datapath: Add support for 4.1 kernel.
[cascardo/ovs.git] / datapath / flow.c
1 /*
2  * Copyright (c) 2007-2014 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18
19 #include <linux/uaccess.h>
20 #include <linux/netdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/if_ether.h>
23 #include <linux/if_vlan.h>
24 #include <net/llc_pdu.h>
25 #include <linux/kernel.h>
26 #include <linux/jhash.h>
27 #include <linux/jiffies.h>
28 #include <linux/llc.h>
29 #include <linux/module.h>
30 #include <linux/in.h>
31 #include <linux/rcupdate.h>
32 #include <linux/if_arp.h>
33 #include <linux/ip.h>
34 #include <linux/ipv6.h>
35 #include <linux/mpls.h>
36 #include <linux/sctp.h>
37 #include <linux/smp.h>
38 #include <linux/tcp.h>
39 #include <linux/udp.h>
40 #include <linux/icmp.h>
41 #include <linux/icmpv6.h>
42 #include <linux/rculist.h>
43 #include <net/ip.h>
44 #include <net/ipv6.h>
45 #include <net/mpls.h>
46 #include <net/ndisc.h>
47
48 #include "datapath.h"
49 #include "flow.h"
50 #include "flow_netlink.h"
51
52 #include "vlan.h"
53
54 u64 ovs_flow_used_time(unsigned long flow_jiffies)
55 {
56         struct timespec cur_ts;
57         u64 cur_ms, idle_ms;
58
59         ktime_get_ts(&cur_ts);
60         idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
61         cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
62                  cur_ts.tv_nsec / NSEC_PER_MSEC;
63
64         return cur_ms - idle_ms;
65 }
66
67 #define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF))
68
69 void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags,
70                            const struct sk_buff *skb)
71 {
72         struct flow_stats *stats;
73         int node = numa_node_id();
74         int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0);
75
76         stats = rcu_dereference(flow->stats[node]);
77
78         /* Check if already have node-specific stats. */
79         if (likely(stats)) {
80                 spin_lock(&stats->lock);
81                 /* Mark if we write on the pre-allocated stats. */
82                 if (node == 0 && unlikely(flow->stats_last_writer != node))
83                         flow->stats_last_writer = node;
84         } else {
85                 stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */
86                 spin_lock(&stats->lock);
87
88                 /* If the current NUMA-node is the only writer on the
89                  * pre-allocated stats keep using them.
90                  */
91                 if (unlikely(flow->stats_last_writer != node)) {
92                         /* A previous locker may have already allocated the
93                          * stats, so we need to check again.  If node-specific
94                          * stats were already allocated, we update the pre-
95                          * allocated stats as we have already locked them.
96                          */
97                         if (likely(flow->stats_last_writer != NUMA_NO_NODE)
98                             && likely(!rcu_access_pointer(flow->stats[node]))) {
99                                 /* Try to allocate node-specific stats. */
100                                 struct flow_stats *new_stats;
101
102                                 new_stats =
103                                         kmem_cache_alloc_node(flow_stats_cache,
104                                                               GFP_NOWAIT |
105                                                               __GFP_THISNODE |
106                                                               __GFP_NOWARN |
107                                                               __GFP_NOMEMALLOC,
108                                                               node);
109                                 if (likely(new_stats)) {
110                                         new_stats->used = jiffies;
111                                         new_stats->packet_count = 1;
112                                         new_stats->byte_count = len;
113                                         new_stats->tcp_flags = tcp_flags;
114                                         spin_lock_init(&new_stats->lock);
115
116                                         rcu_assign_pointer(flow->stats[node],
117                                                            new_stats);
118                                         goto unlock;
119                                 }
120                         }
121                         flow->stats_last_writer = node;
122                 }
123         }
124
125         stats->used = jiffies;
126         stats->packet_count++;
127         stats->byte_count += len;
128         stats->tcp_flags |= tcp_flags;
129 unlock:
130         spin_unlock(&stats->lock);
131 }
132
133 /* Must be called with rcu_read_lock or ovs_mutex. */
134 void ovs_flow_stats_get(const struct sw_flow *flow,
135                         struct ovs_flow_stats *ovs_stats,
136                         unsigned long *used, __be16 *tcp_flags)
137 {
138         int node;
139
140         *used = 0;
141         *tcp_flags = 0;
142         memset(ovs_stats, 0, sizeof(*ovs_stats));
143
144         for_each_node(node) {
145                 struct flow_stats *stats = rcu_dereference_ovsl(flow->stats[node]);
146
147                 if (stats) {
148                         /* Local CPU may write on non-local stats, so we must
149                          * block bottom-halves here.
