ath10k: remove target soc ps code
[cascardo/linux.git] / drivers / net / wireless / ath / ath10k / ce.c
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17
18 #include "hif.h"
19 #include "pci.h"
20 #include "ce.h"
21 #include "debug.h"
22
23 /*
24  * Support for Copy Engine hardware, which is mainly used for
25  * communication between Host and Target over a PCIe interconnect.
26  */
27
28 /*
29  * A single CopyEngine (CE) comprises two "rings":
30  *   a source ring
31  *   a destination ring
32  *
33  * Each ring consists of a number of descriptors which specify
34  * an address, length, and meta-data.
35  *
36  * Typically, one side of the PCIe interconnect (Host or Target)
37  * controls one ring and the other side controls the other ring.
38  * The source side chooses when to initiate a transfer and it
39  * chooses what to send (buffer address, length). The destination
40  * side keeps a supply of "anonymous receive buffers" available and
41  * it handles incoming data as it arrives (when the destination
42  * recieves an interrupt).
43  *
44  * The sender may send a simple buffer (address/length) or it may
45  * send a small list of buffers.  When a small list is sent, hardware
46  * "gathers" these and they end up in a single destination buffer
47  * with a single interrupt.
48  *
49  * There are several "contexts" managed by this layer -- more, it
50  * may seem -- than should be needed. These are provided mainly for
51  * maximum flexibility and especially to facilitate a simpler HIF
52  * implementation. There are per-CopyEngine recv, send, and watermark
53  * contexts. These are supplied by the caller when a recv, send,
54  * or watermark handler is established and they are echoed back to
55  * the caller when the respective callbacks are invoked. There is
56  * also a per-transfer context supplied by the caller when a buffer
57  * (or sendlist) is sent and when a buffer is enqueued for recv.
58  * These per-transfer contexts are echoed back to the caller when
59  * the buffer is sent/received.
60  */
61
62 static inline void ath10k_ce_dest_ring_write_index_set(struct ath10k *ar,
63                                                        u32 ce_ctrl_addr,
64                                                        unsigned int n)
65 {
66         ath10k_pci_write32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS, n);
67 }
68
69 static inline u32 ath10k_ce_dest_ring_write_index_get(struct ath10k *ar,
70                                                       u32 ce_ctrl_addr)
71 {
72         return ath10k_pci_read32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS);
73 }
74
75 static inline void ath10k_ce_src_ring_write_index_set(struct ath10k *ar,
76                                                       u32 ce_ctrl_addr,
77                                                       unsigned int n)
78 {
79         ath10k_pci_write32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS, n);
80 }
81
82 static inline u32 ath10k_ce_src_ring_write_index_get(struct ath10k *ar,
83                                                      u32 ce_ctrl_addr)
84 {
85         return ath10k_pci_read32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS);
86 }
87
88 static inline u32 ath10k_ce_src_ring_read_index_get(struct ath10k *ar,
89                                                     u32 ce_ctrl_addr)
90 {
91         return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_SRRI_ADDRESS);
92 }
93
94 static inline void ath10k_ce_src_ring_base_addr_set(struct ath10k *ar,
95                                                     u32 ce_ctrl_addr,
96                                                     unsigned int addr)
97 {
98         ath10k_pci_write32(ar, ce_ctrl_addr + SR_BA_ADDRESS, addr);
99 }
100
101 static inline void ath10k_ce_src_ring_size_set(struct ath10k *ar,
102                                                u32 ce_ctrl_addr,
103                                                unsigned int n)
104 {
105         ath10k_pci_write32(ar, ce_ctrl_addr + SR_SIZE_ADDRESS, n);
106 }
107
108 static inline void ath10k_ce_src_ring_dmax_set(struct ath10k *ar,
109                                                u32 ce_ctrl_addr,
110                                                unsigned int n)
111 {
112         u32 ctrl1_addr = ath10k_pci_read32((ar),
113                                            (ce_ctrl_addr) + CE_CTRL1_ADDRESS);
114
115         ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
116                            (ctrl1_addr &  ~CE_CTRL1_DMAX_LENGTH_MASK) |
117                            CE_CTRL1_DMAX_LENGTH_SET(n));
118 }
119
120 static inline void ath10k_ce_src_ring_byte_swap_set(struct ath10k *ar,
121                                                     u32 ce_ctrl_addr,
122                                                     unsigned int n)
123 {
124         u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
125
126         ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
127                            (ctrl1_addr & ~CE_CTRL1_SRC_RING_BYTE_SWAP_EN_MASK) |
128                            CE_CTRL1_SRC_RING_BYTE_SWAP_EN_SET(n));
129 }
130
131 static inline void ath10k_ce_dest_ring_byte_swap_set(struct ath10k *ar,
132                                                      u32 ce_ctrl_addr,
133                                                      unsigned int n)
134 {
135         u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
136
137         ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
138                            (ctrl1_addr & ~CE_CTRL1_DST_RING_BYTE_SWAP_EN_MASK) |
