ath10k: improve logging to include dev id
[cascardo/linux.git] / drivers / net / wireless / ath / ath10k / ce.c
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17
18 #include "hif.h"
19 #include "pci.h"
20 #include "ce.h"
21 #include "debug.h"
22
23 /*
24  * Support for Copy Engine hardware, which is mainly used for
25  * communication between Host and Target over a PCIe interconnect.
26  */
27
28 /*
29  * A single CopyEngine (CE) comprises two "rings":
30  *   a source ring
31  *   a destination ring
32  *
33  * Each ring consists of a number of descriptors which specify
34  * an address, length, and meta-data.
35  *
36  * Typically, one side of the PCIe interconnect (Host or Target)
37  * controls one ring and the other side controls the other ring.
38  * The source side chooses when to initiate a transfer and it
39  * chooses what to send (buffer address, length). The destination
40  * side keeps a supply of "anonymous receive buffers" available and
41  * it handles incoming data as it arrives (when the destination
42  * recieves an interrupt).
43  *
44  * The sender may send a simple buffer (address/length) or it may
45  * send a small list of buffers.  When a small list is sent, hardware
46  * "gathers" these and they end up in a single destination buffer
47  * with a single interrupt.
48  *
49  * There are several "contexts" managed by this layer -- more, it
50  * may seem -- than should be needed. These are provided mainly for
51  * maximum flexibility and especially to facilitate a simpler HIF
52  * implementation. There are per-CopyEngine recv, send, and watermark
53  * contexts. These are supplied by the caller when a recv, send,
54  * or watermark handler is established and they are echoed back to
55  * the caller when the respective callbacks are invoked. There is
56  * also a per-transfer context supplied by the caller when a buffer
57  * (or sendlist) is sent and when a buffer is enqueued for recv.
58  * These per-transfer contexts are echoed back to the caller when
59  * the buffer is sent/received.
60  */
61
62 static inline void ath10k_ce_dest_ring_write_index_set(struct ath10k *ar,
63                                                        u32 ce_ctrl_addr,
64                                                        unsigned int n)
65 {
66         ath10k_pci_write32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS, n);
67 }
68
69 static inline u32 ath10k_ce_dest_ring_write_index_get(struct ath10k *ar,
70                                                       u32 ce_ctrl_addr)
71 {
72         return ath10k_pci_read32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS);
73 }
74
75 static inline void ath10k_ce_src_ring_write_index_set(struct ath10k *ar,
76                                                       u32 ce_ctrl_addr,
77                                                       unsigned int n)
78 {
79         ath10k_pci_write32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS, n);
80 }
81
82 static inline u32 ath10k_ce_src_ring_write_index_get(struct ath10k *ar,
83                                                      u32 ce_ctrl_addr)
84 {
85         return ath10k_pci_read32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS);
86 }
87
88 static inline u32 ath10k_ce_src_ring_read_index_get(struct ath10k *ar,
89                                                     u32 ce_ctrl_addr)
90 {
91         return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_SRRI_ADDRESS);
92 }
93
94 static inline void ath10k_ce_src_ring_base_addr_set(struct ath10k *ar,
95                                                     u32 ce_ctrl_addr,
96                                                     unsigned int addr)
97 {
98         ath10k_pci_write32(ar, ce_ctrl_addr + SR_BA_ADDRESS, addr);
99 }
100
101 static inline void ath10k_ce_src_ring_size_set(struct ath10k *ar,
102                                                u32 ce_ctrl_addr,
103                                                unsigned int n)
104 {
105         ath10k_pci_write32(ar, ce_ctrl_addr + SR_SIZE_ADDRESS, n);
106 }
107
108 static inline void ath10k_ce_src_ring_dmax_set(struct ath10k *ar,
109                                                u32 ce_ctrl_addr,
110                                                unsigned int n)
111 {
112         u32 ctrl1_addr = ath10k_pci_read32((ar),
113                                            (ce_ctrl_addr) + CE_CTRL1_ADDRESS);
114
115         ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
116                            (ctrl1_addr &  ~CE_CTRL1_DMAX_LENGTH_MASK) |
117                            CE_CTRL1_DMAX_LENGTH_SET(n));
118 }
119
120 static inline void ath10k_ce_src_ring_byte_swap_set(struct ath10k *ar,
121                                                     u32 ce_ctrl_addr,
122                                                     unsigned int n)
123 {
124         u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
125
126         ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
127                            (ctrl1_addr & ~CE_CTRL1_SRC_RING_BYTE_SWAP_EN_MASK) |
128                            CE_CTRL1_SRC_RING_BYTE_SWAP_EN_SET(n));
129 }
130
131 static inline void ath10k_ce_dest_ring_byte_swap_set(struct ath10k *ar,
132                                                      u32 ce_ctrl_addr,
133                                                      unsigned int n)
134 {
135         u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
136
137         ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
138                            (ctrl1_addr & ~CE_CTRL1_DST_RING_BYTE_SWAP_EN_MASK) |