150                          */
151                         spin_lock_bh(&stats->lock);
152                         if (!*used || time_after(stats->used, *used))
153                                 *used = stats->used;
154                         *tcp_flags |= stats->tcp_flags;
155                         ovs_stats->n_packets += stats->packet_count;
156                         ovs_stats->n_bytes += stats->byte_count;
157                         spin_unlock_bh(&stats->lock);
158                 }
159         }
160 }
161
162 /* Called with ovs_mutex. */
163 void ovs_flow_stats_clear(struct sw_flow *flow)
164 {
165         int node;
166
167         for_each_node(node) {
168                 struct flow_stats *stats = ovsl_dereference(flow->stats[node]);
169
170                 if (stats) {
171                         spin_lock_bh(&stats->lock);
172                         stats->used = 0;
173                         stats->packet_count = 0;
174                         stats->byte_count = 0;
175                         stats->tcp_flags = 0;
176                         spin_unlock_bh(&stats->lock);
177                 }
178         }
179 }
180
181 static int check_header(struct sk_buff *skb, int len)
182 {
183         if (unlikely(skb->len < len))
184                 return -EINVAL;
185         if (unlikely(!pskb_may_pull(skb, len)))
186                 return -ENOMEM;
187         return 0;
188 }
189
190 static bool arphdr_ok(struct sk_buff *skb)
191 {
192         return pskb_may_pull(skb, skb_network_offset(skb) +
193                                   sizeof(struct arp_eth_header));
194 }
195
196 static int check_iphdr(struct sk_buff *skb)
197 {
198         unsigned int nh_ofs = skb_network_offset(skb);
199         unsigned int ip_len;
200         int err;
201
202         err = check_header(skb, nh_ofs + sizeof(struct iphdr));
203         if (unlikely(err))
204                 return err;
205
206         ip_len = ip_hdrlen(skb);
207         if (unlikely(ip_len < sizeof(struct iphdr) ||
208                      skb->len < nh_ofs + ip_len))
209                 return -EINVAL;
210
211         skb_set_transport_header(skb, nh_ofs + ip_len);
212         return 0;
213 }
214
215 static bool tcphdr_ok(struct sk_buff *skb)
216 {
217         int th_ofs = skb_transport_offset(skb);
218         int tcp_len;
219
220         if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
221                 return false;
222
223         tcp_len = tcp_hdrlen(skb);
224         if (unlikely(tcp_len < sizeof(struct tcphdr) ||
225                      skb->len < th_ofs + tcp_len))
226                 return false;
227
228         return true;
229 }
230
231 static bool udphdr_ok(struct sk_buff *skb)
232 {
233         return pskb_may_pull(skb, skb_transport_offset(skb) +
234                                   sizeof(struct udphdr));
235 }
236
237 static bool sctphdr_ok(struct sk_buff *skb)
238 {
239         return pskb_may_pull(skb, skb_transport_offset(skb) +
240                                   sizeof(struct sctphdr));
241 }
242
243 static bool icmphdr_ok(struct sk_buff *skb)
244 {
245         return pskb_may_pull(skb, skb_transport_offset(skb) +
246                                   sizeof(struct icmphdr));
247 }
248
249 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
250 {
251         unsigned int nh_ofs = skb_network_offset(skb);
252         unsigned int nh_len;
253         int payload_ofs;
254         struct ipv6hdr *nh;
255         uint8_t nexthdr;
256         __be16 frag_off;
257         int err;
258
259         err = check_header(skb, nh_ofs + sizeof(*nh));
260         if (unlikely(err))
261                 return err;
262
263         nh = ipv6_hdr(skb);
264         nexthdr = nh->nexthdr;
265         payload_ofs = (u8 *)(nh + 1) - skb->data;
266
267         key->ip.proto = NEXTHDR_NONE;
268         key->ip.tos = ipv6_get_dsfield(nh);
269         key->ip.ttl = nh->hop_limit;
270         key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
271         key->ipv6.addr.src = nh->saddr;
272         key->ipv6.addr.dst = nh->daddr;
273
274         payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
275         if (unlikely(payload_ofs < 0))
276                 return -EINVAL;
277
278         if (frag_off) {
279                 if (frag_off & htons(~0x7))
280                         key->ip.frag = OVS_FRAG_TYPE_LATER;
281                 else
282                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