139                            CE_CTRL1_DST_RING_BYTE_SWAP_EN_SET(n));
140 }
141
142 static inline u32 ath10k_ce_dest_ring_read_index_get(struct ath10k *ar,
143                                                      u32 ce_ctrl_addr)
144 {
145         return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_DRRI_ADDRESS);
146 }
147
148 static inline void ath10k_ce_dest_ring_base_addr_set(struct ath10k *ar,
149                                                      u32 ce_ctrl_addr,
150                                                      u32 addr)
151 {
152         ath10k_pci_write32(ar, ce_ctrl_addr + DR_BA_ADDRESS, addr);
153 }
154
155 static inline void ath10k_ce_dest_ring_size_set(struct ath10k *ar,
156                                                 u32 ce_ctrl_addr,
157                                                 unsigned int n)
158 {
159         ath10k_pci_write32(ar, ce_ctrl_addr + DR_SIZE_ADDRESS, n);
160 }
161
162 static inline void ath10k_ce_src_ring_highmark_set(struct ath10k *ar,
163                                                    u32 ce_ctrl_addr,
164                                                    unsigned int n)
165 {
166         u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
167
168         ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
169                            (addr & ~SRC_WATERMARK_HIGH_MASK) |
170                            SRC_WATERMARK_HIGH_SET(n));
171 }
172
173 static inline void ath10k_ce_src_ring_lowmark_set(struct ath10k *ar,
174                                                   u32 ce_ctrl_addr,
175                                                   unsigned int n)
176 {
177         u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
178
179         ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
180                            (addr & ~SRC_WATERMARK_LOW_MASK) |
181                            SRC_WATERMARK_LOW_SET(n));
182 }
183
184 static inline void ath10k_ce_dest_ring_highmark_set(struct ath10k *ar,
185                                                     u32 ce_ctrl_addr,
186                                                     unsigned int n)
187 {
188         u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
189
190         ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
191                            (addr & ~DST_WATERMARK_HIGH_MASK) |
192                            DST_WATERMARK_HIGH_SET(n));
193 }
194
195 static inline void ath10k_ce_dest_ring_lowmark_set(struct ath10k *ar,
196                                                    u32 ce_ctrl_addr,
197                                                    unsigned int n)
198 {
199         u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
200
201         ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
202                            (addr & ~DST_WATERMARK_LOW_MASK) |
203                            DST_WATERMARK_LOW_SET(n));
204 }
205
206 static inline void ath10k_ce_copy_complete_inter_enable(struct ath10k *ar,
207                                                         u32 ce_ctrl_addr)
208 {
209         u32 host_ie_addr = ath10k_pci_read32(ar,
210                                              ce_ctrl_addr + HOST_IE_ADDRESS);
211
212         ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
213                            host_ie_addr | HOST_IE_COPY_COMPLETE_MASK);
214 }
215
216 static inline void ath10k_ce_copy_complete_intr_disable(struct ath10k *ar,
217                                                         u32 ce_ctrl_addr)
218 {
219         u32 host_ie_addr = ath10k_pci_read32(ar,
220                                              ce_ctrl_addr + HOST_IE_ADDRESS);
221
222         ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
223                            host_ie_addr & ~HOST_IE_COPY_COMPLETE_MASK);
224 }
225
226 static inline void ath10k_ce_watermark_intr_disable(struct ath10k *ar,
227                                                     u32 ce_ctrl_addr)
228 {
229         u32 host_ie_addr = ath10k_pci_read32(ar,
230                                              ce_ctrl_addr + HOST_IE_ADDRESS);
231
232         ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
233                            host_ie_addr & ~CE_WATERMARK_MASK);
234 }
235
236 static inline void ath10k_ce_error_intr_enable(struct ath10k *ar,
237                                                u32 ce_ctrl_addr)
238 {
239         u32 misc_ie_addr = ath10k_pci_read32(ar,
240                                              ce_ctrl_addr + MISC_IE_ADDRESS);
241
242         ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
243                            misc_ie_addr | CE_ERROR_MASK);
244 }
245
246 static inline void ath10k_ce_error_intr_disable(struct ath10k *ar,
247                                                 u32 ce_ctrl_addr)
248 {
249         u32 misc_ie_addr = ath10k_pci_read32(ar,
250                                              ce_ctrl_addr + MISC_IE_ADDRESS);
251
252         ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
253                            misc_ie_addr & ~CE_ERROR_MASK);
254 }
255
256 static inline void ath10k_ce_engine_int_status_clear(struct ath10k *ar,
257                                                      u32 ce_ctrl_addr,
258                                                      unsigned int mask)
259 {
260         ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IS_ADDRESS, mask);
261 }
262
263
264 /*
265  * Guts of ath10k_ce_send, used by both ath10k_ce_send and
266  * ath10k_ce_sendlist_send.
267  * The caller takes responsibility for any needed locking.