139                            CE_CTRL1_DST_RING_BYTE_SWAP_EN_SET(n));
140 }
141
142 static inline u32 ath10k_ce_dest_ring_read_index_get(struct ath10k *ar,
143                                                      u32 ce_ctrl_addr)
144 {
145         return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_DRRI_ADDRESS);
146 }
147
148 static inline void ath10k_ce_dest_ring_base_addr_set(struct ath10k *ar,
149                                                      u32 ce_ctrl_addr,
150                                                      u32 addr)
151 {
152         ath10k_pci_write32(ar, ce_ctrl_addr + DR_BA_ADDRESS, addr);
153 }
154
155 static inline void ath10k_ce_dest_ring_size_set(struct ath10k *ar,
156                                                 u32 ce_ctrl_addr,
157                                                 unsigned int n)
158 {
159         ath10k_pci_write32(ar, ce_ctrl_addr + DR_SIZE_ADDRESS, n);
160 }
161
162 static inline void ath10k_ce_src_ring_highmark_set(struct ath10k *ar,
163                                                    u32 ce_ctrl_addr,
164                                                    unsigned int n)
165 {
166         u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
167
168         ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
169                            (addr & ~SRC_WATERMARK_HIGH_MASK) |
170                            SRC_WATERMARK_HIGH_SET(n));
171 }
172
173 static inline void ath10k_ce_src_ring_lowmark_set(struct ath10k *ar,
174                                                   u32 ce_ctrl_addr,
175                                                   unsigned int n)
176 {
177         u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
178
179         ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
180                            (addr & ~SRC_WATERMARK_LOW_MASK) |
181                            SRC_WATERMARK_LOW_SET(n));
182 }
183
184 static inline void ath10k_ce_dest_ring_highmark_set(struct ath10k *ar,
185                                                     u32 ce_ctrl_addr,
186                                                     unsigned int n)
187 {
188         u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
189
190         ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
191                            (addr & ~DST_WATERMARK_HIGH_MASK) |
192                            DST_WATERMARK_HIGH_SET(n));
193 }
194
195 static inline void ath10k_ce_dest_ring_lowmark_set(struct ath10k *ar,
196                                                    u32 ce_ctrl_addr,
197                                                    unsigned int n)
198 {
199         u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
200
201         ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
202                            (addr & ~DST_WATERMARK_LOW_MASK) |
203                            DST_WATERMARK_LOW_SET(n));
204 }
205
206 static inline void ath10k_ce_copy_complete_inter_enable(struct ath10k *ar,
207                                                         u32 ce_ctrl_addr)
208 {
209         u32 host_ie_addr = ath10k_pci_read32(ar,
210                                              ce_ctrl_addr + HOST_IE_ADDRESS);
211
212         ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
213                            host_ie_addr | HOST_IE_COPY_COMPLETE_MASK);
214 }
215
216 static inline void ath10k_ce_copy_complete_intr_disable(struct ath10k *ar,
217                                                         u32 ce_ctrl_addr)
218 {
219         u32 host_ie_addr = ath10k_pci_read32(ar,
220                                              ce_ctrl_addr + HOST_IE_ADDRESS);
221
222         ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
223                            host_ie_addr & ~HOST_IE_COPY_COMPLETE_MASK);
224 }
225
226 static inline void ath10k_ce_watermark_intr_disable(struct ath10k *ar,
227                                                     u32 ce_ctrl_addr)
228 {
229         u32 host_ie_addr = ath10k_pci_read32(ar,
230                                              ce_ctrl_addr + HOST_IE_ADDRESS);
231
232         ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
233                            host_ie_addr & ~CE_WATERMARK_MASK);
234 }
235
236 static inline void ath10k_ce_error_intr_enable(struct ath10k *ar,
237                                                u32 ce_ctrl_addr)
238 {
239         u32 misc_ie_addr = ath10k_pci_read32(ar,
240                                              ce_ctrl_addr + MISC_IE_ADDRESS);
241
242         ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
243                            misc_ie_addr | CE_ERROR_MASK);
244 }
245
246 static inline void ath10k_ce_error_intr_disable(struct ath10k *ar,
247                                                 u32 ce_ctrl_addr)
248 {
249         u32 misc_ie_addr = ath10k_pci_read32(ar,
250                                              ce_ctrl_addr + MISC_IE_ADDRESS);
251
252         ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
253                            misc_ie_addr & ~CE_ERROR_MASK);
254 }
255
256 static inline void ath10k_ce_engine_int_status_clear(struct ath10k *ar,
257                                                      u32 ce_ctrl_addr,
258                                                      unsigned int mask)
259 {
260         ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IS_ADDRESS, mask);
261 }
262
263
264 /*
265  * Guts of ath10k_ce_send, used by both ath10k_ce_send and
266  * ath10k_ce_sendlist_send.
267  * The caller takes responsibility for any needed locking.