283         } else {
284                 key->ip.frag = OVS_FRAG_TYPE_NONE;
285         }
286
287         nh_len = payload_ofs - nh_ofs;
288         skb_set_transport_header(skb, nh_ofs + nh_len);
289         key->ip.proto = nexthdr;
290         return nh_len;
291 }
292
293 static bool icmp6hdr_ok(struct sk_buff *skb)
294 {
295         return pskb_may_pull(skb, skb_transport_offset(skb) +
296                                   sizeof(struct icmp6hdr));
297 }
298
299 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
300 {
301         struct qtag_prefix {
302                 __be16 eth_type; /* ETH_P_8021Q */
303                 __be16 tci;
304         };
305         struct qtag_prefix *qp;
306
307         if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16)))
308                 return 0;
309
310         if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) +
311                                          sizeof(__be16))))
312                 return -ENOMEM;
313
314         qp = (struct qtag_prefix *) skb->data;
315         key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT);
316         __skb_pull(skb, sizeof(struct qtag_prefix));
317
318         return 0;
319 }
320
321 static __be16 parse_ethertype(struct sk_buff *skb)
322 {
323         struct llc_snap_hdr {
324                 u8  dsap;  /* Always 0xAA */
325                 u8  ssap;  /* Always 0xAA */
326                 u8  ctrl;
327                 u8  oui[3];
328                 __be16 ethertype;
329         };
330         struct llc_snap_hdr *llc;
331         __be16 proto;
332
333         proto = *(__be16 *) skb->data;
334         __skb_pull(skb, sizeof(__be16));
335
336         if (eth_proto_is_802_3(proto))
337                 return proto;
338
339         if (skb->len < sizeof(struct llc_snap_hdr))
340                 return htons(ETH_P_802_2);
341
342         if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
343                 return htons(0);
344
345         llc = (struct llc_snap_hdr *) skb->data;
346         if (llc->dsap != LLC_SAP_SNAP ||
347             llc->ssap != LLC_SAP_SNAP ||
348             (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
349                 return htons(ETH_P_802_2);
350
351         __skb_pull(skb, sizeof(struct llc_snap_hdr));
352
353         if (eth_proto_is_802_3(llc->ethertype))
354                 return llc->ethertype;
355
356         return htons(ETH_P_802_2);
357 }
358
359 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
360                         int nh_len)
361 {
362         struct icmp6hdr *icmp = icmp6_hdr(skb);
363
364         /* The ICMPv6 type and code fields use the 16-bit transport port
365          * fields, so we need to store them in 16-bit network byte order.
366          */
367         key->tp.src = htons(icmp->icmp6_type);
368         key->tp.dst = htons(icmp->icmp6_code);
369         memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd));
370
371         if (icmp->icmp6_code == 0 &&
372             (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
373              icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
374                 int icmp_len = skb->len - skb_transport_offset(skb);
375                 struct nd_msg *nd;
376                 int offset;
377
378                 /* In order to process neighbor discovery options, we need the
379                  * entire packet.
380                  */
381                 if (unlikely(icmp_len < sizeof(*nd)))
382                         return 0;
383
384                 if (unlikely(skb_linearize(skb)))
385                         return -ENOMEM;
386
387                 nd = (struct nd_msg *)skb_transport_header(skb);
388                 key->ipv6.nd.target = nd->target;
389
390                 icmp_len -= sizeof(*nd);
391                 offset = 0;
392                 while (icmp_len >= 8) {
393                         struct nd_opt_hdr *nd_opt =
394                                  (struct nd_opt_hdr *)(nd->opt + offset);
395                         int opt_len = nd_opt->nd_opt_len * 8;
396
397                         if (unlikely(!opt_len || opt_len > icmp_len))
398                                 return 0;
399
400                         /* Store the link layer address if the appropriate
401                          * option is provided.  It is considered an error if
402                          * the same link layer option is specified twice.