268  */
269 int ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state,
270                           void *per_transfer_context,
271                           u32 buffer,
272                           unsigned int nbytes,
273                           unsigned int transfer_id,
274                           unsigned int flags)
275 {
276         struct ath10k *ar = ce_state->ar;
277         struct ath10k_ce_ring *src_ring = ce_state->src_ring;
278         struct ce_desc *desc, *sdesc;
279         unsigned int nentries_mask = src_ring->nentries_mask;
280         unsigned int sw_index = src_ring->sw_index;
281         unsigned int write_index = src_ring->write_index;
282         u32 ctrl_addr = ce_state->ctrl_addr;
283         u32 desc_flags = 0;
284         int ret = 0;
285
286         if (nbytes > ce_state->src_sz_max)
287                 ath10k_warn("%s: send more we can (nbytes: %d, max: %d)\n",
288                             __func__, nbytes, ce_state->src_sz_max);
289
290         if (unlikely(CE_RING_DELTA(nentries_mask,
291                                    write_index, sw_index - 1) <= 0)) {
292                 ret = -ENOSR;
293                 goto exit;
294         }
295
296         desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
297                                    write_index);
298         sdesc = CE_SRC_RING_TO_DESC(src_ring->shadow_base, write_index);
299
300         desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);
301
302         if (flags & CE_SEND_FLAG_GATHER)
303                 desc_flags |= CE_DESC_FLAGS_GATHER;
304         if (flags & CE_SEND_FLAG_BYTE_SWAP)
305                 desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;
306
307         sdesc->addr   = __cpu_to_le32(buffer);
308         sdesc->nbytes = __cpu_to_le16(nbytes);
309         sdesc->flags  = __cpu_to_le16(desc_flags);
310
311         *desc = *sdesc;
312
313         src_ring->per_transfer_context[write_index] = per_transfer_context;
314
315         /* Update Source Ring Write Index */
316         write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
317
318         /* WORKAROUND */
319         if (!(flags & CE_SEND_FLAG_GATHER))
320                 ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index);
321
322         src_ring->write_index = write_index;
323 exit:
324         return ret;
325 }
326
327 void __ath10k_ce_send_revert(struct ath10k_ce_pipe *pipe)
328 {
329         struct ath10k *ar = pipe->ar;
330         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
331         struct ath10k_ce_ring *src_ring = pipe->src_ring;
332         u32 ctrl_addr = pipe->ctrl_addr;
333
334         lockdep_assert_held(&ar_pci->ce_lock);
335
336         /*
337          * This function must be called only if there is an incomplete
338          * scatter-gather transfer (before index register is updated)
339          * that needs to be cleaned up.
340          */
341         if (WARN_ON_ONCE(src_ring->write_index == src_ring->sw_index))
342                 return;
343
344         if (WARN_ON_ONCE(src_ring->write_index ==
345                          ath10k_ce_src_ring_write_index_get(ar, ctrl_addr)))
346                 return;
347
348         src_ring->write_index--;
349         src_ring->write_index &= src_ring->nentries_mask;
350
351         src_ring->per_transfer_context[src_ring->write_index] = NULL;
352 }
353
354 int ath10k_ce_send(struct ath10k_ce_pipe *ce_state,
355                    void *per_transfer_context,
356                    u32 buffer,
357                    unsigned int nbytes,
358                    unsigned int transfer_id,
359                    unsigned int flags)
360 {
361         struct ath10k *ar = ce_state->ar;
362         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
363         int ret;
364
365         spin_lock_bh(&ar_pci->ce_lock);
366         ret = ath10k_ce_send_nolock(ce_state, per_transfer_context,
367                                     buffer, nbytes, transfer_id, flags);
368         spin_unlock_bh(&ar_pci->ce_lock);
369
370         return ret;
371 }
372
373 int ath10k_ce_num_free_src_entries(struct ath10k_ce_pipe *pipe)
374 {
375         struct ath10k *ar = pipe->ar;
376         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
377         int delta;
378
379         spin_lock_bh(&ar_pci->ce_lock);
380         delta = CE_RING_DELTA(pipe->src_ring->nentries_mask,
381                               pipe->src_ring->write_index,
382                               pipe->src_ring->sw_index - 1);
383         spin_unlock_bh(&ar_pci->ce_lock);
384
385         return delta;
386 }
387
388 int ath10k_ce_recv_buf_enqueue(struct ath10k_ce_pipe *ce_state,
389                                void *per_recv_context,
390                                u32 buffer)
391 {
392         struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
393         u32 ctrl_addr = ce_state->ctrl_addr;
394         struct ath10k *ar = ce_state->ar;
395         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
396         unsigned int nentries_mask = dest_ring->nentries_mask;
397         unsigned int write_index;
398         unsigned int sw_index;
399         int ret;
400
401         spin_lock_bh(&ar_pci->ce_lock);
402         write_index = dest_ring->write_index;
403         sw_index = dest_ring->sw_index;
404
405         if (CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) > 0) {
406                 struct ce_desc *base = dest_ring->base_addr_owner_space;
407                 struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, write_index);
408
409                 /* Update destination descriptor */
410                 desc->addr    = __cpu_to_le32(buffer);
411                 desc->nbytes = 0;
412
413                 dest_ring->per_transfer_context[write_index] =
414                                                         per_recv_context;
415
416                 /* Update Destination Ring Write Index */
417                 write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
418                 ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
419                 dest_ring->write_index = write_index;
420                 ret = 0;
421         } else {
422                 ret = -EIO;
423         }
424
425         spin_unlock_bh(&ar_pci->ce_lock);
426         return ret;
427 }
428
429 /*
430  * Guts of ath10k_ce_completed_recv_next.
431  * The caller takes responsibility for any necessary locking.
