f2fs: fix memory leak after kobject init failed in fill_super
[cascardo/linux.git] / fs / f2fs / super.c
1 /*
2  * fs/f2fs/super.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
27
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/f2fs.h>
36
37 static struct proc_dir_entry *f2fs_proc_root;
38 static struct kmem_cache *f2fs_inode_cachep;
39 static struct kset *f2fs_kset;
40
41 enum {
42         Opt_gc_background,
43         Opt_disable_roll_forward,
44         Opt_discard,
45         Opt_noheap,
46         Opt_user_xattr,
47         Opt_nouser_xattr,
48         Opt_acl,
49         Opt_noacl,
50         Opt_active_logs,
51         Opt_disable_ext_identify,
52         Opt_inline_xattr,
53         Opt_err,
54 };
55
56 static match_table_t f2fs_tokens = {
57         {Opt_gc_background, "background_gc=%s"},
58         {Opt_disable_roll_forward, "disable_roll_forward"},
59         {Opt_discard, "discard"},
60         {Opt_noheap, "no_heap"},
61         {Opt_user_xattr, "user_xattr"},
62         {Opt_nouser_xattr, "nouser_xattr"},
63         {Opt_acl, "acl"},
64         {Opt_noacl, "noacl"},
65         {Opt_active_logs, "active_logs=%u"},
66         {Opt_disable_ext_identify, "disable_ext_identify"},
67         {Opt_inline_xattr, "inline_xattr"},
68         {Opt_err, NULL},
69 };
70
71 /* Sysfs support for f2fs */
72 enum {
73         GC_THREAD,      /* struct f2fs_gc_thread */
74         SM_INFO,        /* struct f2fs_sm_info */
75 };
76
77 struct f2fs_attr {
78         struct attribute attr;
79         ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
80         ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
81                          const char *, size_t);
82         int struct_type;
83         int offset;
84 };
85
86 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
87 {
88         if (struct_type == GC_THREAD)
89                 return (unsigned char *)sbi->gc_thread;
90         else if (struct_type == SM_INFO)
91                 return (unsigned char *)SM_I(sbi);
92         return NULL;
93 }
94
95 static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
96                         struct f2fs_sb_info *sbi, char *buf)
97 {
98         unsigned char *ptr = NULL;
99         unsigned int *ui;
100
101         ptr = __struct_ptr(sbi, a->struct_type);
102         if (!ptr)
103                 return -EINVAL;
104
105         ui = (unsigned int *)(ptr + a->offset);
106
107         return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
108 }
109
110 static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
111                         struct f2fs_sb_info *sbi,
112                         const char *buf, size_t count)
113 {
114         unsigned char *ptr;
115         unsigned long t;
116         unsigned int *ui;
117         ssize_t ret;
118
119         ptr = __struct_ptr(sbi, a->struct_type);
120         if (!ptr)
121                 return -EINVAL;
122
123         ui = (unsigned int *)(ptr + a->offset);
124
125         ret = kstrtoul(skip_spaces(buf), 0, &t);
126         if (ret < 0)
127                 return ret;
128         *ui = t;
129         return count;
130 }
131
132 static ssize_t f2fs_attr_show(struct kobject *kobj,
133                                 struct attribute *attr, char *buf)
134 {
135         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
136                                                                 s_kobj);
137         struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
138
139         return a->show ? a->show(a, sbi, buf) : 0;
140 }
141
142 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
143                                                 const char *buf, size_t len)
144 {
145         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
146                                                                         s_kobj);
147         struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
148
149         return a->store ? a->store(a, sbi, buf, len) : 0;
150 }
151
152 static void f2fs_sb_release(struct kobject *kobj)
153 {
154         struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
155                                                                 s_kobj);
156         complete(&sbi->s_kobj_unregister);
157 }
158
159 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
160 static struct f2fs_attr f2fs_attr_##_name = {                   \
161         .attr = {.name = __stringify(_name), .mode = _mode },   \
162         .show   = _show,                                        \
163         .store  = _store,                                       \
164         .struct_type = _struct_type,                            \
165         .offset = _offset                                       \
166 }
167
168 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname)    \
169         F2FS_ATTR_OFFSET(struct_type, name, 0644,               \
170                 f2fs_sbi_show, f2fs_sbi_store,                  \
171                 offsetof(struct struct_name, elname))
172
173 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
174 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
175 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
176 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
177 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
178
179 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
180 static struct attribute *f2fs_attrs[] = {
181         ATTR_LIST(gc_min_sleep_time),
182         ATTR_LIST(gc_max_sleep_time),
183         ATTR_LIST(gc_no_gc_sleep_time),
184         ATTR_LIST(gc_idle),
185         ATTR_LIST(reclaim_segments),
186         NULL,
187 };
188
189 static const struct sysfs_ops f2fs_attr_ops = {
190         .show   = f2fs_attr_show,
191         .store  = f2fs_attr_store,
192 };
193
194 static struct kobj_type f2fs_ktype = {
195         .default_attrs  = f2fs_attrs,
