613                 ath10k_pci_sleep(ar);
614         }
615
616         read_index = src_ring->hw_index;
617
618         if (read_index == sw_index)
619                 return -EIO;
620
621         sbase = src_ring->shadow_base;
622         sdesc = CE_SRC_RING_TO_DESC(sbase, sw_index);
623
624         /* Return data from completed source descriptor */
625         *bufferp = __le32_to_cpu(sdesc->addr);
626         *nbytesp = __le16_to_cpu(sdesc->nbytes);
627         *transfer_idp = MS(__le16_to_cpu(sdesc->flags),
628                            CE_DESC_FLAGS_META_DATA);
629
630         if (per_transfer_contextp)
631                 *per_transfer_contextp =
632                         src_ring->per_transfer_context[sw_index];
633
634         /* sanity */
635         src_ring->per_transfer_context[sw_index] = NULL;
636
637         /* Update sw_index */
638         sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
639         src_ring->sw_index = sw_index;
640
641         return 0;
642 }
643
644 /* NB: Modeled after ath10k_ce_completed_send_next */
645 int ath10k_ce_cancel_send_next(struct ath10k_ce_pipe *ce_state,
646                                void **per_transfer_contextp,
647                                u32 *bufferp,
648                                unsigned int *nbytesp,
649                                unsigned int *transfer_idp)
650 {
651         struct ath10k_ce_ring *src_ring;
652         unsigned int nentries_mask;
653         unsigned int sw_index;
654         unsigned int write_index;
655         int ret;
656         struct ath10k *ar;
657         struct ath10k_pci *ar_pci;
658
659         src_ring = ce_state->src_ring;
660
661         if (!src_ring)
662                 return -EIO;
663
664         ar = ce_state->ar;
665         ar_pci = ath10k_pci_priv(ar);
666
667         spin_lock_bh(&ar_pci->ce_lock);
668
669         nentries_mask = src_ring->nentries_mask;
670         sw_index = src_ring->sw_index;
671         write_index = src_ring->write_index;
672
673         if (write_index != sw_index) {
674                 struct ce_desc *base = src_ring->base_addr_owner_space;
675                 struct ce_desc *desc = CE_SRC_RING_TO_DESC(base, sw_index);
676
677                 /* Return data from completed source descriptor */
678                 *bufferp = __le32_to_cpu(desc->addr);
679                 *nbytesp = __le16_to_cpu(desc->nbytes);
680                 *transfer_idp = MS(__le16_to_cpu(desc->flags),
681                                                 CE_DESC_FLAGS_META_DATA);
682
683                 if (per_transfer_contextp)
684                         *per_transfer_contextp =
685                                 src_ring->per_transfer_context[sw_index];
686
687                 /* sanity */
688                 src_ring->per_transfer_context[sw_index] = NULL;
689
690                 /* Update sw_index */
691                 sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
692                 src_ring->sw_index = sw_index;
693                 ret = 0;
694         } else {
695                 ret = -EIO;
696         }
697
698         spin_unlock_bh(&ar_pci->ce_lock);
699
700         return ret;
701 }
702
703 int ath10k_ce_completed_send_next(struct ath10k_ce_pipe *ce_state,
704                                   void **per_transfer_contextp,
705                                   u32 *bufferp,
706                                   unsigned int *nbytesp,
707                                   unsigned int *transfer_idp)
708 {
709         struct ath10k *ar = ce_state->ar;
710         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
711         int ret;
712
713         spin_lock_bh(&ar_pci->ce_lock);
714         ret = ath10k_ce_completed_send_next_nolock(ce_state,
715                                                    per_transfer_contextp,
716                                                    bufferp, nbytesp,
717                                                    transfer_idp);
718         spin_unlock_bh(&ar_pci->ce_lock);
719
720         return ret;
721 }
722
723 /*
724  * Guts of interrupt handler for per-engine interrupts on a particular CE.
725  *
726  * Invokes registered callbacks for recv_complete,
727  * send_complete, and watermarks.
728  */
729 void ath10k_ce_per_engine_service(struct ath10k *ar, unsigned int ce_id)
730 {
731         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
732         struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
733         u32 ctrl_addr = ce_state->ctrl_addr;
734         int ret;
735
736         ret = ath10k_pci_wake(ar);
737         if (ret)
738                 return;
739
740         spin_lock_bh(&ar_pci->ce_lock);
741
742         /* Clear the copy-complete interrupts that will be handled here. */
743         ath10k_ce_engine_int_status_clear(ar, ctrl_addr,
744                                           HOST_IS_COPY_COMPLETE_MASK);
745
746         spin_unlock_bh(&ar_pci->ce_lock);
747
748         if (ce_state->recv_cb)
749                 ce_state->recv_cb(ce_state);
750
751         if (ce_state->send_cb)
752                 ce_state->send_cb(ce_state);
753
754         spin_lock_bh(&ar_pci->ce_lock);
755
756         /*
757          * Misc CE interrupts are not being handled, but still need
758          * to be cleared.