403                          */
404                         if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
405                             && opt_len == 8) {
406                                 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
407                                         goto invalid;
408                                 ether_addr_copy(key->ipv6.nd.sll,
409                                                 &nd->opt[offset+sizeof(*nd_opt)]);
410                         } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
411                                    && opt_len == 8) {
412                                 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
413                                         goto invalid;
414                                 ether_addr_copy(key->ipv6.nd.tll,
415                                                 &nd->opt[offset+sizeof(*nd_opt)]);
416                         }
417
418                         icmp_len -= opt_len;
419                         offset += opt_len;
420                 }
421         }
422
423         return 0;
424
425 invalid:
426         memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
427         memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
428         memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
429
430         return 0;
431 }
432
433 /**
434  * key_extract - extracts a flow key from an Ethernet frame.
435  * @skb: sk_buff that contains the frame, with skb->data pointing to the
436  * Ethernet header
437  * @key: output flow key
438  *
439  * The caller must ensure that skb->len >= ETH_HLEN.
440  *
441  * Returns 0 if successful, otherwise a negative errno value.
442  *
443  * Initializes @skb header pointers as follows:
444  *
445  *    - skb->mac_header: the Ethernet header.
446  *
447  *    - skb->network_header: just past the Ethernet header, or just past the
448  *      VLAN header, to the first byte of the Ethernet payload.
449  *
450  *    - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
451  *      on output, then just past the IP header, if one is present and
452  *      of a correct length, otherwise the same as skb->network_header.
453  *      For other key->eth.type values it is left untouched.
454  */
455 static int key_extract(struct sk_buff *skb, struct sw_flow_key *key)
456 {
457         int error;
458         struct ethhdr *eth;
459
460         /* Flags are always used as part of stats */
461         key->tp.flags = 0;
462
463         skb_reset_mac_header(skb);
464
465         /* Link layer.  We are guaranteed to have at least the 14 byte Ethernet
466          * header in the linear data area.
467          */
468         eth = eth_hdr(skb);
469         ether_addr_copy(key->eth.src, eth->h_source);
470         ether_addr_copy(key->eth.dst, eth->h_dest);
471
472         __skb_pull(skb, 2 * ETH_ALEN);
473         /* We are going to push all headers that we pull, so no need to
474          * update skb->csum here.
475          */
476
477         key->eth.tci = 0;
478         if (skb_vlan_tag_present(skb))
479                 key->eth.tci = htons(vlan_get_tci(skb));
480         else if (eth->h_proto == htons(ETH_P_8021Q))
481                 if (unlikely(parse_vlan(skb, key)))
482                         return -ENOMEM;
483
484         key->eth.type = parse_ethertype(skb);
485         if (unlikely(key->eth.type == htons(0)))
486                 return -ENOMEM;
487
488         skb_reset_network_header(skb);
489         skb_reset_mac_len(skb);
490         __skb_push(skb, skb->data - skb_mac_header(skb));
491
492         /* Network layer. */
493         if (key->eth.type == htons(ETH_P_IP)) {
494                 struct iphdr *nh;
495                 __be16 offset;
496
497                 error = check_iphdr(skb);
498                 if (unlikely(error)) {
499                         memset(&key->ip, 0, sizeof(key->ip));
500                         memset(&key->ipv4, 0, sizeof(key->ipv4));
501                         if (error == -EINVAL) {
502                                 skb->transport_header = skb->network_header;
503                                 error = 0;
504                         }
505                         return error;
506                 }
507
508                 nh = ip_hdr(skb);
509                 key->ipv4.addr.src = nh->saddr;
510                 key->ipv4.addr.dst = nh->daddr;
511
512                 key->ip.proto = nh->protocol;
513                 key->ip.tos = nh->tos;
514                 key->ip.ttl = nh->ttl;
515