268  */
269 int ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state,
270                           void *per_transfer_context,
271                           u32 buffer,
272                           unsigned int nbytes,
273                           unsigned int transfer_id,
274                           unsigned int flags)
275 {
276         struct ath10k *ar = ce_state->ar;
277         struct ath10k_ce_ring *src_ring = ce_state->src_ring;
278         struct ce_desc *desc, *sdesc;
279         unsigned int nentries_mask = src_ring->nentries_mask;
280         unsigned int sw_index = src_ring->sw_index;
281         unsigned int write_index = src_ring->write_index;
282         u32 ctrl_addr = ce_state->ctrl_addr;
283         u32 desc_flags = 0;
284         int ret = 0;
285
286         if (nbytes > ce_state->src_sz_max)
287                 ath10k_warn(ar, "%s: send more we can (nbytes: %d, max: %d)\n",
288                             __func__, nbytes, ce_state->src_sz_max);
289
290         if (unlikely(CE_RING_DELTA(nentries_mask,
291                                    write_index, sw_index - 1) <= 0)) {
292                 ret = -ENOSR;
293                 goto exit;
294         }
295
296         desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
297                                    write_index);
298         sdesc = CE_SRC_RING_TO_DESC(src_ring->shadow_base, write_index);
299
300         desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);
301
302         if (flags & CE_SEND_FLAG_GATHER)
303                 desc_flags |= CE_DESC_FLAGS_GATHER;
304         if (flags & CE_SEND_FLAG_BYTE_SWAP)
305                 desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;
306
307         sdesc->addr   = __cpu_to_le32(buffer);
308         sdesc->nbytes = __cpu_to_le16(nbytes);
309         sdesc->flags  = __cpu_to_le16(desc_flags);
310
311         *desc = *sdesc;
312
313         src_ring->per_transfer_context[write_index] = per_transfer_context;
314
315         /* Update Source Ring Write Index */
316         write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
317
318         /* WORKAROUND */
319         if (!(flags & CE_SEND_FLAG_GATHER))
320                 ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index);
321
322         src_ring->write_index = write_index;
323 exit:
324         return ret;
325 }
326
327 void __ath10k_ce_send_revert(struct ath10k_ce_pipe *pipe)
328 {
329         struct ath10k *ar = pipe->ar;
330         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
331         struct ath10k_ce_ring *src_ring = pipe->src_ring;
332         u32 ctrl_addr = pipe->ctrl_addr;
333
334         lockdep_assert_held(&ar_pci->ce_lock);
335
336         /*
337          * This function must be called only if there is an incomplete
338          * scatter-gather transfer (before index register is updated)
339          * that needs to be cleaned up.
340          */
341         if (WARN_ON_ONCE(src_ring->write_index == src_ring->sw_index))
342                 return;
343
344         if (WARN_ON_ONCE(src_ring->write_index ==
345                          ath10k_ce_src_ring_write_index_get(ar, ctrl_addr)))
346                 return;
347
348         src_ring->write_index--;
349         src_ring->write_index &= src_ring->nentries_mask;
350
351         src_ring->per_transfer_context[src_ring->write_index] = NULL;
352 }
353
354 int ath10k_ce_send(struct ath10k_ce_pipe *ce_state,
355                    void *per_transfer_context,
356                    u32 buffer,
357                    unsigned int nbytes,
358                    unsigned int transfer_id,
359                    unsigned int flags)
360 {
361         struct ath10k *ar = ce_state->ar;
362         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
363         int ret;
364
365         spin_lock_bh(&ar_pci->ce_lock);
366         ret = ath10k_ce_send_nolock(ce_state, per_transfer_context,
367                                     buffer, nbytes, transfer_id, flags);
368         spin_unlock_bh(&ar_pci->ce_lock);
369
370         return ret;
371 }
372
373 int ath10k_ce_num_free_src_entries(struct ath10k_ce_pipe *pipe)
374 {
375         struct ath10k *ar = pipe->ar;
376         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
377         int delta;
378
379         spin_lock_bh(&ar_pci->ce_lock);
380         delta = CE_RING_DELTA(pipe->src_ring->nentries_mask,
381                               pipe->src_ring->write_index,
382                               pipe->src_ring->sw_index - 1);
383         spin_unlock_bh(&ar_pci->ce_lock);
384
385         return delta;
386 }
387
388
389 int __ath10k_ce_rx_num_free_bufs(struct ath10k_ce_pipe *pipe)
390 {
391         struct ath10k *ar = pipe->ar;
392         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
393         struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
394         unsigned int nentries_mask = dest_ring->nentries_mask;
395         unsigned int write_index = dest_ring->write_index;
396         unsigned int sw_index = dest_ring->sw_index;
397
398         lockdep_assert_held(&ar_pci->ce_lock);
399
400         return CE_RING_DELTA(nentries_mask, write_index, sw_index - 1);
401 }
402
403 int __ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx, u32 paddr)
404 {
405         struct ath10k *ar = pipe->ar;
406         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
407         struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
408         unsigned int nentries_mask = dest_ring->nentries_mask;
409         unsigned int write_index = dest_ring->write_index;
410         unsigned int sw_index = dest_ring->sw_index;
411         struct ce_desc *base = dest_ring->base_addr_owner_space;
412         struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, write_index);
413         u32 ctrl_addr = pipe->ctrl_addr;
414
415         lockdep_assert_held(&ar_pci->ce_lock);
416
417         if (CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) == 0)
418                 return -EIO;
419
420         desc->addr = __cpu_to_le32(paddr);
421         desc->nbytes = 0;
422
423         dest_ring->per_transfer_context[write_index] = ctx;
424         write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
425         ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
426         dest_ring->write_index = write_index;
427
428         return 0;
429 }
430
431 int ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx, u32 paddr)
432 {
433         struct ath10k *ar = pipe->ar;
434         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
435         int ret;
436
437         spin_lock_bh(&ar_pci->ce_lock);
438         ret = __ath10k_ce_rx_post_buf(pipe, ctx, paddr);
439         spin_unlock_bh(&ar_pci->ce_lock);
440
441         return ret;
442 }
443
444 /*
445  * Guts of ath10k_ce_completed_recv_next.
446  * The caller takes responsibility for any necessary locking.