196         .sysfs_ops      = &f2fs_attr_ops,
197         .release        = f2fs_sb_release,
198 };
199
200 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
201 {
202         struct va_format vaf;
203         va_list args;
204
205         va_start(args, fmt);
206         vaf.fmt = fmt;
207         vaf.va = &args;
208         printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
209         va_end(args);
210 }
211
212 static void init_once(void *foo)
213 {
214         struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
215
216         inode_init_once(&fi->vfs_inode);
217 }
218
219 static int parse_options(struct super_block *sb, char *options)
220 {
221         struct f2fs_sb_info *sbi = F2FS_SB(sb);
222         substring_t args[MAX_OPT_ARGS];
223         char *p, *name;
224         int arg = 0;
225
226         if (!options)
227                 return 0;
228
229         while ((p = strsep(&options, ",")) != NULL) {
230                 int token;
231                 if (!*p)
232                         continue;
233                 /*
234                  * Initialize args struct so we know whether arg was
235                  * found; some options take optional arguments.
236                  */
237                 args[0].to = args[0].from = NULL;
238                 token = match_token(p, f2fs_tokens, args);
239
240                 switch (token) {
241                 case Opt_gc_background:
242                         name = match_strdup(&args[0]);
243
244                         if (!name)
245                                 return -ENOMEM;
246                         if (!strncmp(name, "on", 2))
247                                 set_opt(sbi, BG_GC);
248                         else if (!strncmp(name, "off", 3))
249                                 clear_opt(sbi, BG_GC);
250                         else {
251                                 kfree(name);
252                                 return -EINVAL;
253                         }
254                         kfree(name);
255                         break;
256                 case Opt_disable_roll_forward:
257                         set_opt(sbi, DISABLE_ROLL_FORWARD);
258                         break;
259                 case Opt_discard:
260                         set_opt(sbi, DISCARD);
261                         break;
262                 case Opt_noheap:
263                         set_opt(sbi, NOHEAP);
264                         break;
265 #ifdef CONFIG_F2FS_FS_XATTR
266                 case Opt_user_xattr:
267                         set_opt(sbi, XATTR_USER);
268                         break;
269                 case Opt_nouser_xattr:
270                         clear_opt(sbi, XATTR_USER);
271                         break;
272                 case Opt_inline_xattr:
273                         set_opt(sbi, INLINE_XATTR);
274                         break;
275 #else
276                 case Opt_user_xattr:
277                         f2fs_msg(sb, KERN_INFO,
278                                 "user_xattr options not supported");
279                         break;
280                 case Opt_nouser_xattr:
281                         f2fs_msg(sb, KERN_INFO,
282                                 "nouser_xattr options not supported");
283                         break;
284                 case Opt_inline_xattr:
285                         f2fs_msg(sb, KERN_INFO,
286                                 "inline_xattr options not supported");
287                         break;
288 #endif
289 #ifdef CONFIG_F2FS_FS_POSIX_ACL
290                 case Opt_acl:
291                         set_opt(sbi, POSIX_ACL);
292                         break;
293                 case Opt_noacl:
294                         clear_opt(sbi, POSIX_ACL);
295                         break;
296 #else
297                 case Opt_acl:
298                         f2fs_msg(sb, KERN_INFO, "acl options not supported");
299                         break;
300                 case Opt_noacl:
301                         f2fs_msg(sb, KERN_INFO, "noacl options not supported");
302                         break;
303 #endif
304                 case Opt_active_logs:
305                         if (args->from && match_int(args, &arg))
306                                 return -EINVAL;
307                         if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
308                                 return -EINVAL;
309                         sbi->active_logs = arg;
310                         break;
311                 case Opt_disable_ext_identify:
312                         set_opt(sbi, DISABLE_EXT_IDENTIFY);
313                         break;
314                 default:
315                         f2fs_msg(sb, KERN_ERR,
316                                 "Unrecognized mount option \"%s\" or missing value",
317                                 p);
318                         return -EINVAL;
319                 }
320         }
321         return 0;
322 }
323
324 static struct inode *f2fs_alloc_inode(struct super_block *sb)
325 {
326         struct f2fs_inode_info *fi;
327
328         fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_NOFS | __GFP_ZERO);
329         if (!fi)
330                 return NULL;
331
332         init_once((void *) fi);
333
334         /* Initialize f2fs-specific inode info */
335         fi->vfs_inode.i_version = 1;
336         atomic_set(&fi->dirty_dents, 0);
337         fi->i_current_depth = 1;
338         fi->i_advise = 0;
339         rwlock_init(&fi->ext.ext_lock);
340
341         set_inode_flag(fi, FI_NEW_INODE);
342
343         if (test_opt(F2FS_SB(sb), INLINE_XATTR))
344                 set_inode_flag(fi, FI_INLINE_XATTR);
345
346         return &fi->vfs_inode;
347 }
348
349 static int f2fs_drop_inode(struct inode *inode)
350 {
351         /*
352          * This is to avoid a deadlock condition like below.