759          */
760         ath10k_ce_engine_int_status_clear(ar, ctrl_addr, CE_WATERMARK_MASK);
761
762         spin_unlock_bh(&ar_pci->ce_lock);
763         ath10k_pci_sleep(ar);
764 }
765
766 /*
767  * Handler for per-engine interrupts on ALL active CEs.
768  * This is used in cases where the system is sharing a
769  * single interrput for all CEs
770  */
771
772 void ath10k_ce_per_engine_service_any(struct ath10k *ar)
773 {
774         int ce_id, ret;
775         u32 intr_summary;
776
777         ret = ath10k_pci_wake(ar);
778         if (ret)
779                 return;
780
781         intr_summary = CE_INTERRUPT_SUMMARY(ar);
782
783         for (ce_id = 0; intr_summary && (ce_id < CE_COUNT); ce_id++) {
784                 if (intr_summary & (1 << ce_id))
785                         intr_summary &= ~(1 << ce_id);
786                 else
787                         /* no intr pending on this CE */
788                         continue;
789
790                 ath10k_ce_per_engine_service(ar, ce_id);
791         }
792
793         ath10k_pci_sleep(ar);
794 }
795
796 /*
797  * Adjust interrupts for the copy complete handler.
798  * If it's needed for either send or recv, then unmask
799  * this interrupt; otherwise, mask it.
800  *
801  * Called with ce_lock held.
802  */
803 static void ath10k_ce_per_engine_handler_adjust(struct ath10k_ce_pipe *ce_state,
804                                                 int disable_copy_compl_intr)
805 {
806         u32 ctrl_addr = ce_state->ctrl_addr;
807         struct ath10k *ar = ce_state->ar;
808         int ret;
809
810         ret = ath10k_pci_wake(ar);
811         if (ret)
812                 return;
813
814         if ((!disable_copy_compl_intr) &&
815             (ce_state->send_cb || ce_state->recv_cb))
816                 ath10k_ce_copy_complete_inter_enable(ar, ctrl_addr);
817         else
818                 ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
819
820         ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
821
822         ath10k_pci_sleep(ar);
823 }
824
825 int ath10k_ce_disable_interrupts(struct ath10k *ar)
826 {
827         int ce_id, ret;
828
829         ret = ath10k_pci_wake(ar);
830         if (ret)
831                 return ret;
832
833         for (ce_id = 0; ce_id < CE_COUNT; ce_id++) {
834                 u32 ctrl_addr = ath10k_ce_base_address(ce_id);
835
836                 ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
837                 ath10k_ce_error_intr_disable(ar, ctrl_addr);
838                 ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
839         }
840
841         ath10k_pci_sleep(ar);
842
843         return 0;
844 }
845
846 void ath10k_ce_send_cb_register(struct ath10k_ce_pipe *ce_state,
847                                 void (*send_cb)(struct ath10k_ce_pipe *),
848                                 int disable_interrupts)
849 {
850         struct ath10k *ar = ce_state->ar;
851         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
852
853         spin_lock_bh(&ar_pci->ce_lock);
854         ce_state->send_cb = send_cb;
855         ath10k_ce_per_engine_handler_adjust(ce_state, disable_interrupts);
856         spin_unlock_bh(&ar_pci->ce_lock);
857 }
858
859 void ath10k_ce_recv_cb_register(struct ath10k_ce_pipe *ce_state,
860                                 void (*recv_cb)(struct ath10k_ce_pipe *))
861 {
862         struct ath10k *ar = ce_state->ar;
863         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
864
865         spin_lock_bh(&ar_pci->ce_lock);
866         ce_state->recv_cb = recv_cb;
867         ath10k_ce_per_engine_handler_adjust(ce_state, 0);
868         spin_unlock_bh(&ar_pci->ce_lock);
869 }
870
871 static int ath10k_ce_init_src_ring(struct ath10k *ar,
872                                    unsigned int ce_id,
873                                    const struct ce_attr *attr)
874 {
875         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
876         struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
877         struct ath10k_ce_ring *src_ring = ce_state->src_ring;
878         u32 nentries, ctrl_addr = ath10k_ce_base_address(ce_id);
879
880         nentries = roundup_pow_of_two(attr->src_nentries);
881
882         memset(src_ring->per_transfer_context, 0,
883                nentries * sizeof(*src_ring->per_transfer_context));
884
885         src_ring->sw_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
886         src_ring->sw_index &= src_ring->nentries_mask;