447  */
448 static int ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state,
449                                                 void **per_transfer_contextp,
450                                                 u32 *bufferp,
451                                                 unsigned int *nbytesp,
452                                                 unsigned int *transfer_idp,
453                                                 unsigned int *flagsp)
454 {
455         struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
456         unsigned int nentries_mask = dest_ring->nentries_mask;
457         unsigned int sw_index = dest_ring->sw_index;
458
459         struct ce_desc *base = dest_ring->base_addr_owner_space;
460         struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
461         struct ce_desc sdesc;
462         u16 nbytes;
463
464         /* Copy in one go for performance reasons */
465         sdesc = *desc;
466
467         nbytes = __le16_to_cpu(sdesc.nbytes);
468         if (nbytes == 0) {
469                 /*
470                  * This closes a relatively unusual race where the Host
471                  * sees the updated DRRI before the update to the
472                  * corresponding descriptor has completed. We treat this
473                  * as a descriptor that is not yet done.
474                  */
475                 return -EIO;
476         }
477
478         desc->nbytes = 0;
479
480         /* Return data from completed destination descriptor */
481         *bufferp = __le32_to_cpu(sdesc.addr);
482         *nbytesp = nbytes;
483         *transfer_idp = MS(__le16_to_cpu(sdesc.flags), CE_DESC_FLAGS_META_DATA);
484
485         if (__le16_to_cpu(sdesc.flags) & CE_DESC_FLAGS_BYTE_SWAP)
486                 *flagsp = CE_RECV_FLAG_SWAPPED;
487         else
488                 *flagsp = 0;
489
490         if (per_transfer_contextp)
491                 *per_transfer_contextp =
492                         dest_ring->per_transfer_context[sw_index];
493
494         /* sanity */
495         dest_ring->per_transfer_context[sw_index] = NULL;
496
497         /* Update sw_index */
498         sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
499         dest_ring->sw_index = sw_index;
500
501         return 0;
502 }
503
504 int ath10k_ce_completed_recv_next(struct ath10k_ce_pipe *ce_state,
505                                   void **per_transfer_contextp,
506                                   u32 *bufferp,
507                                   unsigned int *nbytesp,
508                                   unsigned int *transfer_idp,
509                                   unsigned int *flagsp)
510 {
511         struct ath10k *ar = ce_state->ar;
512         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
513         int ret;
514
515         spin_lock_bh(&ar_pci->ce_lock);
516         ret = ath10k_ce_completed_recv_next_nolock(ce_state,
517                                                    per_transfer_contextp,
518                                                    bufferp, nbytesp,
519                                                    transfer_idp, flagsp);
520         spin_unlock_bh(&ar_pci->ce_lock);
521
522         return ret;
523 }
524
525 int ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state,
526                                void **per_transfer_contextp,
527                                u32 *bufferp)
528 {
529         struct ath10k_ce_ring *dest_ring;
530         unsigned int nentries_mask;
531         unsigned int sw_index;
532         unsigned int write_index;
533         int ret;
534         struct ath10k *ar;
535         struct ath10k_pci *ar_pci;
536
537         dest_ring = ce_state->dest_ring;
538
539         if (!dest_ring)
540                 return -EIO;
541
542         ar = ce_state->ar;
543         ar_pci = ath10k_pci_priv(ar);
544
545         spin_lock_bh(&ar_pci->ce_lock);
546
547         nentries_mask = dest_ring->nentries_mask;
548         sw_index = dest_ring->sw_index;
549         write_index = dest_ring->write_index;
550         if (write_index != sw_index) {
551                 struct ce_desc *base = dest_ring->base_addr_owner_space;
552                 struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
553
554                 /* Return data from completed destination descriptor */
555                 *bufferp = __le32_to_cpu(desc->addr);
556
557                 if (per_transfer_contextp)
558                         *per_transfer_contextp =
559                                 dest_ring->per_transfer_context[sw_index];
560
561                 /* sanity */
562                 dest_ring->per_transfer_context[sw_index] = NULL;
563
564                 /* Update sw_index */
565                 sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
566                 dest_ring->sw_index = sw_index;
567                 ret = 0;
568         } else {
569                 ret = -EIO;
570         }
571
572         spin_unlock_bh(&ar_pci->ce_lock);
573
574         return ret;
575 }
576
577 /*
578  * Guts of ath10k_ce_completed_send_next.
579  * The caller takes responsibility for any necessary locking.
580  */
581 static int ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe *ce_state,
582                                                 void **per_transfer_contextp,
583                                                 u32 *bufferp,
584                                                 unsigned int *nbytesp,
585                                                 unsigned int *transfer_idp)
586 {
587         struct ath10k_ce_ring *src_ring = ce_state->src_ring;
588         u32 ctrl_addr = ce_state->ctrl_addr;
589         struct ath10k *ar = ce_state->ar;
590         unsigned int nentries_mask = src_ring->nentries_mask;
591         unsigned int sw_index = src_ring->sw_index;
592         struct ce_desc *sdesc, *sbase;
593         unsigned int read_index;
594
595         if (src_ring->hw_index == sw_index) {
596                 /*
597                  * The SW completion index has caught up with the cached
598                  * version of the HW completion index.
599                  * Update the cached HW completion index to see whether
600                  * the SW has really caught up to the HW, or if the cached
601                  * value of the HW index has become stale.