353          * writeback_single_inode(inode)
354          *  - f2fs_write_data_page
355          *    - f2fs_gc -> iput -> evict
356          *       - inode_wait_for_writeback(inode)
357          */
358         if (!inode_unhashed(inode) && inode->i_state & I_SYNC)
359                 return 0;
360         return generic_drop_inode(inode);
361 }
362
363 /*
364  * f2fs_dirty_inode() is called from __mark_inode_dirty()
365  *
366  * We should call set_dirty_inode to write the dirty inode through write_inode.
367  */
368 static void f2fs_dirty_inode(struct inode *inode, int flags)
369 {
370         set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
371 }
372
373 static void f2fs_i_callback(struct rcu_head *head)
374 {
375         struct inode *inode = container_of(head, struct inode, i_rcu);
376         kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
377 }
378
379 static void f2fs_destroy_inode(struct inode *inode)
380 {
381         call_rcu(&inode->i_rcu, f2fs_i_callback);
382 }
383
384 static void f2fs_put_super(struct super_block *sb)
385 {
386         struct f2fs_sb_info *sbi = F2FS_SB(sb);
387
388         if (sbi->s_proc) {
389                 remove_proc_entry("segment_info", sbi->s_proc);
390                 remove_proc_entry(sb->s_id, f2fs_proc_root);
391         }
392         kobject_del(&sbi->s_kobj);
393
394         f2fs_destroy_stats(sbi);
395         stop_gc_thread(sbi);
396
397         /* We don't need to do checkpoint when it's clean */
398         if (sbi->s_dirty && get_pages(sbi, F2FS_DIRTY_NODES))
399                 write_checkpoint(sbi, true);
400
401         iput(sbi->node_inode);
402         iput(sbi->meta_inode);
403
404         /* destroy f2fs internal modules */
405         destroy_node_manager(sbi);
406         destroy_segment_manager(sbi);
407
408         kfree(sbi->ckpt);
409         kobject_put(&sbi->s_kobj);
410         wait_for_completion(&sbi->s_kobj_unregister);
411
412         sb->s_fs_info = NULL;
413         brelse(sbi->raw_super_buf);
414         kfree(sbi);
415 }
416
417 int f2fs_sync_fs(struct super_block *sb, int sync)
418 {
419         struct f2fs_sb_info *sbi = F2FS_SB(sb);
420
421         trace_f2fs_sync_fs(sb, sync);
422
423         if (!sbi->s_dirty && !get_pages(sbi, F2FS_DIRTY_NODES))
424                 return 0;
425
426         if (sync) {
427                 mutex_lock(&sbi->gc_mutex);
428                 write_checkpoint(sbi, false);
429                 mutex_unlock(&sbi->gc_mutex);
430         } else {
431                 f2fs_balance_fs(sbi);
432         }
433
434         return 0;
435 }
436
437 static int f2fs_freeze(struct super_block *sb)
438 {
439         int err;
440
441         if (f2fs_readonly(sb))
442                 return 0;
443
444         err = f2fs_sync_fs(sb, 1);
445         return err;
446 }
447
448 static int f2fs_unfreeze(struct super_block *sb)
449 {
450         return 0;
451 }
452
453 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
454 {
455         struct super_block *sb = dentry->d_sb;
456         struct f2fs_sb_info *sbi = F2FS_SB(sb);
457         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
458         block_t total_count, user_block_count, start_count, ovp_count;
459
460         total_count = le64_to_cpu(sbi->raw_super->block_count);
461         user_block_count = sbi->user_block_count;
462         start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
463         ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
464         buf->f_type = F2FS_SUPER_MAGIC;
465         buf->f_bsize = sbi->blocksize;
466
467         buf->f_blocks = total_count - start_count;
468         buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
469         buf->f_bavail = user_block_count - valid_user_blocks(sbi);