432  */
433 static int ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state,
434                                                 void **per_transfer_contextp,
435                                                 u32 *bufferp,
436                                                 unsigned int *nbytesp,
437                                                 unsigned int *transfer_idp,
438                                                 unsigned int *flagsp)
439 {
440         struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
441         unsigned int nentries_mask = dest_ring->nentries_mask;
442         unsigned int sw_index = dest_ring->sw_index;
443
444         struct ce_desc *base = dest_ring->base_addr_owner_space;
445         struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
446         struct ce_desc sdesc;
447         u16 nbytes;
448
449         /* Copy in one go for performance reasons */
450         sdesc = *desc;
451
452         nbytes = __le16_to_cpu(sdesc.nbytes);
453         if (nbytes == 0) {
454                 /*
455                  * This closes a relatively unusual race where the Host
456                  * sees the updated DRRI before the update to the
457                  * corresponding descriptor has completed. We treat this
458                  * as a descriptor that is not yet done.
459                  */
460                 return -EIO;
461         }
462
463         desc->nbytes = 0;
464
465         /* Return data from completed destination descriptor */
466         *bufferp = __le32_to_cpu(sdesc.addr);
467         *nbytesp = nbytes;
468         *transfer_idp = MS(__le16_to_cpu(sdesc.flags), CE_DESC_FLAGS_META_DATA);
469
470         if (__le16_to_cpu(sdesc.flags) & CE_DESC_FLAGS_BYTE_SWAP)
471                 *flagsp = CE_RECV_FLAG_SWAPPED;
472         else
473                 *flagsp = 0;
474
475         if (per_transfer_contextp)
476                 *per_transfer_contextp =
477                         dest_ring->per_transfer_context[sw_index];
478
479         /* sanity */
480         dest_ring->per_transfer_context[sw_index] = NULL;
481
482         /* Update sw_index */
483         sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
484         dest_ring->sw_index = sw_index;
485
486         return 0;
487 }
488
489 int ath10k_ce_completed_recv_next(struct ath10k_ce_pipe *ce_state,
490                                   void **per_transfer_contextp,
491                                   u32 *bufferp,
492                                   unsigned int *nbytesp,
493                                   unsigned int *transfer_idp,
494                                   unsigned int *flagsp)
495 {
496         struct ath10k *ar = ce_state->ar;
497         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
498         int ret;
499
500         spin_lock_bh(&ar_pci->ce_lock);
501         ret = ath10k_ce_completed_recv_next_nolock(ce_state,
502                                                    per_transfer_contextp,
503                                                    bufferp, nbytesp,
504                                                    transfer_idp, flagsp);
505         spin_unlock_bh(&ar_pci->ce_lock);
506
507         return ret;
508 }
509
510 int ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state,
511                                void **per_transfer_contextp,
512                                u32 *bufferp)
513 {
514         struct ath10k_ce_ring *dest_ring;
515         unsigned int nentries_mask;
516         unsigned int sw_index;
517         unsigned int write_index;
518         int ret;
519         struct ath10k *ar;
520         struct ath10k_pci *ar_pci;
521
522         dest_ring = ce_state->dest_ring;
523
524         if (!dest_ring)
525                 return -EIO;
526
527         ar = ce_state->ar;
528         ar_pci = ath10k_pci_priv(ar);
529
530         spin_lock_bh(&ar_pci->ce_lock);
531
532         nentries_mask = dest_ring->nentries_mask;
533         sw_index = dest_ring->sw_index;
534         write_index = dest_ring->write_index;
535         if (write_index != sw_index) {
536                 struct ce_desc *base = dest_ring->base_addr_owner_space;
537                 struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
538
539                 /* Return data from completed destination descriptor */
540                 *bufferp = __le32_to_cpu(desc->addr);
541
542                 if (per_transfer_contextp)
543                         *per_transfer_contextp =
544                                 dest_ring->per_transfer_context[sw_index];
545
546                 /* sanity */
547                 dest_ring->per_transfer_context[sw_index] = NULL;
548
549                 /* Update sw_index */
550                 sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
551                 dest_ring->sw_index = sw_index;
552                 ret = 0;
553         } else {
554                 ret = -EIO;
555         }
556
557         spin_unlock_bh(&ar_pci->ce_lock);
558
559         return ret;
560 }
561
562 /*
563  * Guts of ath10k_ce_completed_send_next.
564  * The caller takes responsibility for any necessary locking.
565  */
566 static int ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe *ce_state,
567                                                 void **per_transfer_contextp,
568                                                 u32 *bufferp,
569                                                 unsigned int *nbytesp,
570                                                 unsigned int *transfer_idp)
571 {
572         struct ath10k_ce_ring *src_ring = ce_state->src_ring;
573         u32 ctrl_addr = ce_state->ctrl_addr;
574         struct ath10k *ar = ce_state->ar;
575         unsigned int nentries_mask = src_ring->nentries_mask;
576         unsigned int sw_index = src_ring->sw_index;
577         struct ce_desc *sdesc, *sbase;
578         unsigned int read_index;
579
580         if (src_ring->hw_index == sw_index) {
581                 /*
582                  * The SW completion index has caught up with the cached
583                  * version of the HW completion index.
584                  * Update the cached HW completion index to see whether
585                  * the SW has really caught up to the HW, or if the cached
586                  * value of the HW index has become stale.