602                  */
603
604                 read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
605                 if (read_index == 0xffffffff)
606                         return -ENODEV;
607
608                 read_index &= nentries_mask;
609                 src_ring->hw_index = read_index;
610         }
611
612         read_index = src_ring->hw_index;
613
614         if (read_index == sw_index)
615                 return -EIO;
616
617         sbase = src_ring->shadow_base;
618         sdesc = CE_SRC_RING_TO_DESC(sbase, sw_index);
619
620         /* Return data from completed source descriptor */
621         *bufferp = __le32_to_cpu(sdesc->addr);
622         *nbytesp = __le16_to_cpu(sdesc->nbytes);
623         *transfer_idp = MS(__le16_to_cpu(sdesc->flags),
624                            CE_DESC_FLAGS_META_DATA);
625
626         if (per_transfer_contextp)
627                 *per_transfer_contextp =
628                         src_ring->per_transfer_context[sw_index];
629
630         /* sanity */
631         src_ring->per_transfer_context[sw_index] = NULL;
632
633         /* Update sw_index */
634         sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
635         src_ring->sw_index = sw_index;
636
637         return 0;
638 }
639
640 /* NB: Modeled after ath10k_ce_completed_send_next */
641 int ath10k_ce_cancel_send_next(struct ath10k_ce_pipe *ce_state,
642                                void **per_transfer_contextp,
643                                u32 *bufferp,
644                                unsigned int *nbytesp,
645                                unsigned int *transfer_idp)
646 {
647         struct ath10k_ce_ring *src_ring;
648         unsigned int nentries_mask;
649         unsigned int sw_index;
650         unsigned int write_index;
651         int ret;
652         struct ath10k *ar;
653         struct ath10k_pci *ar_pci;
654
655         src_ring = ce_state->src_ring;
656
657         if (!src_ring)
658                 return -EIO;
659
660         ar = ce_state->ar;
661         ar_pci = ath10k_pci_priv(ar);
662
663         spin_lock_bh(&ar_pci->ce_lock);
664
665         nentries_mask = src_ring->nentries_mask;
666         sw_index = src_ring->sw_index;
667         write_index = src_ring->write_index;
668
669         if (write_index != sw_index) {
670                 struct ce_desc *base = src_ring->base_addr_owner_space;
671                 struct ce_desc *desc = CE_SRC_RING_TO_DESC(base, sw_index);
672
673                 /* Return data from completed source descriptor */
674                 *bufferp = __le32_to_cpu(desc->addr);
675                 *nbytesp = __le16_to_cpu(desc->nbytes);
676                 *transfer_idp = MS(__le16_to_cpu(desc->flags),
677                                                 CE_DESC_FLAGS_META_DATA);
678
679                 if (per_transfer_contextp)
680                         *per_transfer_contextp =
681                                 src_ring->per_transfer_context[sw_index];
682
683                 /* sanity */
684                 src_ring->per_transfer_context[sw_index] = NULL;
685
686                 /* Update sw_index */
687                 sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
688                 src_ring->sw_index = sw_index;
689                 ret = 0;
690         } else {
691                 ret = -EIO;
692         }
693
694         spin_unlock_bh(&ar_pci->ce_lock);
695
696         return ret;
697 }
698
699 int ath10k_ce_completed_send_next(struct ath10k_ce_pipe *ce_state,
700                                   void **per_transfer_contextp,
701                                   u32 *bufferp,
702                                   unsigned int *nbytesp,
703                                   unsigned int *transfer_idp)
704 {
705         struct ath10k *ar = ce_state->ar;
706         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
707         int ret;
708
709         spin_lock_bh(&ar_pci->ce_lock);
710         ret = ath10k_ce_completed_send_next_nolock(ce_state,
711                                                    per_transfer_contextp,
712                                                    bufferp, nbytesp,
713                                                    transfer_idp);
714         spin_unlock_bh(&ar_pci->ce_lock);
715
716         return ret;
717 }
718
719 /*
720  * Guts of interrupt handler for per-engine interrupts on a particular CE.
721  *
722  * Invokes registered callbacks for recv_complete,
723  * send_complete, and watermarks.
724  */
725 void ath10k_ce_per_engine_service(struct ath10k *ar, unsigned int ce_id)
726 {
727         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
728         struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
729         u32 ctrl_addr = ce_state->ctrl_addr;
730
731         spin_lock_bh(&ar_pci->ce_lock);
732
733         /* Clear the copy-complete interrupts that will be handled here. */
734         ath10k_ce_engine_int_status_clear(ar, ctrl_addr,
735                                           HOST_IS_COPY_COMPLETE_MASK);
736
737         spin_unlock_bh(&ar_pci->ce_lock);
738
739         if (ce_state->recv_cb)
740                 ce_state->recv_cb(ce_state);
741
742         if (ce_state->send_cb)
743                 ce_state->send_cb(ce_state);
744
745         spin_lock_bh(&ar_pci->ce_lock);
746
747         /*
748          * Misc CE interrupts are not being handled, but still need
749          * to be cleared.
750          */
751         ath10k_ce_engine_int_status_clear(ar, ctrl_addr, CE_WATERMARK_MASK);
752
753         spin_unlock_bh(&ar_pci->ce_lock);
754 }
755
756 /*
757  * Handler for per-engine interrupts on ALL active CEs.