470
471         buf->f_files = sbi->total_node_count;
472         buf->f_ffree = sbi->total_node_count - valid_inode_count(sbi);
473
474         buf->f_namelen = F2FS_NAME_LEN;
475         buf->f_fsid.val[0] = (u32)id;
476         buf->f_fsid.val[1] = (u32)(id >> 32);
477
478         return 0;
479 }
480
481 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
482 {
483         struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
484
485         if (!(root->d_sb->s_flags & MS_RDONLY) && test_opt(sbi, BG_GC))
486                 seq_printf(seq, ",background_gc=%s", "on");
487         else
488                 seq_printf(seq, ",background_gc=%s", "off");
489         if (test_opt(sbi, DISABLE_ROLL_FORWARD))
490                 seq_puts(seq, ",disable_roll_forward");
491         if (test_opt(sbi, DISCARD))
492                 seq_puts(seq, ",discard");
493         if (test_opt(sbi, NOHEAP))
494                 seq_puts(seq, ",no_heap_alloc");
495 #ifdef CONFIG_F2FS_FS_XATTR
496         if (test_opt(sbi, XATTR_USER))
497                 seq_puts(seq, ",user_xattr");
498         else
499                 seq_puts(seq, ",nouser_xattr");
500         if (test_opt(sbi, INLINE_XATTR))
501                 seq_puts(seq, ",inline_xattr");
502 #endif
503 #ifdef CONFIG_F2FS_FS_POSIX_ACL
504         if (test_opt(sbi, POSIX_ACL))
505                 seq_puts(seq, ",acl");
506         else
507                 seq_puts(seq, ",noacl");
508 #endif
509         if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
510                 seq_puts(seq, ",disable_ext_identify");
511
512         seq_printf(seq, ",active_logs=%u", sbi->active_logs);
513
514         return 0;
515 }
516
517 static int segment_info_seq_show(struct seq_file *seq, void *offset)
518 {
519         struct super_block *sb = seq->private;
520         struct f2fs_sb_info *sbi = F2FS_SB(sb);
521         unsigned int total_segs = le32_to_cpu(sbi->raw_super->segment_count_main);
522         int i;
523
524         for (i = 0; i < total_segs; i++) {
525                 seq_printf(seq, "%u", get_valid_blocks(sbi, i, 1));
526                 if (i != 0 && (i % 10) == 0)
527                         seq_puts(seq, "\n");
528                 else
529                         seq_puts(seq, " ");
530         }
531         return 0;
532 }
533
534 static int segment_info_open_fs(struct inode *inode, struct file *file)
535 {
536         return single_open(file, segment_info_seq_show, PDE_DATA(inode));
537 }
538
539 static const struct file_operations f2fs_seq_segment_info_fops = {
540         .owner = THIS_MODULE,
541         .open = segment_info_open_fs,
542         .read = seq_read,
543         .llseek = seq_lseek,
544         .release = single_release,
545 };
546
547 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
548 {
549         struct f2fs_sb_info *sbi = F2FS_SB(sb);
550         struct f2fs_mount_info org_mount_opt;
551         int err, active_logs;
552
553         /*
554          * Save the old mount options in case we
555          * need to restore them.
556          */
557         org_mount_opt = sbi->mount_opt;
558         active_logs = sbi->active_logs;
559
560         /* parse mount options */
561         err = parse_options(sb, data);
562         if (err)
563                 goto restore_opts;
564
565         /*
566          * Previous and new state of filesystem is RO,
567          * so no point in checking GC conditions.
568          */
569         if ((sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY))
570                 goto skip;
571
572         /*
573          * We stop the GC thread if FS is mounted as RO
574          * or if background_gc = off is passed in mount
575          * option. Also sync the filesystem.