587                  */
588
589                 read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
590                 if (read_index == 0xffffffff)
591                         return -ENODEV;
592
593                 read_index &= nentries_mask;
594                 src_ring->hw_index = read_index;
595         }
596
597         read_index = src_ring->hw_index;
598
599         if (read_index == sw_index)
600                 return -EIO;
601
602         sbase = src_ring->shadow_base;
603         sdesc = CE_SRC_RING_TO_DESC(sbase, sw_index);
604
605         /* Return data from completed source descriptor */
606         *bufferp = __le32_to_cpu(sdesc->addr);
607         *nbytesp = __le16_to_cpu(sdesc->nbytes);
608         *transfer_idp = MS(__le16_to_cpu(sdesc->flags),
609                            CE_DESC_FLAGS_META_DATA);
610
611         if (per_transfer_contextp)
612                 *per_transfer_contextp =
613                         src_ring->per_transfer_context[sw_index];
614
615         /* sanity */
616         src_ring->per_transfer_context[sw_index] = NULL;
617
618         /* Update sw_index */
619         sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
620         src_ring->sw_index = sw_index;
621
622         return 0;
623 }
624
625 /* NB: Modeled after ath10k_ce_completed_send_next */
626 int ath10k_ce_cancel_send_next(struct ath10k_ce_pipe *ce_state,
627                                void **per_transfer_contextp,
628                                u32 *bufferp,
629                                unsigned int *nbytesp,
630                                unsigned int *transfer_idp)
631 {
632         struct ath10k_ce_ring *src_ring;
633         unsigned int nentries_mask;
634         unsigned int sw_index;
635         unsigned int write_index;
636         int ret;
637         struct ath10k *ar;
638         struct ath10k_pci *ar_pci;
639
640         src_ring = ce_state->src_ring;
641
642         if (!src_ring)
643                 return -EIO;
644
645         ar = ce_state->ar;
646         ar_pci = ath10k_pci_priv(ar);
647
648         spin_lock_bh(&ar_pci->ce_lock);
649
650         nentries_mask = src_ring->nentries_mask;
651         sw_index = src_ring->sw_index;
652         write_index = src_ring->write_index;
653
654         if (write_index != sw_index) {
655                 struct ce_desc *base = src_ring->base_addr_owner_space;
656                 struct ce_desc *desc = CE_SRC_RING_TO_DESC(base, sw_index);
657
658                 /* Return data from completed source descriptor */
659                 *bufferp = __le32_to_cpu(desc->addr);
660                 *nbytesp = __le16_to_cpu(desc->nbytes);
661                 *transfer_idp = MS(__le16_to_cpu(desc->flags),
662                                                 CE_DESC_FLAGS_META_DATA);
663
664                 if (per_transfer_contextp)
665                         *per_transfer_contextp =
666                                 src_ring->per_transfer_context[sw_index];
667
668                 /* sanity */
669                 src_ring->per_transfer_context[sw_index] = NULL;
670
671                 /* Update sw_index */
672                 sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
673                 src_ring->sw_index = sw_index;
674                 ret = 0;
675         } else {
676                 ret = -EIO;
677         }
678
679         spin_unlock_bh(&ar_pci->ce_lock);
680
681         return ret;
682 }
683
684 int ath10k_ce_completed_send_next(struct ath10k_ce_pipe *ce_state,
685                                   void **per_transfer_contextp,
686                                   u32 *bufferp,
687                                   unsigned int *nbytesp,
688                                   unsigned int *transfer_idp)
689 {
690         struct ath10k *ar = ce_state->ar;
691         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
692         int ret;
693
694         spin_lock_bh(&ar_pci->ce_lock);
695         ret = ath10k_ce_completed_send_next_nolock(ce_state,
696                                                    per_transfer_contextp,
697                                                    bufferp, nbytesp,
698                                                    transfer_idp);
699         spin_unlock_bh(&ar_pci->ce_lock);
700
701         return ret;
702 }
703
704 /*
705  * Guts of interrupt handler for per-engine interrupts on a particular CE.
706  *
707  * Invokes registered callbacks for recv_complete,
708  * send_complete, and watermarks.
709  */
710 void ath10k_ce_per_engine_service(struct ath10k *ar, unsigned int ce_id)
711 {
712         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
713         struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
714         u32 ctrl_addr = ce_state->ctrl_addr;
715
716         spin_lock_bh(&ar_pci->ce_lock);
717
718         /* Clear the copy-complete interrupts that will be handled here. */
719         ath10k_ce_engine_int_status_clear(ar, ctrl_addr,
720                                           HOST_IS_COPY_COMPLETE_MASK);
721
722         spin_unlock_bh(&ar_pci->ce_lock);
723
724         if (ce_state->recv_cb)
725                 ce_state->recv_cb(ce_state);
726
727         if (ce_state->send_cb)
728                 ce_state->send_cb(ce_state);
729
730         spin_lock_bh(&ar_pci->ce_lock);
731
732         /*
733          * Misc CE interrupts are not being handled, but still need
734          * to be cleared.
735          */
736         ath10k_ce_engine_int_status_clear(ar, ctrl_addr, CE_WATERMARK_MASK);
737
738         spin_unlock_bh(&ar_pci->ce_lock);
739 }
740
741 /*
742  * Handler for per-engine interrupts on ALL active CEs.
743  * This is used in cases where the system is sharing a
744  * single interrput for all CEs
745  */
746
747 void ath10k_ce_per_engine_service_any(struct ath10k *ar)
748 {
749         int ce_id;
750         u32 intr_summary;
751
752         intr_summary = CE_INTERRUPT_SUMMARY(ar);
753
754         for (ce_id = 0; intr_summary && (ce_id < CE_COUNT); ce_id++) {
755                 if (intr_summary & (1 << ce_id))
756                         intr_summary &= ~(1 << ce_id);
757                 else
758                         /* no intr pending on this CE */
759                         continue;
760
761                 ath10k_ce_per_engine_service(ar, ce_id);
762         }
763 }
764
765 /*
766  * Adjust interrupts for the copy complete handler.