758  * This is used in cases where the system is sharing a
759  * single interrput for all CEs
760  */
761
762 void ath10k_ce_per_engine_service_any(struct ath10k *ar)
763 {
764         int ce_id;
765         u32 intr_summary;
766
767         intr_summary = CE_INTERRUPT_SUMMARY(ar);
768
769         for (ce_id = 0; intr_summary && (ce_id < CE_COUNT); ce_id++) {
770                 if (intr_summary & (1 << ce_id))
771                         intr_summary &= ~(1 << ce_id);
772                 else
773                         /* no intr pending on this CE */
774                         continue;
775
776                 ath10k_ce_per_engine_service(ar, ce_id);
777         }
778 }
779
780 /*
781  * Adjust interrupts for the copy complete handler.
782  * If it's needed for either send or recv, then unmask
783  * this interrupt; otherwise, mask it.
784  *
785  * Called with ce_lock held.
786  */
787 static void ath10k_ce_per_engine_handler_adjust(struct ath10k_ce_pipe *ce_state)
788 {
789         u32 ctrl_addr = ce_state->ctrl_addr;
790         struct ath10k *ar = ce_state->ar;
791         bool disable_copy_compl_intr = ce_state->attr_flags & CE_ATTR_DIS_INTR;
792
793         if ((!disable_copy_compl_intr) &&
794             (ce_state->send_cb || ce_state->recv_cb))
795                 ath10k_ce_copy_complete_inter_enable(ar, ctrl_addr);
796         else
797                 ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
798
799         ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
800 }
801
802 int ath10k_ce_disable_interrupts(struct ath10k *ar)
803 {
804         int ce_id;
805
806         for (ce_id = 0; ce_id < CE_COUNT; ce_id++) {
807                 u32 ctrl_addr = ath10k_ce_base_address(ce_id);
808
809                 ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
810                 ath10k_ce_error_intr_disable(ar, ctrl_addr);
811                 ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
812         }
813
814         return 0;
815 }
816
817 void ath10k_ce_enable_interrupts(struct ath10k *ar)
818 {
819         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
820         int ce_id;
821
822         for (ce_id = 0; ce_id < CE_COUNT; ce_id++)
823                 ath10k_ce_per_engine_handler_adjust(&ar_pci->ce_states[ce_id]);
824 }
825
826 static int ath10k_ce_init_src_ring(struct ath10k *ar,
827                                    unsigned int ce_id,
828                                    const struct ce_attr *attr)
829 {
830         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
831         struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
832         struct ath10k_ce_ring *src_ring = ce_state->src_ring;
833         u32 nentries, ctrl_addr = ath10k_ce_base_address(ce_id);
834
835         nentries = roundup_pow_of_two(attr->src_nentries);
836
837         memset(src_ring->per_transfer_context, 0,
838                nentries * sizeof(*src_ring->per_transfer_context));
839
840         src_ring->sw_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
841         src_ring->sw_index &= src_ring->nentries_mask;
842         src_ring->hw_index = src_ring->sw_index;
843
844         src_ring->write_index =
845                 ath10k_ce_src_ring_write_index_get(ar, ctrl_addr);
846         src_ring->write_index &= src_ring->nentries_mask;
847
848         ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr,
849                                          src_ring->base_addr_ce_space);
850         ath10k_ce_src_ring_size_set(ar, ctrl_addr, nentries);
851         ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, attr->src_sz_max);
852         ath10k_ce_src_ring_byte_swap_set(ar, ctrl_addr, 0);
853         ath10k_ce_src_ring_lowmark_set(ar, ctrl_addr, 0);
854         ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, nentries);
855
856         ath10k_dbg(ar, ATH10K_DBG_BOOT,
857                    "boot init ce src ring id %d entries %d base_addr %p\n",
858                    ce_id, nentries, src_ring->base_addr_owner_space);
859
860         return 0;
861 }
862
863 static int ath10k_ce_init_dest_ring(struct ath10k *ar,
864                                     unsigned int ce_id,
865                                     const struct ce_attr *attr)
866 {
867         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
868         struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
869         struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
870         u32 nentries, ctrl_addr = ath10k_ce_base_address(ce_id);
871
872         nentries = roundup_pow_of_two(attr->dest_nentries);
873
874         memset(dest_ring->per_transfer_context, 0,
875                nentries * sizeof(*dest_ring->per_transfer_context));
876
877         dest_ring->sw_index = ath10k_ce_dest_ring_read_index_get(ar, ctrl_addr);
878         dest_ring->sw_index &= dest_ring->nentries_mask;
879         dest_ring->write_index =
880                 ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
881         dest_ring->write_index &= dest_ring->nentries_mask;
882
883         ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr,
884                                           dest_ring->base_addr_ce_space);
885         ath10k_ce_dest_ring_size_set(ar, ctrl_addr, nentries);
886         ath10k_ce_dest_ring_byte_swap_set(ar, ctrl_addr, 0);
887         ath10k_ce_dest_ring_lowmark_set(ar, ctrl_addr, 0);
888         ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, nentries);
889
890         ath10k_dbg(ar, ATH10K_DBG_BOOT,
891                    "boot ce dest ring id %d entries %d base_addr %p\n",
892                    ce_id, nentries, dest_ring->base_addr_owner_space);
893
894         return 0;
895 }
896
897 static struct ath10k_ce_ring *