576          */
577         if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
578                 if (sbi->gc_thread) {
579                         stop_gc_thread(sbi);
580                         f2fs_sync_fs(sb, 1);
581                 }
582         } else if (test_opt(sbi, BG_GC) && !sbi->gc_thread) {
583                 err = start_gc_thread(sbi);
584                 if (err)
585                         goto restore_opts;
586         }
587 skip:
588         /* Update the POSIXACL Flag */
589          sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
590                 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
591         return 0;
592
593 restore_opts:
594         sbi->mount_opt = org_mount_opt;
595         sbi->active_logs = active_logs;
596         return err;
597 }
598
599 static struct super_operations f2fs_sops = {
600         .alloc_inode    = f2fs_alloc_inode,
601         .drop_inode     = f2fs_drop_inode,
602         .destroy_inode  = f2fs_destroy_inode,
603         .write_inode    = f2fs_write_inode,
604         .dirty_inode    = f2fs_dirty_inode,
605         .show_options   = f2fs_show_options,
606         .evict_inode    = f2fs_evict_inode,
607         .put_super      = f2fs_put_super,
608         .sync_fs        = f2fs_sync_fs,
609         .freeze_fs      = f2fs_freeze,
610         .unfreeze_fs    = f2fs_unfreeze,
611         .statfs         = f2fs_statfs,
612         .remount_fs     = f2fs_remount,
613 };
614
615 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
616                 u64 ino, u32 generation)
617 {
618         struct f2fs_sb_info *sbi = F2FS_SB(sb);
619         struct inode *inode;
620
621         if (ino < F2FS_ROOT_INO(sbi))
622                 return ERR_PTR(-ESTALE);
623
624         /*
625          * f2fs_iget isn't quite right if the inode is currently unallocated!
626          * However f2fs_iget currently does appropriate checks to handle stale
627          * inodes so everything is OK.
628          */
629         inode = f2fs_iget(sb, ino);
630         if (IS_ERR(inode))
631                 return ERR_CAST(inode);
632         if (generation && inode->i_generation != generation) {
633                 /* we didn't find the right inode.. */
634                 iput(inode);
635                 return ERR_PTR(-ESTALE);
636         }
637         return inode;
638 }
639
640 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
641                 int fh_len, int fh_type)
642 {
643         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
644                                     f2fs_nfs_get_inode);
645 }
646
647 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
648                 int fh_len, int fh_type)
649 {
650         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
651                                     f2fs_nfs_get_inode);
652 }
653
654 static const struct export_operations f2fs_export_ops = {
655         .fh_to_dentry = f2fs_fh_to_dentry,
656         .fh_to_parent = f2fs_fh_to_parent,
657         .get_parent = f2fs_get_parent,
658 };
659
660 static loff_t max_file_size(unsigned bits)
661 {
662         loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
663         loff_t leaf_count = ADDRS_PER_BLOCK;
664
665         /* two direct node blocks */
666         result += (leaf_count * 2);
667
668         /* two indirect node blocks */
669         leaf_count *= NIDS_PER_BLOCK;
670         result += (leaf_count * 2);
671
672         /* one double indirect node block */
673         leaf_count *= NIDS_PER_BLOCK;
674         result += leaf_count;
675
676         result <<= bits;
677         return result;
678 }
679
680 static int sanity_check_raw_super(struct super_block *sb,
681                         struct f2fs_super_block *raw_super)
682 {
683         unsigned int blocksize;
684
685         if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
686                 f2fs_msg(sb, KERN_INFO,
687                         "Magic Mismatch, valid(0x%x) - read(0x%x)",
688                         F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
689                 return 1;
690         }
691
692         /* Currently, support only 4KB page cache size */
693         if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) {
694                 f2fs_msg(sb, KERN_INFO,
695                         "Invalid page_cache_size (%lu), supports only 4KB\n",
696                         PAGE_CACHE_SIZE);
697                 return 1;
698         }
699
700         /* Currently, support only 4KB block size */
701         blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
702         if (blocksize != F2FS_BLKSIZE) {
703                 f2fs_msg(sb, KERN_INFO,
704                         "Invalid blocksize (%u), supports only 4KB\n",
705                         blocksize);
706                 return 1;
707         }
708
709         if (le32_to_cpu(raw_super->log_sectorsize) !=
710                                         F2FS_LOG_SECTOR_SIZE) {
711                 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize");