767  * If it's needed for either send or recv, then unmask
768  * this interrupt; otherwise, mask it.
769  *
770  * Called with ce_lock held.
771  */
772 static void ath10k_ce_per_engine_handler_adjust(struct ath10k_ce_pipe *ce_state,
773                                                 int disable_copy_compl_intr)
774 {
775         u32 ctrl_addr = ce_state->ctrl_addr;
776         struct ath10k *ar = ce_state->ar;
777
778         if ((!disable_copy_compl_intr) &&
779             (ce_state->send_cb || ce_state->recv_cb))
780                 ath10k_ce_copy_complete_inter_enable(ar, ctrl_addr);
781         else
782                 ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
783
784         ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
785 }
786
787 int ath10k_ce_disable_interrupts(struct ath10k *ar)
788 {
789         int ce_id;
790
791         for (ce_id = 0; ce_id < CE_COUNT; ce_id++) {
792                 u32 ctrl_addr = ath10k_ce_base_address(ce_id);
793
794                 ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
795                 ath10k_ce_error_intr_disable(ar, ctrl_addr);
796                 ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
797         }
798
799         return 0;
800 }
801
802 void ath10k_ce_send_cb_register(struct ath10k_ce_pipe *ce_state,
803                                 void (*send_cb)(struct ath10k_ce_pipe *),
804                                 int disable_interrupts)
805 {
806         struct ath10k *ar = ce_state->ar;
807         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
808
809         spin_lock_bh(&ar_pci->ce_lock);
810         ce_state->send_cb = send_cb;
811         ath10k_ce_per_engine_handler_adjust(ce_state, disable_interrupts);
812         spin_unlock_bh(&ar_pci->ce_lock);
813 }
814
815 void ath10k_ce_recv_cb_register(struct ath10k_ce_pipe *ce_state,
816                                 void (*recv_cb)(struct ath10k_ce_pipe *))
817 {
818         struct ath10k *ar = ce_state->ar;
819         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
820
821         spin_lock_bh(&ar_pci->ce_lock);
822         ce_state->recv_cb = recv_cb;
823         ath10k_ce_per_engine_handler_adjust(ce_state, 0);
824         spin_unlock_bh(&ar_pci->ce_lock);
825 }
826
827 static int ath10k_ce_init_src_ring(struct ath10k *ar,
828                                    unsigned int ce_id,
829                                    const struct ce_attr *attr)
830 {
831         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
832         struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
833         struct ath10k_ce_ring *src_ring = ce_state->src_ring;
834         u32 nentries, ctrl_addr = ath10k_ce_base_address(ce_id);
835
836         nentries = roundup_pow_of_two(attr->src_nentries);
837
838         memset(src_ring->per_transfer_context, 0,
839                nentries * sizeof(*src_ring->per_transfer_context));
840
841         src_ring->sw_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
842         src_ring->sw_index &= src_ring->nentries_mask;
843         src_ring->hw_index = src_ring->sw_index;
844
845         src_ring->write_index =
846                 ath10k_ce_src_ring_write_index_get(ar, ctrl_addr);
847         src_ring->write_index &= src_ring->nentries_mask;
848
849         ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr,
850                                          src_ring->base_addr_ce_space);
851         ath10k_ce_src_ring_size_set(ar, ctrl_addr, nentries);
852         ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, attr->src_sz_max);
853         ath10k_ce_src_ring_byte_swap_set(ar, ctrl_addr, 0);
854         ath10k_ce_src_ring_lowmark_set(ar, ctrl_addr, 0);
855         ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, nentries);
856
857         ath10k_dbg(ATH10K_DBG_BOOT,
858                    "boot init ce src ring id %d entries %d base_addr %p\n",
859                    ce_id, nentries, src_ring->base_addr_owner_space);
860
861         return 0;
862 }
863
864 static int ath10k_ce_init_dest_ring(struct ath10k *ar,
865                                     unsigned int ce_id,
866                                     const struct ce_attr *attr)
867 {
868         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
869         struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
870         struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
871         u32 nentries, ctrl_addr = ath10k_ce_base_address(ce_id);
872
873         nentries = roundup_pow_of_two(attr->dest_nentries);
874
875         memset(dest_ring->per_transfer_context, 0,
876                nentries * sizeof(*dest_ring->per_transfer_context));
877
878         dest_ring->sw_index = ath10k_ce_dest_ring_read_index_get(ar, ctrl_addr);
879         dest_ring->sw_index &= dest_ring->nentries_mask;
880         dest_ring->write_index =
881                 ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
882         dest_ring->write_index &= dest_ring->nentries_mask;
883
884         ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr,
885                                           dest_ring->base_addr_ce_space);
886         ath10k_ce_dest_ring_size_set(ar, ctrl_addr, nentries);
887         ath10k_ce_dest_ring_byte_swap_set(ar, ctrl_addr, 0);
888         ath10k_ce_dest_ring_lowmark_set(ar, ctrl_addr, 0);
889         ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, nentries);