898 ath10k_ce_alloc_src_ring(struct ath10k *ar, unsigned int ce_id,
899                          const struct ce_attr *attr)
900 {
901         struct ath10k_ce_ring *src_ring;
902         u32 nentries = attr->src_nentries;
903         dma_addr_t base_addr;
904
905         nentries = roundup_pow_of_two(nentries);
906
907         src_ring = kzalloc(sizeof(*src_ring) +
908                            (nentries *
909                             sizeof(*src_ring->per_transfer_context)),
910                            GFP_KERNEL);
911         if (src_ring == NULL)
912                 return ERR_PTR(-ENOMEM);
913
914         src_ring->nentries = nentries;
915         src_ring->nentries_mask = nentries - 1;
916
917         /*
918          * Legacy platforms that do not support cache
919          * coherent DMA are unsupported
920          */
921         src_ring->base_addr_owner_space_unaligned =
922                 dma_alloc_coherent(ar->dev,
923                                    (nentries * sizeof(struct ce_desc) +
924                                     CE_DESC_RING_ALIGN),
925                                    &base_addr, GFP_KERNEL);
926         if (!src_ring->base_addr_owner_space_unaligned) {
927                 kfree(src_ring);
928                 return ERR_PTR(-ENOMEM);
929         }
930
931         src_ring->base_addr_ce_space_unaligned = base_addr;
932
933         src_ring->base_addr_owner_space = PTR_ALIGN(
934                         src_ring->base_addr_owner_space_unaligned,
935                         CE_DESC_RING_ALIGN);
936         src_ring->base_addr_ce_space = ALIGN(
937                         src_ring->base_addr_ce_space_unaligned,
938                         CE_DESC_RING_ALIGN);
939
940         /*
941          * Also allocate a shadow src ring in regular
942          * mem to use for faster access.
943          */
944         src_ring->shadow_base_unaligned =
945                 kmalloc((nentries * sizeof(struct ce_desc) +
946                          CE_DESC_RING_ALIGN), GFP_KERNEL);
947         if (!src_ring->shadow_base_unaligned) {
948                 dma_free_coherent(ar->dev,
949                                   (nentries * sizeof(struct ce_desc) +
950                                    CE_DESC_RING_ALIGN),
951                                   src_ring->base_addr_owner_space,
952                                   src_ring->base_addr_ce_space);
953                 kfree(src_ring);
954                 return ERR_PTR(-ENOMEM);
955         }
956
957         src_ring->shadow_base = PTR_ALIGN(
958                         src_ring->shadow_base_unaligned,
959                         CE_DESC_RING_ALIGN);
960
961         return src_ring;
962 }
963
964 static struct ath10k_ce_ring *
965 ath10k_ce_alloc_dest_ring(struct ath10k *ar, unsigned int ce_id,
966                           const struct ce_attr *attr)
967 {
968         struct ath10k_ce_ring *dest_ring;
969         u32 nentries;
970         dma_addr_t base_addr;
971
972         nentries = roundup_pow_of_two(attr->dest_nentries);
973
974         dest_ring = kzalloc(sizeof(*dest_ring) +
975                             (nentries *
976                              sizeof(*dest_ring->per_transfer_context)),
977                             GFP_KERNEL);
978         if (dest_ring == NULL)
979                 return ERR_PTR(-ENOMEM);
980
981         dest_ring->nentries = nentries;
982         dest_ring->nentries_mask = nentries - 1;
983
984         /*
985          * Legacy platforms that do not support cache
986          * coherent DMA are unsupported
987          */
988         dest_ring->base_addr_owner_space_unaligned =
989                 dma_alloc_coherent(ar->dev,
990                                    (nentries * sizeof(struct ce_desc) +
991                                     CE_DESC_RING_ALIGN),
992                                    &base_addr, GFP_KERNEL);
993         if (!dest_ring->base_addr_owner_space_unaligned) {
994                 kfree(dest_ring);
995                 return ERR_PTR(-ENOMEM);
996         }
997
998         dest_ring->base_addr_ce_space_unaligned = base_addr;
999
1000         /*
1001          * Correctly initialize memory to 0 to prevent garbage
1002          * data crashing system when download firmware
1003          */
1004         memset(dest_ring->base_addr_owner_space_unaligned, 0,
1005                nentries * sizeof(struct ce_desc) + CE_DESC_RING_ALIGN);
1006
1007         dest_ring->base_addr_owner_space = PTR_ALIGN(
1008                         dest_ring->base_addr_owner_space_unaligned,
1009                         CE_DESC_RING_ALIGN);
1010         dest_ring->base_addr_ce_space = ALIGN(
1011                         dest_ring->base_addr_ce_space_unaligned,
1012                         CE_DESC_RING_ALIGN);
1013
1014         return dest_ring;
1015 }
1016
1017 /*
1018  * Initialize a Copy Engine based on caller-supplied attributes.
1019  * This may be called once to initialize both source and destination
1020  * rings or it may be called twice for separate source and destination
1021  * initialization. It may be that only one side or the other is
1022  * initialized by software/firmware.
1023  */
1024 int ath10k_ce_init_pipe(struct ath10k *ar, unsigned int ce_id,
1025                         const struct ce_attr *attr,
1026                         void (*send_cb)(struct ath10k_ce_pipe *),
1027                         void (*recv_cb)(struct ath10k_ce_pipe *))
1028 {
1029         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1030         struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
1031         int ret;
1032
1033         /*
1034          * Make sure there's enough CE ringbuffer entries for HTT TX to avoid
1035          * additional TX locking checks.