887         src_ring->hw_index = src_ring->sw_index;
888
889         src_ring->write_index =
890                 ath10k_ce_src_ring_write_index_get(ar, ctrl_addr);
891         src_ring->write_index &= src_ring->nentries_mask;
892
893         ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr,
894                                          src_ring->base_addr_ce_space);
895         ath10k_ce_src_ring_size_set(ar, ctrl_addr, nentries);
896         ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, attr->src_sz_max);
897         ath10k_ce_src_ring_byte_swap_set(ar, ctrl_addr, 0);
898         ath10k_ce_src_ring_lowmark_set(ar, ctrl_addr, 0);
899         ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, nentries);
900
901         ath10k_dbg(ATH10K_DBG_BOOT,
902                    "boot init ce src ring id %d entries %d base_addr %p\n",
903                    ce_id, nentries, src_ring->base_addr_owner_space);
904
905         return 0;
906 }
907
908 static int ath10k_ce_init_dest_ring(struct ath10k *ar,
909                                     unsigned int ce_id,
910                                     const struct ce_attr *attr)
911 {
912         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
913         struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
914         struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
915         u32 nentries, ctrl_addr = ath10k_ce_base_address(ce_id);
916
917         nentries = roundup_pow_of_two(attr->dest_nentries);
918
919         memset(dest_ring->per_transfer_context, 0,
920                nentries * sizeof(*dest_ring->per_transfer_context));
921
922         dest_ring->sw_index = ath10k_ce_dest_ring_read_index_get(ar, ctrl_addr);
923         dest_ring->sw_index &= dest_ring->nentries_mask;
924         dest_ring->write_index =
925                 ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
926         dest_ring->write_index &= dest_ring->nentries_mask;
927
928         ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr,
929                                           dest_ring->base_addr_ce_space);
930         ath10k_ce_dest_ring_size_set(ar, ctrl_addr, nentries);
931         ath10k_ce_dest_ring_byte_swap_set(ar, ctrl_addr, 0);
932         ath10k_ce_dest_ring_lowmark_set(ar, ctrl_addr, 0);
933         ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, nentries);
934
935         ath10k_dbg(ATH10K_DBG_BOOT,
936                    "boot ce dest ring id %d entries %d base_addr %p\n",
937                    ce_id, nentries, dest_ring->base_addr_owner_space);
938
939         return 0;
940 }
941
942 static struct ath10k_ce_ring *
943 ath10k_ce_alloc_src_ring(struct ath10k *ar, unsigned int ce_id,
944                          const struct ce_attr *attr)
945 {
946         struct ath10k_ce_ring *src_ring;
947         u32 nentries = attr->src_nentries;
948         dma_addr_t base_addr;
949
950         nentries = roundup_pow_of_two(nentries);
951
952         src_ring = kzalloc(sizeof(*src_ring) +
953                            (nentries *
954                             sizeof(*src_ring->per_transfer_context)),
955                            GFP_KERNEL);
956         if (src_ring == NULL)
957                 return ERR_PTR(-ENOMEM);
958
959         src_ring->nentries = nentries;
960         src_ring->nentries_mask = nentries - 1;
961
962         /*
963          * Legacy platforms that do not support cache
964          * coherent DMA are unsupported
965          */
966         src_ring->base_addr_owner_space_unaligned =
967                 dma_alloc_coherent(ar->dev,
968                                    (nentries * sizeof(struct ce_desc) +
969                                     CE_DESC_RING_ALIGN),
970                                    &base_addr, GFP_KERNEL);
971         if (!src_ring->base_addr_owner_space_unaligned) {
972                 kfree(src_ring);
973                 return ERR_PTR(-ENOMEM);
974         }
975
976         src_ring->base_addr_ce_space_unaligned = base_addr;
977
978         src_ring->base_addr_owner_space = PTR_ALIGN(
979                         src_ring->base_addr_owner_space_unaligned,
980                         CE_DESC_RING_ALIGN);
981         src_ring->base_addr_ce_space = ALIGN(
982                         src_ring->base_addr_ce_space_unaligned,
983                         CE_DESC_RING_ALIGN);
984
985         /*
986          * Also allocate a shadow src ring in regular
987          * mem to use for faster access.