712                 return 1;
713         }
714         if (le32_to_cpu(raw_super->log_sectors_per_block) !=
715                                         F2FS_LOG_SECTORS_PER_BLOCK) {
716                 f2fs_msg(sb, KERN_INFO, "Invalid log sectors per block");
717                 return 1;
718         }
719         return 0;
720 }
721
722 static int sanity_check_ckpt(struct f2fs_sb_info *sbi)
723 {
724         unsigned int total, fsmeta;
725         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
726         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
727
728         total = le32_to_cpu(raw_super->segment_count);
729         fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
730         fsmeta += le32_to_cpu(raw_super->segment_count_sit);
731         fsmeta += le32_to_cpu(raw_super->segment_count_nat);
732         fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
733         fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
734
735         if (fsmeta >= total)
736                 return 1;
737
738         if (is_set_ckpt_flags(ckpt, CP_ERROR_FLAG)) {
739                 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
740                 return 1;
741         }
742         return 0;
743 }
744
745 static void init_sb_info(struct f2fs_sb_info *sbi)
746 {
747         struct f2fs_super_block *raw_super = sbi->raw_super;
748         int i;
749
750         sbi->log_sectors_per_block =
751                 le32_to_cpu(raw_super->log_sectors_per_block);
752         sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
753         sbi->blocksize = 1 << sbi->log_blocksize;
754         sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
755         sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
756         sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
757         sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
758         sbi->total_sections = le32_to_cpu(raw_super->section_count);
759         sbi->total_node_count =
760                 (le32_to_cpu(raw_super->segment_count_nat) / 2)
761                         * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
762         sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
763         sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
764         sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
765         sbi->cur_victim_sec = NULL_SECNO;
766
767         for (i = 0; i < NR_COUNT_TYPE; i++)
768                 atomic_set(&sbi->nr_pages[i], 0);
769 }
770
771 /*
772  * Read f2fs raw super block.
773  * Because we have two copies of super block, so read the first one at first,
774  * if the first one is invalid, move to read the second one.
775  */
776 static int read_raw_super_block(struct super_block *sb,
777                         struct f2fs_super_block **raw_super,
778                         struct buffer_head **raw_super_buf)
779 {
780         int block = 0;
781
782 retry:
783         *raw_super_buf = sb_bread(sb, block);
784         if (!*raw_super_buf) {
785                 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
786                                 block + 1);
787                 if (block == 0) {
788                         block++;
789                         goto retry;
790                 } else {
791                         return -EIO;
792                 }
793         }
794
795         *raw_super = (struct f2fs_super_block *)
796                 ((char *)(*raw_super_buf)->b_data + F2FS_SUPER_OFFSET);
797
798         /* sanity checking of raw super */
799         if (sanity_check_raw_super(sb, *raw_super)) {
800                 brelse(*raw_super_buf);
801                 f2fs_msg(sb, KERN_ERR, "Can't find a valid F2FS filesystem "
802                                 "in %dth superblock", block + 1);
803                 if(block == 0) {
804                         block++;
805                         goto retry;
806                 } else {
807                         return -EINVAL;
808                 }
809         }
810
811         return 0;
812 }
813
814 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
815 {
816         struct f2fs_sb_info *sbi;
817         struct f2fs_super_block *raw_super;
818         struct buffer_head *raw_super_buf;
819         struct inode *root;
820         long err = -EINVAL;
821
822         /* allocate memory for f2fs-specific super block info */
823         sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
824         if (!sbi)
825                 return -ENOMEM;
826
827         /* set a block size */
828         if (!sb_set_blocksize(sb, F2FS_BLKSIZE)) {
829                 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
830                 goto free_sbi;
831         }
832
833         err = read_raw_super_block(sb, &raw_super, &raw_super_buf);
834         if (err)
835                 goto free_sbi;
836
837         sb->s_fs_info = sbi;
838         /* init some FS parameters */
839         sbi->active_logs = NR_CURSEG_TYPE;
840
841         set_opt(sbi, BG_GC);
842
843 #ifdef CONFIG_F2FS_FS_XATTR