516                 offset = nh->frag_off & htons(IP_OFFSET);
517                 if (offset) {
518                         key->ip.frag = OVS_FRAG_TYPE_LATER;
519                         return 0;
520                 }
521                 if (nh->frag_off & htons(IP_MF) ||
522                         skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
523                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
524                 else
525                         key->ip.frag = OVS_FRAG_TYPE_NONE;
526
527                 /* Transport layer. */
528                 if (key->ip.proto == IPPROTO_TCP) {
529                         if (tcphdr_ok(skb)) {
530                                 struct tcphdr *tcp = tcp_hdr(skb);
531                                 key->tp.src = tcp->source;
532                                 key->tp.dst = tcp->dest;
533                                 key->tp.flags = TCP_FLAGS_BE16(tcp);
534                         } else {
535                                 memset(&key->tp, 0, sizeof(key->tp));
536                         }
537
538                 } else if (key->ip.proto == IPPROTO_UDP) {
539                         if (udphdr_ok(skb)) {
540                                 struct udphdr *udp = udp_hdr(skb);
541                                 key->tp.src = udp->source;
542                                 key->tp.dst = udp->dest;
543                         } else {
544                                 memset(&key->tp, 0, sizeof(key->tp));
545                         }
546                 } else if (key->ip.proto == IPPROTO_SCTP) {
547                         if (sctphdr_ok(skb)) {
548                                 struct sctphdr *sctp = sctp_hdr(skb);
549                                 key->tp.src = sctp->source;
550                                 key->tp.dst = sctp->dest;
551                         } else {
552                                 memset(&key->tp, 0, sizeof(key->tp));
553                         }
554                 } else if (key->ip.proto == IPPROTO_ICMP) {
555                         if (icmphdr_ok(skb)) {
556                                 struct icmphdr *icmp = icmp_hdr(skb);
557                                 /* The ICMP type and code fields use the 16-bit
558                                  * transport port fields, so we need to store
559                                  * them in 16-bit network byte order.
560                                  */
561                                 key->tp.src = htons(icmp->type);
562                                 key->tp.dst = htons(icmp->code);
563                         } else {
564                                 memset(&key->tp, 0, sizeof(key->tp));
565                         }
566                 }
567
568         } else if (key->eth.type == htons(ETH_P_ARP) ||
569                    key->eth.type == htons(ETH_P_RARP)) {
570                 struct arp_eth_header *arp;
571                 bool arp_available = arphdr_ok(skb);
572
573                 arp = (struct arp_eth_header *)skb_network_header(skb);
574
575                 if (arp_available &&
576                     arp->ar_hrd == htons(ARPHRD_ETHER) &&
577                     arp->ar_pro == htons(ETH_P_IP) &&
578                     arp->ar_hln == ETH_ALEN &&
579                     arp->ar_pln == 4) {
580
581                         /* We only match on the lower 8 bits of the opcode. */
582                         if (ntohs(arp->ar_op) <= 0xff)
583                                 key->ip.proto = ntohs(arp->ar_op);
584                         else
585                                 key->ip.proto = 0;
586
587                         memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
588                         memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
589                         ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha);
590                         ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha);
591                 } else {
592                         memset(&key->ip, 0, sizeof(key->ip));
593                         memset(&key->ipv4, 0, sizeof(key->ipv4));
594                 }
595         } else if (eth_p_mpls(key->eth.type)) {
596                 size_t stack_len = MPLS_HLEN;
597
598                 /* In the presence of an MPLS label stack the end of the L2
599                  * header and the beginning of the L3 header differ.
600                  *
601                  * Advance network_header to the beginning of the L3
602                  * header. mac_len corresponds to the end of the L2 header.