988          */
989         src_ring->shadow_base_unaligned =
990                 kmalloc((nentries * sizeof(struct ce_desc) +
991                          CE_DESC_RING_ALIGN), GFP_KERNEL);
992         if (!src_ring->shadow_base_unaligned) {
993                 dma_free_coherent(ar->dev,
994                                   (nentries * sizeof(struct ce_desc) +
995                                    CE_DESC_RING_ALIGN),
996                                   src_ring->base_addr_owner_space,
997                                   src_ring->base_addr_ce_space);
998                 kfree(src_ring);
999                 return ERR_PTR(-ENOMEM);
1000         }
1001
1002         src_ring->shadow_base = PTR_ALIGN(
1003                         src_ring->shadow_base_unaligned,
1004                         CE_DESC_RING_ALIGN);
1005
1006         return src_ring;
1007 }
1008
1009 static struct ath10k_ce_ring *
1010 ath10k_ce_alloc_dest_ring(struct ath10k *ar, unsigned int ce_id,
1011                           const struct ce_attr *attr)
1012 {
1013         struct ath10k_ce_ring *dest_ring;
1014         u32 nentries;
1015         dma_addr_t base_addr;
1016
1017         nentries = roundup_pow_of_two(attr->dest_nentries);
1018
1019         dest_ring = kzalloc(sizeof(*dest_ring) +
1020                             (nentries *
1021                              sizeof(*dest_ring->per_transfer_context)),
1022                             GFP_KERNEL);
1023         if (dest_ring == NULL)
1024                 return ERR_PTR(-ENOMEM);
1025
1026         dest_ring->nentries = nentries;
1027         dest_ring->nentries_mask = nentries - 1;
1028
1029         /*
1030          * Legacy platforms that do not support cache
1031          * coherent DMA are unsupported
1032          */
1033         dest_ring->base_addr_owner_space_unaligned =
1034                 dma_alloc_coherent(ar->dev,
1035                                    (nentries * sizeof(struct ce_desc) +
1036                                     CE_DESC_RING_ALIGN),
1037                                    &base_addr, GFP_KERNEL);
1038         if (!dest_ring->base_addr_owner_space_unaligned) {
1039                 kfree(dest_ring);
1040                 return ERR_PTR(-ENOMEM);
1041         }
1042
1043         dest_ring->base_addr_ce_space_unaligned = base_addr;
1044
1045         /*
1046          * Correctly initialize memory to 0 to prevent garbage
1047          * data crashing system when download firmware
1048          */
1049         memset(dest_ring->base_addr_owner_space_unaligned, 0,
1050                nentries * sizeof(struct ce_desc) + CE_DESC_RING_ALIGN);
1051
1052         dest_ring->base_addr_owner_space = PTR_ALIGN(
1053                         dest_ring->base_addr_owner_space_unaligned,
1054                         CE_DESC_RING_ALIGN);
1055         dest_ring->base_addr_ce_space = ALIGN(
1056                         dest_ring->base_addr_ce_space_unaligned,
1057                         CE_DESC_RING_ALIGN);
1058
1059         return dest_ring;
1060 }
1061
1062 /*
1063  * Initialize a Copy Engine based on caller-supplied attributes.
1064  * This may be called once to initialize both source and destination
1065  * rings or it may be called twice for separate source and destination
1066  * initialization. It may be that only one side or the other is
1067  * initialized by software/firmware.
1068  */
1069 int ath10k_ce_init_pipe(struct ath10k *ar, unsigned int ce_id,
1070                         const struct ce_attr *attr)
1071 {
1072         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1073         struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
1074         int ret;
1075
1076         /*
1077          * Make sure there's enough CE ringbuffer entries for HTT TX to avoid
1078          * additional TX locking checks.
1079          *
1080          * For the lack of a better place do the check here.