844         set_opt(sbi, XATTR_USER);
845 #endif
846 #ifdef CONFIG_F2FS_FS_POSIX_ACL
847         set_opt(sbi, POSIX_ACL);
848 #endif
849         /* parse mount options */
850         err = parse_options(sb, (char *)data);
851         if (err)
852                 goto free_sb_buf;
853
854         sb->s_maxbytes = max_file_size(le32_to_cpu(raw_super->log_blocksize));
855         sb->s_max_links = F2FS_LINK_MAX;
856         get_random_bytes(&sbi->s_next_generation, sizeof(u32));
857
858         sb->s_op = &f2fs_sops;
859         sb->s_xattr = f2fs_xattr_handlers;
860         sb->s_export_op = &f2fs_export_ops;
861         sb->s_magic = F2FS_SUPER_MAGIC;
862         sb->s_time_gran = 1;
863         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
864                 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
865         memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
866
867         /* init f2fs-specific super block info */
868         sbi->sb = sb;
869         sbi->raw_super = raw_super;
870         sbi->raw_super_buf = raw_super_buf;
871         mutex_init(&sbi->gc_mutex);
872         mutex_init(&sbi->writepages);
873         mutex_init(&sbi->cp_mutex);
874         mutex_init(&sbi->node_write);
875         sbi->por_doing = false;
876         spin_lock_init(&sbi->stat_lock);
877         init_rwsem(&sbi->bio_sem);
878         init_rwsem(&sbi->cp_rwsem);
879         init_waitqueue_head(&sbi->cp_wait);
880         init_sb_info(sbi);
881
882         /* get an inode for meta space */
883         sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
884         if (IS_ERR(sbi->meta_inode)) {
885                 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
886                 err = PTR_ERR(sbi->meta_inode);
887                 goto free_sb_buf;
888         }
889
890         err = get_valid_checkpoint(sbi);
891         if (err) {
892                 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
893                 goto free_meta_inode;
894         }
895
896         /* sanity checking of checkpoint */
897         err = -EINVAL;
898         if (sanity_check_ckpt(sbi)) {
899                 f2fs_msg(sb, KERN_ERR, "Invalid F2FS checkpoint");
900                 goto free_cp;
901         }
902
903         sbi->total_valid_node_count =
904                                 le32_to_cpu(sbi->ckpt->valid_node_count);
905         sbi->total_valid_inode_count =
906                                 le32_to_cpu(sbi->ckpt->valid_inode_count);
907         sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
908         sbi->total_valid_block_count =
909                                 le64_to_cpu(sbi->ckpt->valid_block_count);
910         sbi->last_valid_block_count = sbi->total_valid_block_count;
911         sbi->alloc_valid_block_count = 0;
912         INIT_LIST_HEAD(&sbi->dir_inode_list);
913         spin_lock_init(&sbi->dir_inode_lock);
914
915         init_orphan_info(sbi);
916
917         /* setup f2fs internal modules */
918         err = build_segment_manager(sbi);
919         if (err) {
920                 f2fs_msg(sb, KERN_ERR,
921                         "Failed to initialize F2FS segment manager");
922                 goto free_sm;
923         }
924         err = build_node_manager(sbi);
925         if (err) {
926                 f2fs_msg(sb, KERN_ERR,
927                         "Failed to initialize F2FS node manager");
928                 goto free_nm;
929         }
930
931         build_gc_manager(sbi);
932
933         /* get an inode for node space */
934         sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
935         if (IS_ERR(sbi->node_inode)) {
936                 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
937                 err = PTR_ERR(sbi->node_inode);
938                 goto free_nm;
939         }
940
941         /* if there are nt orphan nodes free them */
942         err = -EINVAL;
943         if (recover_orphan_inodes(sbi))
944                 goto free_node_inode;
945
946         /* read root inode and dentry */
947         root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
948         if (IS_ERR(root)) {
949                 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
950                 err = PTR_ERR(root);
951                 goto free_node_inode;
952         }
953         if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size)
954                 goto free_root_inode;
955
956         sb->s_root = d_make_root(root); /* allocate root dentry */
957         if (!sb->s_root) {
958                 err = -ENOMEM;
959                 goto free_root_inode;
960         }
961
962         /* recover fsynced data */
963         if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
964                 err = recover_fsync_data(sbi);
965                 if (err)
966                         f2fs_msg(sb, KERN_ERR,
967                                 "Cannot recover all fsync data errno=%ld", err);
968         }
969
970         /*
971          * If filesystem is not mounted as read-only then
972          * do start the gc_thread.