603                  */
604                 while (1) {
605                         __be32 lse;
606
607                         error = check_header(skb, skb->mac_len + stack_len);
608                         if (unlikely(error))
609                                 return 0;
610
611                         memcpy(&lse, skb_network_header(skb), MPLS_HLEN);
612
613                         if (stack_len == MPLS_HLEN)
614                                 memcpy(&key->mpls.top_lse, &lse, MPLS_HLEN);
615
616                         skb_set_network_header(skb, skb->mac_len + stack_len);
617                         if (lse & htonl(MPLS_LS_S_MASK))
618                                 break;
619
620                         stack_len += MPLS_HLEN;
621                 }
622         } else if (key->eth.type == htons(ETH_P_IPV6)) {
623                 int nh_len;             /* IPv6 Header + Extensions */
624
625                 nh_len = parse_ipv6hdr(skb, key);
626                 if (unlikely(nh_len < 0)) {
627                         memset(&key->ip, 0, sizeof(key->ip));
628                         memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr));
629                         if (nh_len == -EINVAL) {
630                                 skb->transport_header = skb->network_header;
631                                 error = 0;
632                         } else {
633                                 error = nh_len;
634                         }
635                         return error;
636                 }
637
638                 if (key->ip.frag == OVS_FRAG_TYPE_LATER)
639                         return 0;
640                 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
641                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
642
643                 /* Transport layer. */
644                 if (key->ip.proto == NEXTHDR_TCP) {
645                         if (tcphdr_ok(skb)) {
646                                 struct tcphdr *tcp = tcp_hdr(skb);
647                                 key->tp.src = tcp->source;
648                                 key->tp.dst = tcp->dest;
649                                 key->tp.flags = TCP_FLAGS_BE16(tcp);
650                         } else {
651                                 memset(&key->tp, 0, sizeof(key->tp));
652                         }
653                 } else if (key->ip.proto == NEXTHDR_UDP) {
654                         if (udphdr_ok(skb)) {
655                                 struct udphdr *udp = udp_hdr(skb);
656                                 key->tp.src = udp->source;
657                                 key->tp.dst = udp->dest;
658                         } else {
659                                 memset(&key->tp, 0, sizeof(key->tp));
660                         }
661                 } else if (key->ip.proto == NEXTHDR_SCTP) {
662                         if (sctphdr_ok(skb)) {
663                                 struct sctphdr *sctp = sctp_hdr(skb);
664                                 key->tp.src = sctp->source;
665                                 key->tp.dst = sctp->dest;
666                         } else {
667                                 memset(&key->tp, 0, sizeof(key->tp));
668                         }
669                 } else if (key->ip.proto == NEXTHDR_ICMP) {
670                         if (icmp6hdr_ok(skb)) {
671                                 error = parse_icmpv6(skb, key, nh_len);
672                                 if (error)
673                                         return error;
674                         } else {
675                                 memset(&key->tp, 0, sizeof(key->tp));
676                         }
677                 }
678         }
679         return 0;
680 }
681
682 int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key)
683 {
684         return key_extract(skb, key);
685 }
686
687 int ovs_flow_key_extract(const struct ovs_tunnel_info *tun_info,
688                          struct sk_buff *skb, struct sw_flow_key *key)
689 {
690         /* Extract metadata from packet. */
691         if (tun_info) {
692                 memcpy(&key->tun_key, &tun_info->tunnel, sizeof(key->tun_key));
693
694                 BUILD_BUG_ON(((1 << (sizeof(tun_info->options_len) * 8)) - 1) >
695                              sizeof(key->tun_opts));
696
697                 if (tun_info->options) {
698                         memcpy(TUN_METADATA_OPTS(key, tun_info->options_len),
699                                tun_info->options, tun_info->options_len);
700                         key->tun_opts_len = tun_info->options_len;
701                 } else {
702                         key->tun_opts_len = 0;
703                 }
704         } else {
705                 key->tun_opts_len = 0;
706                 memset(&key->tun_key, 0, sizeof(key->tun_key));
707         }
708
709         key->phy.priority = skb->priority;
710         key->phy.in_port = OVS_CB(skb)->input_vport->port_no;
711         key->phy.skb_mark = skb->mark;
712         key->ovs_flow_hash = 0;
713         key->recirc_id = 0;
714
715         return key_extract(skb, key);
716 }
717
718 int ovs_flow_key_extract_userspace(const struct nlattr *attr,
719                                    struct sk_buff *skb,
720                                    struct sw_flow_key *key, bool log)
721 {
722         int err;
723
724         /* Extract metadata from netlink attributes. */
725         err = ovs_nla_get_flow_metadata(attr, key, log);
726         if (err)
727                 return err;
728
729         return key_extract(skb, key);
730 }