890
891         ath10k_dbg(ATH10K_DBG_BOOT,
892                    "boot ce dest ring id %d entries %d base_addr %p\n",
893                    ce_id, nentries, dest_ring->base_addr_owner_space);
894
895         return 0;
896 }
897
898 static struct ath10k_ce_ring *
899 ath10k_ce_alloc_src_ring(struct ath10k *ar, unsigned int ce_id,
900                          const struct ce_attr *attr)
901 {
902         struct ath10k_ce_ring *src_ring;
903         u32 nentries = attr->src_nentries;
904         dma_addr_t base_addr;
905
906         nentries = roundup_pow_of_two(nentries);
907
908         src_ring = kzalloc(sizeof(*src_ring) +
909                            (nentries *
910                             sizeof(*src_ring->per_transfer_context)),
911                            GFP_KERNEL);
912         if (src_ring == NULL)
913                 return ERR_PTR(-ENOMEM);
914
915         src_ring->nentries = nentries;
916         src_ring->nentries_mask = nentries - 1;
917
918         /*
919          * Legacy platforms that do not support cache
920          * coherent DMA are unsupported
921          */
922         src_ring->base_addr_owner_space_unaligned =
923                 dma_alloc_coherent(ar->dev,
924                                    (nentries * sizeof(struct ce_desc) +
925                                     CE_DESC_RING_ALIGN),
926                                    &base_addr, GFP_KERNEL);
927         if (!src_ring->base_addr_owner_space_unaligned) {
928                 kfree(src_ring);
929                 return ERR_PTR(-ENOMEM);
930         }
931
932         src_ring->base_addr_ce_space_unaligned = base_addr;
933
934         src_ring->base_addr_owner_space = PTR_ALIGN(
935                         src_ring->base_addr_owner_space_unaligned,
936                         CE_DESC_RING_ALIGN);
937         src_ring->base_addr_ce_space = ALIGN(
938                         src_ring->base_addr_ce_space_unaligned,
939                         CE_DESC_RING_ALIGN);
940
941         /*
942          * Also allocate a shadow src ring in regular
943          * mem to use for faster access.
944          */
945         src_ring->shadow_base_unaligned =
946                 kmalloc((nentries * sizeof(struct ce_desc) +
947                          CE_DESC_RING_ALIGN), GFP_KERNEL);
948         if (!src_ring->shadow_base_unaligned) {
949                 dma_free_coherent(ar->dev,
950                                   (nentries * sizeof(struct ce_desc) +
951                                    CE_DESC_RING_ALIGN),
952                                   src_ring->base_addr_owner_space,
953                                   src_ring->base_addr_ce_space);
954                 kfree(src_ring);
955                 return ERR_PTR(-ENOMEM);
956         }
957
958         src_ring->shadow_base = PTR_ALIGN(
959                         src_ring->shadow_base_unaligned,
960                         CE_DESC_RING_ALIGN);
961
962         return src_ring;
963 }
964
965 static struct ath10k_ce_ring *
966 ath10k_ce_alloc_dest_ring(struct ath10k *ar, unsigned int ce_id,
967                           const struct ce_attr *attr)
968 {
969         struct ath10k_ce_ring *dest_ring;
970         u32 nentries;
971         dma_addr_t base_addr;
972
973         nentries = roundup_pow_of_two(attr->dest_nentries);
974
975         dest_ring = kzalloc(sizeof(*dest_ring) +
976                             (nentries *
977                              sizeof(*dest_ring->per_transfer_context)),
978                             GFP_KERNEL);
979         if (dest_ring == NULL)
980                 return ERR_PTR(-ENOMEM);
981
982         dest_ring->nentries = nentries;
983         dest_ring->nentries_mask = nentries - 1;
984
985         /*
986          * Legacy platforms that do not support cache
987          * coherent DMA are unsupported
988          */
989         dest_ring->base_addr_owner_space_unaligned =
990                 dma_alloc_coherent(ar->dev,
991                                    (nentries * sizeof(struct ce_desc) +
992                                     CE_DESC_RING_ALIGN),
993                                    &base_addr, GFP_KERNEL);
994         if (!dest_ring->base_addr_owner_space_unaligned) {
995                 kfree(dest_ring);
996                 return ERR_PTR(-ENOMEM);
997         }
998
999         dest_ring->base_addr_ce_space_unaligned = base_addr;
1000
1001         /*
1002          * Correctly initialize memory to 0 to prevent garbage
1003          * data crashing system when download firmware
1004          */
1005         memset(dest_ring->base_addr_owner_space_unaligned, 0,
1006                nentries * sizeof(struct ce_desc) + CE_DESC_RING_ALIGN);
1007
1008         dest_ring->base_addr_owner_space = PTR_ALIGN(
1009                         dest_ring->base_addr_owner_space_unaligned,
1010                         CE_DESC_RING_ALIGN);
1011         dest_ring->base_addr_ce_space = ALIGN(
1012                         dest_ring->base_addr_ce_space_unaligned,
1013                         CE_DESC_RING_ALIGN);
1014
1015         return dest_ring;
1016 }
1017
1018 /*
1019  * Initialize a Copy Engine based on caller-supplied attributes.
1020  * This may be called once to initialize both source and destination
1021  * rings or it may be called twice for separate source and destination
1022  * initialization. It may be that only one side or the other is
1023  * initialized by software/firmware.