1036          *
1037          * For the lack of a better place do the check here.
1038          */
1039         BUILD_BUG_ON(2*TARGET_NUM_MSDU_DESC >
1040                      (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1041         BUILD_BUG_ON(2*TARGET_10X_NUM_MSDU_DESC >
1042                      (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1043
1044         spin_lock_bh(&ar_pci->ce_lock);
1045         ce_state->ar = ar;
1046         ce_state->id = ce_id;
1047         ce_state->ctrl_addr = ath10k_ce_base_address(ce_id);
1048         ce_state->attr_flags = attr->flags;
1049         ce_state->src_sz_max = attr->src_sz_max;
1050         if (attr->src_nentries)
1051                 ce_state->send_cb = send_cb;
1052         if (attr->dest_nentries)
1053                 ce_state->recv_cb = recv_cb;
1054         spin_unlock_bh(&ar_pci->ce_lock);
1055
1056         if (attr->src_nentries) {
1057                 ret = ath10k_ce_init_src_ring(ar, ce_id, attr);
1058                 if (ret) {
1059                         ath10k_err(ar, "Failed to initialize CE src ring for ID: %d (%d)\n",
1060                                    ce_id, ret);
1061                         return ret;
1062                 }
1063         }
1064
1065         if (attr->dest_nentries) {
1066                 ret = ath10k_ce_init_dest_ring(ar, ce_id, attr);
1067                 if (ret) {
1068                         ath10k_err(ar, "Failed to initialize CE dest ring for ID: %d (%d)\n",
1069                                    ce_id, ret);
1070                         return ret;
1071                 }
1072         }
1073
1074         return 0;
1075 }
1076
1077 static void ath10k_ce_deinit_src_ring(struct ath10k *ar, unsigned int ce_id)
1078 {
1079         u32 ctrl_addr = ath10k_ce_base_address(ce_id);
1080
1081         ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr, 0);
1082         ath10k_ce_src_ring_size_set(ar, ctrl_addr, 0);
1083         ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, 0);
1084         ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, 0);
1085 }
1086
1087 static void ath10k_ce_deinit_dest_ring(struct ath10k *ar, unsigned int ce_id)
1088 {
1089         u32 ctrl_addr = ath10k_ce_base_address(ce_id);
1090
1091         ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr, 0);
1092         ath10k_ce_dest_ring_size_set(ar, ctrl_addr, 0);
1093         ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, 0);
1094 }
1095
1096 void ath10k_ce_deinit_pipe(struct ath10k *ar, unsigned int ce_id)
1097 {
1098         ath10k_ce_deinit_src_ring(ar, ce_id);
1099         ath10k_ce_deinit_dest_ring(ar, ce_id);
1100 }
1101
1102 int ath10k_ce_alloc_pipe(struct ath10k *ar, int ce_id,
1103                          const struct ce_attr *attr)
1104 {
1105         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1106         struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
1107         int ret;
1108
1109         if (attr->src_nentries) {
1110                 ce_state->src_ring = ath10k_ce_alloc_src_ring(ar, ce_id, attr);
1111                 if (IS_ERR(ce_state->src_ring)) {
1112                         ret = PTR_ERR(ce_state->src_ring);
1113                         ath10k_err(ar, "failed to allocate copy engine source ring %d: %d\n",
1114                                    ce_id, ret);
1115                         ce_state->src_ring = NULL;
1116                         return ret;
1117                 }
1118         }
1119
1120         if (attr->dest_nentries) {
1121                 ce_state->dest_ring = ath10k_ce_alloc_dest_ring(ar, ce_id,
1122                                                                 attr);
1123                 if (IS_ERR(ce_state->dest_ring)) {
1124                         ret = PTR_ERR(ce_state->dest_ring);
1125                         ath10k_err(ar, "failed to allocate copy engine destination ring %d: %d\n",
1126                                    ce_id, ret);
1127                         ce_state->dest_ring = NULL;
1128                         return ret;
1129                 }
1130         }
1131
1132         return 0;
1133 }
1134
1135 void ath10k_ce_free_pipe(struct ath10k *ar, int ce_id)
1136 {
1137         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1138         struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
1139
1140         if (ce_state->src_ring) {
1141                 kfree(ce_state->src_ring->shadow_base_unaligned);
1142                 dma_free_coherent(ar->dev,
1143                                   (ce_state->src_ring->nentries *
1144                                    sizeof(struct ce_desc) +
1145                                    CE_DESC_RING_ALIGN),
1146                                   ce_state->src_ring->base_addr_owner_space,
1147                                   ce_state->src_ring->base_addr_ce_space);
1148                 kfree(ce_state->src_ring);
1149         }
1150
1151         if (ce_state->dest_ring) {
1152                 dma_free_coherent(ar->dev,
1153                                   (ce_state->dest_ring->nentries *
1154                                    sizeof(struct ce_desc) +
1155                                    CE_DESC_RING_ALIGN),
1156                                   ce_state->dest_ring->base_addr_owner_space,
1157                                   ce_state->dest_ring->base_addr_ce_space);
1158                 kfree(ce_state->dest_ring);
1159         }
1160
1161         ce_state->src_ring = NULL;
1162         ce_state->dest_ring = NULL;
1163 }