1081          */
1082         BUILD_BUG_ON(2*TARGET_NUM_MSDU_DESC >
1083                      (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1084         BUILD_BUG_ON(2*TARGET_10X_NUM_MSDU_DESC >
1085                      (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1086
1087         ret = ath10k_pci_wake(ar);
1088         if (ret)
1089                 return ret;
1090
1091         spin_lock_bh(&ar_pci->ce_lock);
1092         ce_state->ar = ar;
1093         ce_state->id = ce_id;
1094         ce_state->ctrl_addr = ath10k_ce_base_address(ce_id);
1095         ce_state->attr_flags = attr->flags;
1096         ce_state->src_sz_max = attr->src_sz_max;
1097         spin_unlock_bh(&ar_pci->ce_lock);
1098
1099         if (attr->src_nentries) {
1100                 ret = ath10k_ce_init_src_ring(ar, ce_id, attr);
1101                 if (ret) {
1102                         ath10k_err("Failed to initialize CE src ring for ID: %d (%d)\n",
1103                                    ce_id, ret);
1104                         goto out;
1105                 }
1106         }
1107
1108         if (attr->dest_nentries) {
1109                 ret = ath10k_ce_init_dest_ring(ar, ce_id, attr);
1110                 if (ret) {
1111                         ath10k_err("Failed to initialize CE dest ring for ID: %d (%d)\n",
1112                                    ce_id, ret);
1113                         goto out;
1114                 }
1115         }
1116
1117 out:
1118         ath10k_pci_sleep(ar);
1119         return ret;
1120 }
1121
1122 static void ath10k_ce_deinit_src_ring(struct ath10k *ar, unsigned int ce_id)
1123 {
1124         u32 ctrl_addr = ath10k_ce_base_address(ce_id);
1125
1126         ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr, 0);
1127         ath10k_ce_src_ring_size_set(ar, ctrl_addr, 0);
1128         ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, 0);
1129         ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, 0);
1130 }
1131
1132 static void ath10k_ce_deinit_dest_ring(struct ath10k *ar, unsigned int ce_id)
1133 {
1134         u32 ctrl_addr = ath10k_ce_base_address(ce_id);
1135
1136         ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr, 0);
1137         ath10k_ce_dest_ring_size_set(ar, ctrl_addr, 0);
1138         ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, 0);
1139 }
1140
1141 void ath10k_ce_deinit_pipe(struct ath10k *ar, unsigned int ce_id)
1142 {
1143         int ret;
1144
1145         ret = ath10k_pci_wake(ar);
1146         if (ret)
1147                 return;
1148
1149         ath10k_ce_deinit_src_ring(ar, ce_id);
1150         ath10k_ce_deinit_dest_ring(ar, ce_id);
1151
1152         ath10k_pci_sleep(ar);
1153 }
1154
1155 int ath10k_ce_alloc_pipe(struct ath10k *ar, int ce_id,
1156                          const struct ce_attr *attr)
1157 {
1158         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1159         struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
1160         int ret;
1161
1162         if (attr->src_nentries) {
1163                 ce_state->src_ring = ath10k_ce_alloc_src_ring(ar, ce_id, attr);
1164                 if (IS_ERR(ce_state->src_ring)) {
1165                         ret = PTR_ERR(ce_state->src_ring);
1166                         ath10k_err("failed to allocate copy engine source ring %d: %d\n",
1167                                    ce_id, ret);
1168                         ce_state->src_ring = NULL;
1169                         return ret;
1170                 }
1171         }
1172
1173         if (attr->dest_nentries) {
1174                 ce_state->dest_ring = ath10k_ce_alloc_dest_ring(ar, ce_id,
1175                                                                 attr);
1176                 if (IS_ERR(ce_state->dest_ring)) {
1177                         ret = PTR_ERR(ce_state->dest_ring);
1178                         ath10k_err("failed to allocate copy engine destination ring %d: %d\n",
1179                                    ce_id, ret);
1180                         ce_state->dest_ring = NULL;
1181                         return ret;
1182                 }
1183         }
1184
1185         return 0;
1186 }
1187
1188 void ath10k_ce_free_pipe(struct ath10k *ar, int ce_id)
1189 {
1190         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1191         struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
1192
1193         if (ce_state->src_ring) {
1194                 kfree(ce_state->src_ring->shadow_base_unaligned);
1195                 dma_free_coherent(ar->dev,
1196                                   (ce_state->src_ring->nentries *
1197                                    sizeof(struct ce_desc) +
1198                                    CE_DESC_RING_ALIGN),
1199                                   ce_state->src_ring->base_addr_owner_space,
1200                                   ce_state->src_ring->base_addr_ce_space);
1201                 kfree(ce_state->src_ring);
1202         }
1203
1204         if (ce_state->dest_ring) {
1205                 dma_free_coherent(ar->dev,
1206                                   (ce_state->dest_ring->nentries *
1207                                    sizeof(struct ce_desc) +
1208                                    CE_DESC_RING_ALIGN),
1209                                   ce_state->dest_ring->base_addr_owner_space,
1210                                   ce_state->dest_ring->base_addr_ce_space);
1211                 kfree(ce_state->dest_ring);
1212         }
1213
1214         ce_state->src_ring = NULL;
1215         ce_state->dest_ring = NULL;
1216 }