1024  */
1025 int ath10k_ce_init_pipe(struct ath10k *ar, unsigned int ce_id,
1026                         const struct ce_attr *attr)
1027 {
1028         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1029         struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
1030         int ret;
1031
1032         /*
1033          * Make sure there's enough CE ringbuffer entries for HTT TX to avoid
1034          * additional TX locking checks.
1035          *
1036          * For the lack of a better place do the check here.
1037          */
1038         BUILD_BUG_ON(2*TARGET_NUM_MSDU_DESC >
1039                      (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1040         BUILD_BUG_ON(2*TARGET_10X_NUM_MSDU_DESC >
1041                      (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1042
1043         spin_lock_bh(&ar_pci->ce_lock);
1044         ce_state->ar = ar;
1045         ce_state->id = ce_id;
1046         ce_state->ctrl_addr = ath10k_ce_base_address(ce_id);
1047         ce_state->attr_flags = attr->flags;
1048         ce_state->src_sz_max = attr->src_sz_max;
1049         spin_unlock_bh(&ar_pci->ce_lock);
1050
1051         if (attr->src_nentries) {
1052                 ret = ath10k_ce_init_src_ring(ar, ce_id, attr);
1053                 if (ret) {
1054                         ath10k_err("Failed to initialize CE src ring for ID: %d (%d)\n",
1055                                    ce_id, ret);
1056                         return ret;
1057                 }
1058         }
1059
1060         if (attr->dest_nentries) {
1061                 ret = ath10k_ce_init_dest_ring(ar, ce_id, attr);
1062                 if (ret) {
1063                         ath10k_err("Failed to initialize CE dest ring for ID: %d (%d)\n",
1064                                    ce_id, ret);
1065                         return ret;
1066                 }
1067         }
1068
1069         return 0;
1070 }
1071
1072 static void ath10k_ce_deinit_src_ring(struct ath10k *ar, unsigned int ce_id)
1073 {
1074         u32 ctrl_addr = ath10k_ce_base_address(ce_id);
1075
1076         ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr, 0);
1077         ath10k_ce_src_ring_size_set(ar, ctrl_addr, 0);
1078         ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, 0);
1079         ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, 0);
1080 }
1081
1082 static void ath10k_ce_deinit_dest_ring(struct ath10k *ar, unsigned int ce_id)
1083 {
1084         u32 ctrl_addr = ath10k_ce_base_address(ce_id);
1085
1086         ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr, 0);
1087         ath10k_ce_dest_ring_size_set(ar, ctrl_addr, 0);
1088         ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, 0);
1089 }
1090
1091 void ath10k_ce_deinit_pipe(struct ath10k *ar, unsigned int ce_id)
1092 {
1093         ath10k_ce_deinit_src_ring(ar, ce_id);
1094         ath10k_ce_deinit_dest_ring(ar, ce_id);
1095 }
1096
1097 int ath10k_ce_alloc_pipe(struct ath10k *ar, int ce_id,
1098                          const struct ce_attr *attr)
1099 {
1100         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1101         struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
1102         int ret;
1103
1104         if (attr->src_nentries) {
1105                 ce_state->src_ring = ath10k_ce_alloc_src_ring(ar, ce_id, attr);
1106                 if (IS_ERR(ce_state->src_ring)) {
1107                         ret = PTR_ERR(ce_state->src_ring);
1108                         ath10k_err("failed to allocate copy engine source ring %d: %d\n",
1109                                    ce_id, ret);
1110                         ce_state->src_ring = NULL;
1111                         return ret;
1112                 }
1113         }
1114
1115         if (attr->dest_nentries) {
1116                 ce_state->dest_ring = ath10k_ce_alloc_dest_ring(ar, ce_id,
1117                                                                 attr);
1118                 if (IS_ERR(ce_state->dest_ring)) {
1119                         ret = PTR_ERR(ce_state->dest_ring);
1120                         ath10k_err("failed to allocate copy engine destination ring %d: %d\n",
1121                                    ce_id, ret);
1122                         ce_state->dest_ring = NULL;
1123                         return ret;
1124                 }
1125         }
1126
1127         return 0;
1128 }
1129
1130 void ath10k_ce_free_pipe(struct ath10k *ar, int ce_id)
1131 {
1132         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1133         struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
1134
1135         if (ce_state->src_ring) {
1136                 kfree(ce_state->src_ring->shadow_base_unaligned);
1137                 dma_free_coherent(ar->dev,
1138                                   (ce_state->src_ring->nentries *
1139                                    sizeof(struct ce_desc) +
1140                                    CE_DESC_RING_ALIGN),
1141                                   ce_state->src_ring->base_addr_owner_space,
1142                                   ce_state->src_ring->base_addr_ce_space);
1143                 kfree(ce_state->src_ring);
1144         }
1145
1146         if (ce_state->dest_ring) {
1147                 dma_free_coherent(ar->dev,
1148                                   (ce_state->dest_ring->nentries *
1149                                    sizeof(struct ce_desc) +
1150                                    CE_DESC_RING_ALIGN),
1151                                   ce_state->dest_ring->base_addr_owner_space,
1152                                   ce_state->dest_ring->base_addr_ce_space);
1153                 kfree(ce_state->dest_ring);
1154         }
1155
1156         ce_state->src_ring = NULL;
1157         ce_state->dest_ring = NULL;
1158 }