973          */
974         if (!(sb->s_flags & MS_RDONLY)) {
975                 /* After POR, we can run background GC thread.*/
976                 err = start_gc_thread(sbi);
977                 if (err)
978                         goto free_gc;
979         }
980
981         err = f2fs_build_stats(sbi);
982         if (err)
983                 goto free_gc;
984
985         if (f2fs_proc_root)
986                 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
987
988         if (sbi->s_proc)
989                 proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
990                                  &f2fs_seq_segment_info_fops, sb);
991
992         if (test_opt(sbi, DISCARD)) {
993                 struct request_queue *q = bdev_get_queue(sb->s_bdev);
994                 if (!blk_queue_discard(q))
995                         f2fs_msg(sb, KERN_WARNING,
996                                         "mounting with \"discard\" option, but "
997                                         "the device does not support discard");
998         }
999
1000         sbi->s_kobj.kset = f2fs_kset;
1001         init_completion(&sbi->s_kobj_unregister);
1002         err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1003                                                         "%s", sb->s_id);
1004         if (err)
1005                 goto fail;
1006
1007         return 0;
1008 fail:
1009         if (sbi->s_proc) {
1010                 remove_proc_entry("segment_info", sbi->s_proc);
1011                 remove_proc_entry(sb->s_id, f2fs_proc_root);
1012         }
1013         f2fs_destroy_stats(sbi);
1014 free_gc:
1015         stop_gc_thread(sbi);
1016 free_root_inode:
1017         dput(sb->s_root);
1018         sb->s_root = NULL;
1019 free_node_inode:
1020         iput(sbi->node_inode);
1021 free_nm:
1022         destroy_node_manager(sbi);
1023 free_sm:
1024         destroy_segment_manager(sbi);
1025 free_cp:
1026         kfree(sbi->ckpt);
1027 free_meta_inode:
1028         make_bad_inode(sbi->meta_inode);
1029         iput(sbi->meta_inode);
1030 free_sb_buf:
1031         brelse(raw_super_buf);
1032 free_sbi:
1033         kfree(sbi);
1034         return err;
1035 }
1036
1037 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1038                         const char *dev_name, void *data)
1039 {
1040         return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1041 }
1042
1043 static struct file_system_type f2fs_fs_type = {
1044         .owner          = THIS_MODULE,
1045         .name           = "f2fs",
1046         .mount          = f2fs_mount,
1047         .kill_sb        = kill_block_super,
1048         .fs_flags       = FS_REQUIRES_DEV,
1049 };
1050 MODULE_ALIAS_FS("f2fs");
1051
1052 static int __init init_inodecache(void)
1053 {
1054         f2fs_inode_cachep = f2fs_kmem_cache_create("f2fs_inode_cache",
1055                         sizeof(struct f2fs_inode_info), NULL);
1056         if (f2fs_inode_cachep == NULL)
1057                 return -ENOMEM;
1058         return 0;
1059 }
1060
1061 static void destroy_inodecache(void)
1062 {
1063         /*
1064          * Make sure all delayed rcu free inodes are flushed before we
1065          * destroy cache.
1066          */
1067         rcu_barrier();
1068         kmem_cache_destroy(f2fs_inode_cachep);
1069 }
1070
1071 static int __init init_f2fs_fs(void)
1072 {
1073         int err;
1074
1075         err = init_inodecache();
1076         if (err)
1077                 goto fail;
1078         err = create_node_manager_caches();
1079         if (err)
1080                 goto free_inodecache;
1081         err = create_gc_caches();
1082         if (err)
1083                 goto free_node_manager_caches;
1084         err = create_checkpoint_caches();
1085         if (err)
1086                 goto free_gc_caches;
1087         f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1088         if (!f2fs_kset) {
1089                 err = -ENOMEM;
1090                 goto free_checkpoint_caches;
1091         }
1092         err = register_filesystem(&f2fs_fs_type);
1093         if (err)
1094                 goto free_kset;
1095         f2fs_create_root_stats();
1096         f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
1097         return 0;
1098
1099 free_kset:
1100         kset_unregister(f2fs_kset);
1101 free_checkpoint_caches:
1102         destroy_checkpoint_caches();
1103 free_gc_caches:
1104         destroy_gc_caches();
1105 free_node_manager_caches:
1106         destroy_node_manager_caches();
1107 free_inodecache:
1108         destroy_inodecache();
1109 fail:
1110         return err;
1111 }
1112
1113 static void __exit exit_f2fs_fs(void)
1114 {
1115         remove_proc_entry("fs/f2fs", NULL);
1116         f2fs_destroy_root_stats();
1117         unregister_filesystem(&f2fs_fs_type);
1118         destroy_checkpoint_caches();
1119         destroy_gc_caches();
1120         destroy_node_manager_caches();
1121         destroy_inodecache();
1122         kset_unregister(f2fs_kset);
1123 }
1124
1125 module_init(init_f2fs_fs)
1126 module_exit(exit_f2fs_fs)
1127
1128 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
1129 MODULE_DESCRIPTION("Flash Friendly File System");
1130 MODULE_LICENSE("GPL");